File size: 52,729 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T13:27:24.975524Z"
    },
    "title": "The Pipeline Model for Resolution of Anaphoric Reference and Resolution of Entity Reference",
    "authors": [
        {
            "first": "Hongjin",
            "middle": [],
            "last": "Kim",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Konkuk University / Seoul",
                "location": {
                    "country": "South Korea"
                }
            },
            "email": ""
        },
        {
            "first": "Damrin",
            "middle": [],
            "last": "Kim",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Konkuk University / Seoul",
                "location": {
                    "country": "South Korea"
                }
            },
            "email": ""
        },
        {
            "first": "Harksoo",
            "middle": [],
            "last": "Kim",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Konkuk University / Seoul",
                "location": {
                    "country": "South Korea"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "The objective of anaphora resolution in dialogue shared-task is to go above and beyond the simple cases of coreference resolution in written text on which NLP has mostly focused so far, which arguably overestimate the performance of current SOTA models. The anaphora resolution in dialogue shared-task consists of three subtasks; subtask1, resolution of anaphoric identity and non-referring expression identification, subtask2, resolution of bridging references, and subtask3, resolution of discourse deixis/abstract anaphora. In this paper, we propose the pipelined model (i.e., a resolution of anaphoric identity and a resolution of bridging references) for the subtask1 and the subtask2. In the subtask1, our model detects mention via the parentheses prediction. Then, we create mention representation using the token representation constituting the mention. Mention representation is fed to the coreference resolution model for clustering. In the subtask2, our model resolves bridging references via a MRC framework. We construct a query for each entity with \"What is related of ENTITY?\". The input of our model is query and documents(i.e., all utterances of dialogue). Then, our model predicts entity span that is answer for a query.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "The objective of anaphora resolution in dialogue shared-task is to go above and beyond the simple cases of coreference resolution in written text on which NLP has mostly focused so far, which arguably overestimate the performance of current SOTA models. The anaphora resolution in dialogue shared-task consists of three subtasks; subtask1, resolution of anaphoric identity and non-referring expression identification, subtask2, resolution of bridging references, and subtask3, resolution of discourse deixis/abstract anaphora. In this paper, we propose the pipelined model (i.e., a resolution of anaphoric identity and a resolution of bridging references) for the subtask1 and the subtask2. In the subtask1, our model detects mention via the parentheses prediction. Then, we create mention representation using the token representation constituting the mention. Mention representation is fed to the coreference resolution model for clustering. In the subtask2, our model resolves bridging references via a MRC framework. We construct a query for each entity with \"What is related of ENTITY?\". The input of our model is query and documents(i.e., all utterances of dialogue). Then, our model predicts entity span that is answer for a query.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Coreference Resolution (CR) is a task which identifying and clustering mentions referring to the same entity in text. Multiple benchmark datasets of CR have been developed in recent years, However, most of these corpora only focus on identity coreference resolution and neglect relations like discourse deixis or bridging anaphora. The goal of * equal contribution the anaphora resolution in dialogue shared-task is to go above and beyond the simple cases of coreference resolution in these datasets (Khosla et al., 2021 ). This shared-task consists of three subtasks; subtask1 for resolution of anaphoric identity and non-referring expression identification, subtask2 for identifying references to entities related to already introduced entities, and subtask3 for resolution of discourse deixis/abstract anaphora. The dataset consists conversations, so it might has grammatical error. To deal with this dataset, we need to perform speaker grounding of pronouns and focus on long-distance conversation structure. In this paper, we propose the pipelined model for the subtask1 and the subtask2 (i.e., a resolution of anaphoric identity and a resolution of bridging references). In the subtask1, our goal is to identify coreference chains which consist more cases of including split antecedent and singleton. We propose two models for the subtask1, First is the mention detection model and second is the coreference resoultion model. Our mention detection model identifies mention via the parentheses prediction. Then, based on the prediction of mention detection model, we create the mention representation using the token representation constituting the mention. Finally, mention representation is fed to the coreference resolution model for clustering. In the sub-task2, our goal is to identify associative anaphoric references (i.e., references to entities related to already introduced entities). Inspired by Li et al. (2019) , we propose a machine reading comprehension (MRC) framework for the subtask2. Given a question, MRC models predict answer spans from a context. Following this framework, we transformed the subtask2 to a QA task: each bridging pair P (e i , e j ) can be reconstructed as a question q(x) and a answer y. We constructed the question to \"What is related of x?\". The input of our bridging reference model is a question and the document(i.e., all utterances of the dialogue). Then, our model extracts the related entity(y) span that is an answer for the question. Our MRC model is pre-trained using QUOREF Dasigi et al. (2019) dataset. Our systems were developed using the shared-task datasets (STD) and evaluated in the tracks Eval-AR, Eval-Br(Pred) and Eval-Br(Gold), respectivly. See Table 1 for a summary.",
                "cite_spans": [
                    {
                        "start": 500,
                        "end": 520,
                        "text": "(Khosla et al., 2021",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 1912,
                        "end": 1928,
                        "text": "Li et al. (2019)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 2530,
                        "end": 2550,
                        "text": "Dasigi et al. (2019)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 2711,
                        "end": 2718,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "3 Key Components of Our Model 3.1 Subtask1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Description",
                "sec_num": "2"
            },
            {
                "text": "In mention detection, we perform mention detection via parentheses prediction for the token of each utterance. All mentions in the dataset is indicated in parentheses and some of these are the nested mentions. Since some of mentions are nested, traditional sequence labeling is not fit for the mention detection. For example, In \"((Health) and (education))\", it can be expressed to [B-I-I(Health and education), B-O-O(Health), O-O-B(education)] by the BIO tag. To address this issue, we propose a method to predict the opening parentheses and the closing parentheses independently. Firstly we need to transform the tagging-style of the dataset. For the opening parentheses, \"((Health) and (education))\" can be tagged to [\"((\", \"O\", \"(\"]. For the closing parentheses, it can be tagged to [\")\", \"O\", \"))\"]. We adopt pre-trained ELECTRA-large model Clark et al. (2020) as a backbone. Given an each utterance, U = {u 1 , u 2 , ..., u n }, where n denotes the number of tokens, ELECTRA receives the input tokens and outputs the context token representation E = {E 1 , E 2 , ..., E n }. For the parentheses prediction layer, we adopt the label attention network (LAN) Cui and Zhang (2019) . The context token representation E is used as input to the parentheses prediction layer which is consists the opening parentheses prediction and the closing parentheses prediction. The parentheses prediction layer calculates the association of the token representation with the opening and closing parenthesis embedding vectors, the opening and closing parenthesis predictions are performed independently. More detail, the token representation E is fed to BILSTM as follows:",
                "cite_spans": [
                    {
                        "start": 846,
                        "end": 865,
                        "text": "Clark et al. (2020)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 1162,
                        "end": 1182,
                        "text": "Cui and Zhang (2019)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mention Detection",
                "sec_num": "3.1.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u2190 \u2192 h 1 i = LSTM(E i , \u2190 \u2192 h 1 i\u22121 ) \u2190 \u2192 H 1 = { \u2190 \u2192 h 1 1 , \u2190 \u2192 h 1 2 , ..., \u2190 \u2192 h 1 n }",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Mention Detection",
                "sec_num": "3.1.1"
            },
            {
                "text": "For the label attention, the scaled dot-product attention produces an attention matrix \u03b1 consisting of a potential label distribution for each token. We define Q = \u2190 \u2192 H 1 , K = V = Emb k , where k denotes the number of the parentheses. In embedding vector, two embedding vector tables are randomly initialized. One is the opening parentheses embedding and another is the closing parentheses embedding. Opening and closing parenthesis embedding are used in opening and closing parenthesis predictions, respectively. In other words, Emb k can be Emb open k or Emb close k . The label attention vector is calculated as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mention Detection",
                "sec_num": "3.1.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "A 1 (C i ) = attention(Q, K, V ) = \u03b1V \u03b1 = sof tmax( Q * K T \u221a d h )",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Mention Detection",
                "sec_num": "3.1.1"
            },
            {
                "text": "Then, we concatenate the hidden states of BILSTM \u2190 \u2192 H 1 and the label attention vector A 1 (C i ) to represent",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mention Detection",
                "sec_num": "3.1.1"
            },
            {
                "text": "H 1 = [ \u2190 \u2192 H 1 ; A 1 (C i )]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mention Detection",
                "sec_num": "3.1.1"
            },
            {
                "text": ". H 1 is fed to subsequent BILSTM as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mention Detection",
                "sec_num": "3.1.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u2190 \u2192 h 2 i = LSTM(H 1 , \u2190 \u2192 h 2 i\u22121 ) \u2190 \u2192 H 2 = { \u2190 \u2192 h 2 1 , \u2190 \u2192 h 2 2 , ..., \u2190 \u2192 h 2 n }",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Mention Detection",
                "sec_num": "3.1.1"
            },
            {
                "text": "Finally, the parentheses of each token is predicted based on the attention scores as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mention Detection",
                "sec_num": "3.1.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "A 2 (C i ) = sof tmax( Q * K T \u221a d h ) y opening i = argmax(A 2 (C opening i )) y closing i = argmax(A 2 (C closing i ))",
                        "eq_num": "(4)"
                    }
                ],
                "section": "Mention Detection",
                "sec_num": "3.1.1"
            },
            {
                "text": "We define Q = \u2190 \u2192 H 2 , K = Emb k . It trains to minimize the cross-entropy between the predicted parenthesis and the correct parenthesis as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mention Detection",
                "sec_num": "3.1.1"
            },
            {
                "text": "loss opening = \u2212 i\u0177 opening i log y opening i loss closing = \u2212 i\u0177 closing i log y closing i loss total = 0.5 * loss opening + 0.5 * loss closing (5)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mention Detection",
                "sec_num": "3.1.1"
            },
            {
                "text": "However, the parenthesis prediction layer may predict the number of opening and closing parentheses differently. In this case, we extract mentions based on the number of opening parentheses without using any post-processing.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mention Detection",
                "sec_num": "3.1.1"
            },
            {
                "text": "In coreference resolution, we create the mention representation using the token representation constituting the mention as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Coreference Resolution",
                "sec_num": "3.1.2"
            },
            {
                "text": "M i = 1 N \u2212 k + 1 N k \u2190 \u2192 h 1 k (6) \u2190 \u2192 h 1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Coreference Resolution",
                "sec_num": "3.1.2"
            },
            {
                "text": "k is the contextual token representation in the Equation 1. Then, the mention representations",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Coreference Resolution",
                "sec_num": "3.1.2"
            },
            {
                "text": "M = {M 1 , M 2 , ...M l },",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Coreference Resolution",
                "sec_num": "3.1.2"
            },
            {
                "text": "where l denotes the number of mentions, are fed to coreference model. We also use ELECTRA which is fine-tuned in the mention detection model. To resolve coreference, all mentions in the document need to be fed to system. However, due to the restriction of the input length, all mentions can not be fed to model at once. Therefore, we segment according to the maximum input length. Using the pointer network Vinyals et al. (2015) , our model is trained to point to the mention that is referencing the closest distance. For example, if three mentions (M i , M j , M k ) are in the same cluster, our model is trained that",
                "cite_spans": [
                    {
                        "start": 407,
                        "end": 428,
                        "text": "Vinyals et al. (2015)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Coreference Resolution",
                "sec_num": "3.1.2"
            },
            {
                "text": "(M i , M j , M k ) points to (M j , M k , root)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Coreference Resolution",
                "sec_num": "3.1.2"
            },
            {
                "text": ", respectively (assume i < j < k and mentions are sorted by the order of appearance). In case of the singleton, Our model is trained that the singleton points to itself. In the pointer network, the self-attention mechanism is used to point the mention that is referencing as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Coreference Resolution",
                "sec_num": "3.1.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "A(M i ) = M * M \u221a d \u0125 y coref i = argmax(sof tmax(A(M i )))",
                        "eq_num": "(7)"
                    }
                ],
                "section": "Coreference Resolution",
                "sec_num": "3.1.2"
            },
            {
                "text": "For clustering, we need to post-process the prediction of our model. Since our model is trained to predict to the closest reference, we merge the cluster sequentially. If M i points to M j , we merge these mentions as [M i , M j ] and if M j points to the next mention, it will be merged sequentially. If M i points to M i (i.e., singleton), we create the new cluster [M i ]. We only use this post-processing method without any other methods.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Coreference Resolution",
                "sec_num": "3.1.2"
            },
            {
                "text": "In the bridging references, we propose a MRC framework. We adopt pre-trained RoBERTa-large model as a backbone. In our MRC model, when given a query \"What is related of x\", each token representation in document that is the output of the RoBERTa-large model is fed into a fully connected layer for predicting a starting position and an ending position of the related entity span. Since our MRC model answers for a query, it is important to decide which word to substitute for x in a query. The MRC model can be confused by the pronouns in a query, since a document might have many pronouns of the same word. We assume that the first mention (i.e., the earliest appeared mention) is not a pronoun but an ANCHOR. To avoid x being replaced by a pronoun, we substitute x with the first mention in each cluster that is result of the subtask1. The cluster C = {c 1 , c 2 , ...c n }, where n denotes the number of clusters, is the result of our coreference resolution model. The mention M i,1 in each cluster ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Subtask2",
                "sec_num": "3.2"
            },
            {
                "text": "c i = {M i,1 , M i,2 , ..., M i,j }",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Subtask2",
                "sec_num": "3.2"
            },
            {
                "text": "For mention detection, we evaluate our model on datasets of the anaphora resolution in dialogue shared-task. In dev-phase, For example, when we evaluate light dataset, we train the rest of datasets except light. Same manner is used for evaluating other datasets. In test-phase, we train all of the dev datasets. We use precision, recall and F1 socres for mention detection evaluation. As shown in Table  3 , our mention detection model shows 94.18% F1 scores in the light dataset. 90.88 in the AMI dataset, 92.93 in the Persuasion dataset, and 91.07 in the Switchboard dataset. Table 4 and Table 5 shows the results of the scores of MUC Vilain et al. (1995) , B-cubed Bagga and Baldwin (1998) , CEAF Luo (2005) , and the averaged CoNLL score Pradhan et al. (2014). As shown in Table 5 , our model shows 69.1% in the light, 57.5% in the AMI, 71.0% in the Persuasion and 65.6% in the Switchboard respectively. Our model achieved the overall average score 65.9% (ranked at top 3 in subtask1) of all datasets.",
                "cite_spans": [
                    {
                        "start": 633,
                        "end": 657,
                        "text": "MUC Vilain et al. (1995)",
                        "ref_id": null
                    },
                    {
                        "start": 668,
                        "end": 692,
                        "text": "Bagga and Baldwin (1998)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 695,
                        "end": 710,
                        "text": "CEAF Luo (2005)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 397,
                        "end": 405,
                        "text": "Table  3",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 578,
                        "end": 585,
                        "text": "Table 4",
                        "ref_id": "TABREF7"
                    },
                    {
                        "start": 590,
                        "end": 597,
                        "text": "Table 5",
                        "ref_id": "TABREF9"
                    },
                    {
                        "start": 777,
                        "end": 784,
                        "text": "Table 5",
                        "ref_id": "TABREF9"
                    }
                ],
                "eq_spans": [],
                "section": "Experiments on Mention Detection",
                "sec_num": "4.1"
            },
            {
                "text": "In test-phase of bridging reference, there are two phases depending on whether the gold mention is given. When the gold mention is given in Eval-Br(Gold) phase, but in Eval-Br(Pred), we need to extract the mentions. In Eval-Br(Pred) phase, we use our mention detection model and coreference resolution model. In Eval-Br(Gold) phase, we only use our coference resolution model. In other words, we use the result of in the subtask1. For evaluating bridging reference, we use precision, recall and f1-score of AR, FBM and FBE. AR is anaphora recognation, FBM is full bridging at mention level and FBE is full bridging at entity level. Table 6 shows the results of the Eval-Br(Pred) phase. In FBE scores, recall is significantly higher than precision. One possible reason is that our bridging reference MRC model can not classfy no-answerable query. Even if a no-answerable query is given to our model, it is inevitable to predict answer span since our model does not train to classify whether a query is answerable. Table 7 shows the results of the Eval-Br(Gold) phase. In FBE scores, precision is significantly improved compare with the Eval-Br(Pred) phase. It suggests that the correct mention detection is effective for coreference resolution and bridging reference. Our model achieved the overall average score 11.76% (ranked at top 2) and 17.27% (ranked at top 2) in Eval-Br(Pred) and Eval-Br(Gold) respectively. Table 7 : Results on bridging reference in Eval-Br(Gold) phase.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 632,
                        "end": 639,
                        "text": "Table 6",
                        "ref_id": null
                    },
                    {
                        "start": 1013,
                        "end": 1020,
                        "text": "Table 7",
                        "ref_id": null
                    },
                    {
                        "start": 1415,
                        "end": 1422,
                        "text": "Table 7",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experiments on Bridging Reference",
                "sec_num": "4.3"
            },
            {
                "text": "We proposed the pipeline model for resolution of anaphoric reference and resolution of entity reference. Our resolution of anaphoric reference model consists of mention detection model and coreference resolution model. Mention detection model extracts mentions via the parentheses prediction. Based on the result of mention detection model, the mention representation is created and then is fed to the coreference resolution model. Our coreference resolution model points to the closest mention using pointer network, and then merges mentions in same cluster sequentially. In subtask1, Our model achieved 65.9% the overall average score of all datasets (ranked at top 3). Our resolution of entity reference model utilizes a MRC framework. Given a query for related entity, our model predicts the related entity span. Our model achieved the overall average score 11.76% (ranked at top 2) and 17.26% (ranked at top 2) in Eval-Br(Pred) and Eval-Br(Gold) respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Algorithms for scoring coreference chains",
                "authors": [
                    {
                        "first": "Amit",
                        "middle": [],
                        "last": "Bagga",
                        "suffix": ""
                    },
                    {
                        "first": "Breck",
                        "middle": [],
                        "last": "Baldwin",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "The first international conference on language resources and evaluation workshop on linguistics coreference",
                "volume": "1",
                "issue": "",
                "pages": "563--566",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Amit Bagga and Breck Baldwin. 1998. Algorithms for scoring coreference chains. In The first interna- tional conference on language resources and evalua- tion workshop on linguistics coreference, volume 1, pages 563-566. Citeseer.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Electra: Pre-training text encoders as discriminators rather than generators",
                "authors": [
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Minh-Thang",
                        "middle": [],
                        "last": "Luong",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Quoc",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher D",
                        "middle": [],
                        "last": "Le",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2003.10555"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. 2020. Electra: Pre-training text encoders as discriminators rather than genera- tors. arXiv preprint arXiv:2003.10555.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Hierarchicallyrefined label attention network for sequence labeling",
                "authors": [
                    {
                        "first": "Leyang",
                        "middle": [],
                        "last": "Cui",
                        "suffix": ""
                    },
                    {
                        "first": "Yue",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "4115--4128",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Leyang Cui and Yue Zhang. 2019. Hierarchically- refined label attention network for sequence labeling. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 4115- 4128.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Quoref: A reading comprehension dataset with questions requiring coreferential reasoning",
                "authors": [
                    {
                        "first": "Pradeep",
                        "middle": [],
                        "last": "Dasigi",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Nelson",
                        "suffix": ""
                    },
                    {
                        "first": "Ana",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Marasovi\u0107",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Noah",
                        "suffix": ""
                    },
                    {
                        "first": "Matt",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Gardner",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1908.05803"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Pradeep Dasigi, Nelson F Liu, Ana Marasovi\u0107, Noah A Smith, and Matt Gardner. 2019. Quoref: A reading comprehension dataset with questions re- quiring coreferential reasoning. arXiv preprint arXiv:1908.05803.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "The codi-crac 2021 shared task on anaphora, bridging, and discourse deixis in dialogue",
                "authors": [
                    {
                        "first": "Sopan",
                        "middle": [],
                        "last": "Khosla",
                        "suffix": ""
                    },
                    {
                        "first": "Yu",
                        "middle": [],
                        "last": "Juntao",
                        "suffix": ""
                    },
                    {
                        "first": "Manuvinakurike",
                        "middle": [],
                        "last": "Ramesh",
                        "suffix": ""
                    },
                    {
                        "first": "Ng",
                        "middle": [],
                        "last": "Vincent",
                        "suffix": ""
                    },
                    {
                        "first": "Poesio",
                        "middle": [],
                        "last": "Massimo",
                        "suffix": ""
                    },
                    {
                        "first": "Strube",
                        "middle": [],
                        "last": "Michael",
                        "suffix": ""
                    },
                    {
                        "first": "Ros\u00e9",
                        "middle": [],
                        "last": "Carolyn",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the CODI-CRAC 2021",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sopan Khosla, Yu Juntao, Manuvinakurike Ramesh, Ng Vincent, Poesio Massimo, Strube Michael, and Ros\u00e9 Carolyn. 2021. The codi-crac 2021 shared task on anaphora, bridging, and discourse deixis in dialogue. In Proceedings of the CODI-CRAC 2021",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Shared Task on Anaphora, Bridging, and Discourse Deixis in Dialogue",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shared Task on Anaphora, Bridging, and Discourse Deixis in Dialogue, Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Entity-relation extraction as multi-turn question answering",
                "authors": [
                    {
                        "first": "Xiaoya",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Fan",
                        "middle": [],
                        "last": "Yin",
                        "suffix": ""
                    },
                    {
                        "first": "Zijun",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Xiayu",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Arianna",
                        "middle": [],
                        "last": "Yuan",
                        "suffix": ""
                    },
                    {
                        "first": "Duo",
                        "middle": [],
                        "last": "Chai",
                        "suffix": ""
                    },
                    {
                        "first": "Mingxin",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Jiwei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1905.05529"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Xiaoya Li, Fan Yin, Zijun Sun, Xiayu Li, Arianna Yuan, Duo Chai, Mingxin Zhou, and Jiwei Li. 2019. Entity-relation extraction as multi-turn question an- swering. arXiv preprint arXiv:1905.05529.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Roberta: A robustly optimized bert pretraining approach",
                "authors": [
                    {
                        "first": "Yinhan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Myle",
                        "middle": [],
                        "last": "Ott",
                        "suffix": ""
                    },
                    {
                        "first": "Naman",
                        "middle": [],
                        "last": "Goyal",
                        "suffix": ""
                    },
                    {
                        "first": "Jingfei",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    },
                    {
                        "first": "Mandar",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Danqi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Veselin",
                        "middle": [],
                        "last": "Stoyanov",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1907.11692"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining ap- proach. arXiv preprint arXiv:1907.11692.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "On coreference resolution performance metrics",
                "authors": [
                    {
                        "first": "Xiaoqiang",
                        "middle": [],
                        "last": "Luo",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "25--32",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiaoqiang Luo. 2005. On coreference resolution per- formance metrics. In Proceedings of Human Lan- guage Technology Conference and Conference on Empirical Methods in Natural Language Processing, pages 25-32.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Scoring coreference partitions of predicted mentions: A reference implementation",
                "authors": [
                    {
                        "first": "Xiaoqiang",
                        "middle": [],
                        "last": "Sameer Pradhan",
                        "suffix": ""
                    },
                    {
                        "first": "Marta",
                        "middle": [],
                        "last": "Luo",
                        "suffix": ""
                    },
                    {
                        "first": "Eduard",
                        "middle": [],
                        "last": "Recasens",
                        "suffix": ""
                    },
                    {
                        "first": "Vincent",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Strube",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the conference. Association for Computational Linguistics. Meeting",
                "volume": "2014",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sameer Pradhan, Xiaoqiang Luo, Marta Recasens, Ed- uard Hovy, Vincent Ng, and Michael Strube. 2014. Scoring coreference partitions of predicted men- tions: A reference implementation. In Proceedings of the conference. Association for Computational Linguistics. Meeting, volume 2014, page 30. NIH Public Access.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "A modeltheoretic coreference scoring scheme",
                "authors": [
                    {
                        "first": "Marc",
                        "middle": [],
                        "last": "Vilain",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "John",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Burger",
                        "suffix": ""
                    },
                    {
                        "first": "Dennis",
                        "middle": [],
                        "last": "Aberdeen",
                        "suffix": ""
                    },
                    {
                        "first": "Lynette",
                        "middle": [],
                        "last": "Connolly",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hirschman",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "Sixth Message Understanding Conference (MUC-6): Proceedings of a Conference Held in",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Marc Vilain, John D Burger, John Aberdeen, Dennis Connolly, and Lynette Hirschman. 1995. A model- theoretic coreference scoring scheme. In Sixth Mes- sage Understanding Conference (MUC-6): Proceed- ings of a Conference Held in Columbia, Maryland, November 6-8, 1995.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF1": {
                "content": "<table/>",
                "html": null,
                "text": "",
                "type_str": "table",
                "num": null
            },
            "TABREF2": {
                "content": "<table/>",
                "html": null,
                "text": "is used as \"x\". j denotes the number of mentions in each cluster. For example, If the mention M i,1 references M k,1 , a query is \"what is related of M i,1 ?\" and our system predicts the span of M k,1 . The input of our model is a query and the document (i.e., all utterances) as \"[CLS] query [SEP] utterance 1 [SEP] utterance 2 [SEP] , ... , SEP]\". The training objective function is the log-likelihood of the correct span.",
                "type_str": "table",
                "num": null
            },
            "TABREF4": {
                "content": "<table><tr><td>Datasets</td><td colspan=\"3\">Precision Recall F1-score</td></tr><tr><td>light</td><td>95.36</td><td>93.00</td><td>94.18</td></tr><tr><td>AMI</td><td>92.12</td><td>89.64</td><td>90.88</td></tr><tr><td>Persuasion</td><td>92.91</td><td>92.95</td><td>92.93</td></tr><tr><td colspan=\"2\">Switchboard 92.70</td><td>89.43</td><td>91.07</td></tr></table>",
                "html": null,
                "text": "Results on mention detection for dev datasets.",
                "type_str": "table",
                "num": null
            },
            "TABREF5": {
                "content": "<table/>",
                "html": null,
                "text": "Results on mention detection for test datasets.",
                "type_str": "table",
                "num": null
            },
            "TABREF7": {
                "content": "<table/>",
                "html": null,
                "text": "Results on coreference resolution for dev datasets.",
                "type_str": "table",
                "num": null
            },
            "TABREF9": {
                "content": "<table><tr><td colspan=\"6\">: Results on coreference resolution for test</td></tr><tr><td>datasets.</td><td/><td/><td/><td/></tr><tr><td/><td/><td colspan=\"4\">Light AMI Persuasion Switchboard</td></tr><tr><td/><td>P</td><td colspan=\"2\">28.7 32.3</td><td>20.9</td><td>29.7</td></tr><tr><td>AR</td><td colspan=\"3\">R 54.6 38.3</td><td>60.4</td><td>43.4</td></tr><tr><td colspan=\"4\">F1 37.7 35.0</td><td>31.0</td><td>35.2</td></tr><tr><td/><td>P</td><td>7.2</td><td>7.1</td><td>6.5</td><td>6.8</td></tr><tr><td>FBM</td><td colspan=\"2\">R 14.9</td><td>9.1</td><td>20.1</td><td>10.7</td></tr><tr><td colspan=\"2\">F1</td><td>9.7</td><td>8.0</td><td>9.8</td><td>8.3</td></tr><tr><td/><td>P</td><td>10.2</td><td>9.4</td><td>8.2</td><td>9.2</td></tr><tr><td>FBE</td><td colspan=\"3\">R 19.5 11.2</td><td>23.9</td><td>13.5</td></tr><tr><td colspan=\"4\">F1 13.4 10.2</td><td>12.3</td><td>10.9</td></tr><tr><td>Table 6:</td><td/><td colspan=\"4\">Results on bridging reference in Eval-</td></tr><tr><td colspan=\"3\">Br(Pred) phase.</td><td/><td/></tr></table>",
                "html": null,
                "text": "",
                "type_str": "table",
                "num": null
            }
        }
    }
}