File size: 52,729 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 |
{
"paper_id": "2021",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T13:27:24.975524Z"
},
"title": "The Pipeline Model for Resolution of Anaphoric Reference and Resolution of Entity Reference",
"authors": [
{
"first": "Hongjin",
"middle": [],
"last": "Kim",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Konkuk University / Seoul",
"location": {
"country": "South Korea"
}
},
"email": ""
},
{
"first": "Damrin",
"middle": [],
"last": "Kim",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Konkuk University / Seoul",
"location": {
"country": "South Korea"
}
},
"email": ""
},
{
"first": "Harksoo",
"middle": [],
"last": "Kim",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Konkuk University / Seoul",
"location": {
"country": "South Korea"
}
},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "The objective of anaphora resolution in dialogue shared-task is to go above and beyond the simple cases of coreference resolution in written text on which NLP has mostly focused so far, which arguably overestimate the performance of current SOTA models. The anaphora resolution in dialogue shared-task consists of three subtasks; subtask1, resolution of anaphoric identity and non-referring expression identification, subtask2, resolution of bridging references, and subtask3, resolution of discourse deixis/abstract anaphora. In this paper, we propose the pipelined model (i.e., a resolution of anaphoric identity and a resolution of bridging references) for the subtask1 and the subtask2. In the subtask1, our model detects mention via the parentheses prediction. Then, we create mention representation using the token representation constituting the mention. Mention representation is fed to the coreference resolution model for clustering. In the subtask2, our model resolves bridging references via a MRC framework. We construct a query for each entity with \"What is related of ENTITY?\". The input of our model is query and documents(i.e., all utterances of dialogue). Then, our model predicts entity span that is answer for a query.",
"pdf_parse": {
"paper_id": "2021",
"_pdf_hash": "",
"abstract": [
{
"text": "The objective of anaphora resolution in dialogue shared-task is to go above and beyond the simple cases of coreference resolution in written text on which NLP has mostly focused so far, which arguably overestimate the performance of current SOTA models. The anaphora resolution in dialogue shared-task consists of three subtasks; subtask1, resolution of anaphoric identity and non-referring expression identification, subtask2, resolution of bridging references, and subtask3, resolution of discourse deixis/abstract anaphora. In this paper, we propose the pipelined model (i.e., a resolution of anaphoric identity and a resolution of bridging references) for the subtask1 and the subtask2. In the subtask1, our model detects mention via the parentheses prediction. Then, we create mention representation using the token representation constituting the mention. Mention representation is fed to the coreference resolution model for clustering. In the subtask2, our model resolves bridging references via a MRC framework. We construct a query for each entity with \"What is related of ENTITY?\". The input of our model is query and documents(i.e., all utterances of dialogue). Then, our model predicts entity span that is answer for a query.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Coreference Resolution (CR) is a task which identifying and clustering mentions referring to the same entity in text. Multiple benchmark datasets of CR have been developed in recent years, However, most of these corpora only focus on identity coreference resolution and neglect relations like discourse deixis or bridging anaphora. The goal of * equal contribution the anaphora resolution in dialogue shared-task is to go above and beyond the simple cases of coreference resolution in these datasets (Khosla et al., 2021 ). This shared-task consists of three subtasks; subtask1 for resolution of anaphoric identity and non-referring expression identification, subtask2 for identifying references to entities related to already introduced entities, and subtask3 for resolution of discourse deixis/abstract anaphora. The dataset consists conversations, so it might has grammatical error. To deal with this dataset, we need to perform speaker grounding of pronouns and focus on long-distance conversation structure. In this paper, we propose the pipelined model for the subtask1 and the subtask2 (i.e., a resolution of anaphoric identity and a resolution of bridging references). In the subtask1, our goal is to identify coreference chains which consist more cases of including split antecedent and singleton. We propose two models for the subtask1, First is the mention detection model and second is the coreference resoultion model. Our mention detection model identifies mention via the parentheses prediction. Then, based on the prediction of mention detection model, we create the mention representation using the token representation constituting the mention. Finally, mention representation is fed to the coreference resolution model for clustering. In the sub-task2, our goal is to identify associative anaphoric references (i.e., references to entities related to already introduced entities). Inspired by Li et al. (2019) , we propose a machine reading comprehension (MRC) framework for the subtask2. Given a question, MRC models predict answer spans from a context. Following this framework, we transformed the subtask2 to a QA task: each bridging pair P (e i , e j ) can be reconstructed as a question q(x) and a answer y. We constructed the question to \"What is related of x?\". The input of our bridging reference model is a question and the document(i.e., all utterances of the dialogue). Then, our model extracts the related entity(y) span that is an answer for the question. Our MRC model is pre-trained using QUOREF Dasigi et al. (2019) dataset. Our systems were developed using the shared-task datasets (STD) and evaluated in the tracks Eval-AR, Eval-Br(Pred) and Eval-Br(Gold), respectivly. See Table 1 for a summary.",
"cite_spans": [
{
"start": 500,
"end": 520,
"text": "(Khosla et al., 2021",
"ref_id": "BIBREF4"
},
{
"start": 1912,
"end": 1928,
"text": "Li et al. (2019)",
"ref_id": "BIBREF6"
},
{
"start": 2530,
"end": 2550,
"text": "Dasigi et al. (2019)",
"ref_id": "BIBREF3"
}
],
"ref_spans": [
{
"start": 2711,
"end": 2718,
"text": "Table 1",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "3 Key Components of Our Model 3.1 Subtask1",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Task Description",
"sec_num": "2"
},
{
"text": "In mention detection, we perform mention detection via parentheses prediction for the token of each utterance. All mentions in the dataset is indicated in parentheses and some of these are the nested mentions. Since some of mentions are nested, traditional sequence labeling is not fit for the mention detection. For example, In \"((Health) and (education))\", it can be expressed to [B-I-I(Health and education), B-O-O(Health), O-O-B(education)] by the BIO tag. To address this issue, we propose a method to predict the opening parentheses and the closing parentheses independently. Firstly we need to transform the tagging-style of the dataset. For the opening parentheses, \"((Health) and (education))\" can be tagged to [\"((\", \"O\", \"(\"]. For the closing parentheses, it can be tagged to [\")\", \"O\", \"))\"]. We adopt pre-trained ELECTRA-large model Clark et al. (2020) as a backbone. Given an each utterance, U = {u 1 , u 2 , ..., u n }, where n denotes the number of tokens, ELECTRA receives the input tokens and outputs the context token representation E = {E 1 , E 2 , ..., E n }. For the parentheses prediction layer, we adopt the label attention network (LAN) Cui and Zhang (2019) . The context token representation E is used as input to the parentheses prediction layer which is consists the opening parentheses prediction and the closing parentheses prediction. The parentheses prediction layer calculates the association of the token representation with the opening and closing parenthesis embedding vectors, the opening and closing parenthesis predictions are performed independently. More detail, the token representation E is fed to BILSTM as follows:",
"cite_spans": [
{
"start": 846,
"end": 865,
"text": "Clark et al. (2020)",
"ref_id": "BIBREF1"
},
{
"start": 1162,
"end": 1182,
"text": "Cui and Zhang (2019)",
"ref_id": "BIBREF2"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Mention Detection",
"sec_num": "3.1.1"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "\u2190 \u2192 h 1 i = LSTM(E i , \u2190 \u2192 h 1 i\u22121 ) \u2190 \u2192 H 1 = { \u2190 \u2192 h 1 1 , \u2190 \u2192 h 1 2 , ..., \u2190 \u2192 h 1 n }",
"eq_num": "(1)"
}
],
"section": "Mention Detection",
"sec_num": "3.1.1"
},
{
"text": "For the label attention, the scaled dot-product attention produces an attention matrix \u03b1 consisting of a potential label distribution for each token. We define Q = \u2190 \u2192 H 1 , K = V = Emb k , where k denotes the number of the parentheses. In embedding vector, two embedding vector tables are randomly initialized. One is the opening parentheses embedding and another is the closing parentheses embedding. Opening and closing parenthesis embedding are used in opening and closing parenthesis predictions, respectively. In other words, Emb k can be Emb open k or Emb close k . The label attention vector is calculated as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Mention Detection",
"sec_num": "3.1.1"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "A 1 (C i ) = attention(Q, K, V ) = \u03b1V \u03b1 = sof tmax( Q * K T \u221a d h )",
"eq_num": "(2)"
}
],
"section": "Mention Detection",
"sec_num": "3.1.1"
},
{
"text": "Then, we concatenate the hidden states of BILSTM \u2190 \u2192 H 1 and the label attention vector A 1 (C i ) to represent",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Mention Detection",
"sec_num": "3.1.1"
},
{
"text": "H 1 = [ \u2190 \u2192 H 1 ; A 1 (C i )]",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Mention Detection",
"sec_num": "3.1.1"
},
{
"text": ". H 1 is fed to subsequent BILSTM as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Mention Detection",
"sec_num": "3.1.1"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "\u2190 \u2192 h 2 i = LSTM(H 1 , \u2190 \u2192 h 2 i\u22121 ) \u2190 \u2192 H 2 = { \u2190 \u2192 h 2 1 , \u2190 \u2192 h 2 2 , ..., \u2190 \u2192 h 2 n }",
"eq_num": "(3)"
}
],
"section": "Mention Detection",
"sec_num": "3.1.1"
},
{
"text": "Finally, the parentheses of each token is predicted based on the attention scores as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Mention Detection",
"sec_num": "3.1.1"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "A 2 (C i ) = sof tmax( Q * K T \u221a d h ) y opening i = argmax(A 2 (C opening i )) y closing i = argmax(A 2 (C closing i ))",
"eq_num": "(4)"
}
],
"section": "Mention Detection",
"sec_num": "3.1.1"
},
{
"text": "We define Q = \u2190 \u2192 H 2 , K = Emb k . It trains to minimize the cross-entropy between the predicted parenthesis and the correct parenthesis as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Mention Detection",
"sec_num": "3.1.1"
},
{
"text": "loss opening = \u2212 i\u0177 opening i log y opening i loss closing = \u2212 i\u0177 closing i log y closing i loss total = 0.5 * loss opening + 0.5 * loss closing (5)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Mention Detection",
"sec_num": "3.1.1"
},
{
"text": "However, the parenthesis prediction layer may predict the number of opening and closing parentheses differently. In this case, we extract mentions based on the number of opening parentheses without using any post-processing.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Mention Detection",
"sec_num": "3.1.1"
},
{
"text": "In coreference resolution, we create the mention representation using the token representation constituting the mention as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Coreference Resolution",
"sec_num": "3.1.2"
},
{
"text": "M i = 1 N \u2212 k + 1 N k \u2190 \u2192 h 1 k (6) \u2190 \u2192 h 1",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Coreference Resolution",
"sec_num": "3.1.2"
},
{
"text": "k is the contextual token representation in the Equation 1. Then, the mention representations",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Coreference Resolution",
"sec_num": "3.1.2"
},
{
"text": "M = {M 1 , M 2 , ...M l },",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Coreference Resolution",
"sec_num": "3.1.2"
},
{
"text": "where l denotes the number of mentions, are fed to coreference model. We also use ELECTRA which is fine-tuned in the mention detection model. To resolve coreference, all mentions in the document need to be fed to system. However, due to the restriction of the input length, all mentions can not be fed to model at once. Therefore, we segment according to the maximum input length. Using the pointer network Vinyals et al. (2015) , our model is trained to point to the mention that is referencing the closest distance. For example, if three mentions (M i , M j , M k ) are in the same cluster, our model is trained that",
"cite_spans": [
{
"start": 407,
"end": 428,
"text": "Vinyals et al. (2015)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Coreference Resolution",
"sec_num": "3.1.2"
},
{
"text": "(M i , M j , M k ) points to (M j , M k , root)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Coreference Resolution",
"sec_num": "3.1.2"
},
{
"text": ", respectively (assume i < j < k and mentions are sorted by the order of appearance). In case of the singleton, Our model is trained that the singleton points to itself. In the pointer network, the self-attention mechanism is used to point the mention that is referencing as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Coreference Resolution",
"sec_num": "3.1.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "A(M i ) = M * M \u221a d \u0125 y coref i = argmax(sof tmax(A(M i )))",
"eq_num": "(7)"
}
],
"section": "Coreference Resolution",
"sec_num": "3.1.2"
},
{
"text": "For clustering, we need to post-process the prediction of our model. Since our model is trained to predict to the closest reference, we merge the cluster sequentially. If M i points to M j , we merge these mentions as [M i , M j ] and if M j points to the next mention, it will be merged sequentially. If M i points to M i (i.e., singleton), we create the new cluster [M i ]. We only use this post-processing method without any other methods.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Coreference Resolution",
"sec_num": "3.1.2"
},
{
"text": "In the bridging references, we propose a MRC framework. We adopt pre-trained RoBERTa-large model as a backbone. In our MRC model, when given a query \"What is related of x\", each token representation in document that is the output of the RoBERTa-large model is fed into a fully connected layer for predicting a starting position and an ending position of the related entity span. Since our MRC model answers for a query, it is important to decide which word to substitute for x in a query. The MRC model can be confused by the pronouns in a query, since a document might have many pronouns of the same word. We assume that the first mention (i.e., the earliest appeared mention) is not a pronoun but an ANCHOR. To avoid x being replaced by a pronoun, we substitute x with the first mention in each cluster that is result of the subtask1. The cluster C = {c 1 , c 2 , ...c n }, where n denotes the number of clusters, is the result of our coreference resolution model. The mention M i,1 in each cluster ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Subtask2",
"sec_num": "3.2"
},
{
"text": "c i = {M i,1 , M i,2 , ..., M i,j }",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Subtask2",
"sec_num": "3.2"
},
{
"text": "For mention detection, we evaluate our model on datasets of the anaphora resolution in dialogue shared-task. In dev-phase, For example, when we evaluate light dataset, we train the rest of datasets except light. Same manner is used for evaluating other datasets. In test-phase, we train all of the dev datasets. We use precision, recall and F1 socres for mention detection evaluation. As shown in Table 3 , our mention detection model shows 94.18% F1 scores in the light dataset. 90.88 in the AMI dataset, 92.93 in the Persuasion dataset, and 91.07 in the Switchboard dataset. Table 4 and Table 5 shows the results of the scores of MUC Vilain et al. (1995) , B-cubed Bagga and Baldwin (1998) , CEAF Luo (2005) , and the averaged CoNLL score Pradhan et al. (2014). As shown in Table 5 , our model shows 69.1% in the light, 57.5% in the AMI, 71.0% in the Persuasion and 65.6% in the Switchboard respectively. Our model achieved the overall average score 65.9% (ranked at top 3 in subtask1) of all datasets.",
"cite_spans": [
{
"start": 633,
"end": 657,
"text": "MUC Vilain et al. (1995)",
"ref_id": null
},
{
"start": 668,
"end": 692,
"text": "Bagga and Baldwin (1998)",
"ref_id": "BIBREF0"
},
{
"start": 695,
"end": 710,
"text": "CEAF Luo (2005)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 397,
"end": 405,
"text": "Table 3",
"ref_id": "TABREF5"
},
{
"start": 578,
"end": 585,
"text": "Table 4",
"ref_id": "TABREF7"
},
{
"start": 590,
"end": 597,
"text": "Table 5",
"ref_id": "TABREF9"
},
{
"start": 777,
"end": 784,
"text": "Table 5",
"ref_id": "TABREF9"
}
],
"eq_spans": [],
"section": "Experiments on Mention Detection",
"sec_num": "4.1"
},
{
"text": "In test-phase of bridging reference, there are two phases depending on whether the gold mention is given. When the gold mention is given in Eval-Br(Gold) phase, but in Eval-Br(Pred), we need to extract the mentions. In Eval-Br(Pred) phase, we use our mention detection model and coreference resolution model. In Eval-Br(Gold) phase, we only use our coference resolution model. In other words, we use the result of in the subtask1. For evaluating bridging reference, we use precision, recall and f1-score of AR, FBM and FBE. AR is anaphora recognation, FBM is full bridging at mention level and FBE is full bridging at entity level. Table 6 shows the results of the Eval-Br(Pred) phase. In FBE scores, recall is significantly higher than precision. One possible reason is that our bridging reference MRC model can not classfy no-answerable query. Even if a no-answerable query is given to our model, it is inevitable to predict answer span since our model does not train to classify whether a query is answerable. Table 7 shows the results of the Eval-Br(Gold) phase. In FBE scores, precision is significantly improved compare with the Eval-Br(Pred) phase. It suggests that the correct mention detection is effective for coreference resolution and bridging reference. Our model achieved the overall average score 11.76% (ranked at top 2) and 17.27% (ranked at top 2) in Eval-Br(Pred) and Eval-Br(Gold) respectively. Table 7 : Results on bridging reference in Eval-Br(Gold) phase.",
"cite_spans": [],
"ref_spans": [
{
"start": 632,
"end": 639,
"text": "Table 6",
"ref_id": null
},
{
"start": 1013,
"end": 1020,
"text": "Table 7",
"ref_id": null
},
{
"start": 1415,
"end": 1422,
"text": "Table 7",
"ref_id": null
}
],
"eq_spans": [],
"section": "Experiments on Bridging Reference",
"sec_num": "4.3"
},
{
"text": "We proposed the pipeline model for resolution of anaphoric reference and resolution of entity reference. Our resolution of anaphoric reference model consists of mention detection model and coreference resolution model. Mention detection model extracts mentions via the parentheses prediction. Based on the result of mention detection model, the mention representation is created and then is fed to the coreference resolution model. Our coreference resolution model points to the closest mention using pointer network, and then merges mentions in same cluster sequentially. In subtask1, Our model achieved 65.9% the overall average score of all datasets (ranked at top 3). Our resolution of entity reference model utilizes a MRC framework. Given a query for related entity, our model predicts the related entity span. Our model achieved the overall average score 11.76% (ranked at top 2) and 17.26% (ranked at top 2) in Eval-Br(Pred) and Eval-Br(Gold) respectively.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "5"
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Algorithms for scoring coreference chains",
"authors": [
{
"first": "Amit",
"middle": [],
"last": "Bagga",
"suffix": ""
},
{
"first": "Breck",
"middle": [],
"last": "Baldwin",
"suffix": ""
}
],
"year": 1998,
"venue": "The first international conference on language resources and evaluation workshop on linguistics coreference",
"volume": "1",
"issue": "",
"pages": "563--566",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Amit Bagga and Breck Baldwin. 1998. Algorithms for scoring coreference chains. In The first interna- tional conference on language resources and evalua- tion workshop on linguistics coreference, volume 1, pages 563-566. Citeseer.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Electra: Pre-training text encoders as discriminators rather than generators",
"authors": [
{
"first": "Kevin",
"middle": [],
"last": "Clark",
"suffix": ""
},
{
"first": "Minh-Thang",
"middle": [],
"last": "Luong",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Quoc",
"suffix": ""
},
{
"first": "Christopher D",
"middle": [],
"last": "Le",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:2003.10555"
]
},
"num": null,
"urls": [],
"raw_text": "Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. 2020. Electra: Pre-training text encoders as discriminators rather than genera- tors. arXiv preprint arXiv:2003.10555.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Hierarchicallyrefined label attention network for sequence labeling",
"authors": [
{
"first": "Leyang",
"middle": [],
"last": "Cui",
"suffix": ""
},
{
"first": "Yue",
"middle": [],
"last": "Zhang",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "4115--4128",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Leyang Cui and Yue Zhang. 2019. Hierarchically- refined label attention network for sequence labeling. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 4115- 4128.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Quoref: A reading comprehension dataset with questions requiring coreferential reasoning",
"authors": [
{
"first": "Pradeep",
"middle": [],
"last": "Dasigi",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Nelson",
"suffix": ""
},
{
"first": "Ana",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Marasovi\u0107",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Noah",
"suffix": ""
},
{
"first": "Matt",
"middle": [],
"last": "Smith",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Gardner",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1908.05803"
]
},
"num": null,
"urls": [],
"raw_text": "Pradeep Dasigi, Nelson F Liu, Ana Marasovi\u0107, Noah A Smith, and Matt Gardner. 2019. Quoref: A reading comprehension dataset with questions re- quiring coreferential reasoning. arXiv preprint arXiv:1908.05803.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "The codi-crac 2021 shared task on anaphora, bridging, and discourse deixis in dialogue",
"authors": [
{
"first": "Sopan",
"middle": [],
"last": "Khosla",
"suffix": ""
},
{
"first": "Yu",
"middle": [],
"last": "Juntao",
"suffix": ""
},
{
"first": "Manuvinakurike",
"middle": [],
"last": "Ramesh",
"suffix": ""
},
{
"first": "Ng",
"middle": [],
"last": "Vincent",
"suffix": ""
},
{
"first": "Poesio",
"middle": [],
"last": "Massimo",
"suffix": ""
},
{
"first": "Strube",
"middle": [],
"last": "Michael",
"suffix": ""
},
{
"first": "Ros\u00e9",
"middle": [],
"last": "Carolyn",
"suffix": ""
}
],
"year": 2021,
"venue": "Proceedings of the CODI-CRAC 2021",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sopan Khosla, Yu Juntao, Manuvinakurike Ramesh, Ng Vincent, Poesio Massimo, Strube Michael, and Ros\u00e9 Carolyn. 2021. The codi-crac 2021 shared task on anaphora, bridging, and discourse deixis in dialogue. In Proceedings of the CODI-CRAC 2021",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Shared Task on Anaphora, Bridging, and Discourse Deixis in Dialogue",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shared Task on Anaphora, Bridging, and Discourse Deixis in Dialogue, Association for Computational Linguistics.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Entity-relation extraction as multi-turn question answering",
"authors": [
{
"first": "Xiaoya",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Fan",
"middle": [],
"last": "Yin",
"suffix": ""
},
{
"first": "Zijun",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "Xiayu",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Arianna",
"middle": [],
"last": "Yuan",
"suffix": ""
},
{
"first": "Duo",
"middle": [],
"last": "Chai",
"suffix": ""
},
{
"first": "Mingxin",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Jiwei",
"middle": [],
"last": "Li",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1905.05529"
]
},
"num": null,
"urls": [],
"raw_text": "Xiaoya Li, Fan Yin, Zijun Sun, Xiayu Li, Arianna Yuan, Duo Chai, Mingxin Zhou, and Jiwei Li. 2019. Entity-relation extraction as multi-turn question an- swering. arXiv preprint arXiv:1905.05529.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Roberta: A robustly optimized bert pretraining approach",
"authors": [
{
"first": "Yinhan",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Myle",
"middle": [],
"last": "Ott",
"suffix": ""
},
{
"first": "Naman",
"middle": [],
"last": "Goyal",
"suffix": ""
},
{
"first": "Jingfei",
"middle": [],
"last": "Du",
"suffix": ""
},
{
"first": "Mandar",
"middle": [],
"last": "Joshi",
"suffix": ""
},
{
"first": "Danqi",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Omer",
"middle": [],
"last": "Levy",
"suffix": ""
},
{
"first": "Mike",
"middle": [],
"last": "Lewis",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
},
{
"first": "Veselin",
"middle": [],
"last": "Stoyanov",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1907.11692"
]
},
"num": null,
"urls": [],
"raw_text": "Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining ap- proach. arXiv preprint arXiv:1907.11692.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "On coreference resolution performance metrics",
"authors": [
{
"first": "Xiaoqiang",
"middle": [],
"last": "Luo",
"suffix": ""
}
],
"year": 2005,
"venue": "Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "25--32",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xiaoqiang Luo. 2005. On coreference resolution per- formance metrics. In Proceedings of Human Lan- guage Technology Conference and Conference on Empirical Methods in Natural Language Processing, pages 25-32.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Scoring coreference partitions of predicted mentions: A reference implementation",
"authors": [
{
"first": "Xiaoqiang",
"middle": [],
"last": "Sameer Pradhan",
"suffix": ""
},
{
"first": "Marta",
"middle": [],
"last": "Luo",
"suffix": ""
},
{
"first": "Eduard",
"middle": [],
"last": "Recasens",
"suffix": ""
},
{
"first": "Vincent",
"middle": [],
"last": "Hovy",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Ng",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Strube",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the conference. Association for Computational Linguistics. Meeting",
"volume": "2014",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sameer Pradhan, Xiaoqiang Luo, Marta Recasens, Ed- uard Hovy, Vincent Ng, and Michael Strube. 2014. Scoring coreference partitions of predicted men- tions: A reference implementation. In Proceedings of the conference. Association for Computational Linguistics. Meeting, volume 2014, page 30. NIH Public Access.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "A modeltheoretic coreference scoring scheme",
"authors": [
{
"first": "Marc",
"middle": [],
"last": "Vilain",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "John",
"suffix": ""
},
{
"first": "John",
"middle": [],
"last": "Burger",
"suffix": ""
},
{
"first": "Dennis",
"middle": [],
"last": "Aberdeen",
"suffix": ""
},
{
"first": "Lynette",
"middle": [],
"last": "Connolly",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Hirschman",
"suffix": ""
}
],
"year": 1995,
"venue": "Sixth Message Understanding Conference (MUC-6): Proceedings of a Conference Held in",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Marc Vilain, John D Burger, John Aberdeen, Dennis Connolly, and Lynette Hirschman. 1995. A model- theoretic coreference scoring scheme. In Sixth Mes- sage Understanding Conference (MUC-6): Proceed- ings of a Conference Held in Columbia, Maryland, November 6-8, 1995.",
"links": null
}
},
"ref_entries": {
"TABREF1": {
"content": "<table/>",
"html": null,
"text": "",
"type_str": "table",
"num": null
},
"TABREF2": {
"content": "<table/>",
"html": null,
"text": "is used as \"x\". j denotes the number of mentions in each cluster. For example, If the mention M i,1 references M k,1 , a query is \"what is related of M i,1 ?\" and our system predicts the span of M k,1 . The input of our model is a query and the document (i.e., all utterances) as \"[CLS] query [SEP] utterance 1 [SEP] utterance 2 [SEP] , ... , SEP]\". The training objective function is the log-likelihood of the correct span.",
"type_str": "table",
"num": null
},
"TABREF4": {
"content": "<table><tr><td>Datasets</td><td colspan=\"3\">Precision Recall F1-score</td></tr><tr><td>light</td><td>95.36</td><td>93.00</td><td>94.18</td></tr><tr><td>AMI</td><td>92.12</td><td>89.64</td><td>90.88</td></tr><tr><td>Persuasion</td><td>92.91</td><td>92.95</td><td>92.93</td></tr><tr><td colspan=\"2\">Switchboard 92.70</td><td>89.43</td><td>91.07</td></tr></table>",
"html": null,
"text": "Results on mention detection for dev datasets.",
"type_str": "table",
"num": null
},
"TABREF5": {
"content": "<table/>",
"html": null,
"text": "Results on mention detection for test datasets.",
"type_str": "table",
"num": null
},
"TABREF7": {
"content": "<table/>",
"html": null,
"text": "Results on coreference resolution for dev datasets.",
"type_str": "table",
"num": null
},
"TABREF9": {
"content": "<table><tr><td colspan=\"6\">: Results on coreference resolution for test</td></tr><tr><td>datasets.</td><td/><td/><td/><td/></tr><tr><td/><td/><td colspan=\"4\">Light AMI Persuasion Switchboard</td></tr><tr><td/><td>P</td><td colspan=\"2\">28.7 32.3</td><td>20.9</td><td>29.7</td></tr><tr><td>AR</td><td colspan=\"3\">R 54.6 38.3</td><td>60.4</td><td>43.4</td></tr><tr><td colspan=\"4\">F1 37.7 35.0</td><td>31.0</td><td>35.2</td></tr><tr><td/><td>P</td><td>7.2</td><td>7.1</td><td>6.5</td><td>6.8</td></tr><tr><td>FBM</td><td colspan=\"2\">R 14.9</td><td>9.1</td><td>20.1</td><td>10.7</td></tr><tr><td colspan=\"2\">F1</td><td>9.7</td><td>8.0</td><td>9.8</td><td>8.3</td></tr><tr><td/><td>P</td><td>10.2</td><td>9.4</td><td>8.2</td><td>9.2</td></tr><tr><td>FBE</td><td colspan=\"3\">R 19.5 11.2</td><td>23.9</td><td>13.5</td></tr><tr><td colspan=\"4\">F1 13.4 10.2</td><td>12.3</td><td>10.9</td></tr><tr><td>Table 6:</td><td/><td colspan=\"4\">Results on bridging reference in Eval-</td></tr><tr><td colspan=\"3\">Br(Pred) phase.</td><td/><td/></tr></table>",
"html": null,
"text": "",
"type_str": "table",
"num": null
}
}
}
} |