File size: 91,235 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T13:27:43.268980Z"
    },
    "title": "An End-to-End Approach for Full Bridging Resolution",
    "authors": [
        {
            "first": "Joseph",
            "middle": [],
            "last": "Renner",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "INRIA Lille",
                "location": {
                    "settlement": "Magnet",
                    "country": "France"
                }
            },
            "email": "[email protected]"
        },
        {
            "first": "Priyansh",
            "middle": [],
            "last": "Trivedi",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "INRIA Lille",
                "location": {
                    "settlement": "Magnet",
                    "country": "France"
                }
            },
            "email": "[email protected]"
        },
        {
            "first": "Gaurav",
            "middle": [],
            "last": "Maheshwari",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "INRIA Lille",
                "location": {
                    "settlement": "Magnet",
                    "country": "France"
                }
            },
            "email": "[email protected]"
        },
        {
            "first": "R\u00e9mi",
            "middle": [],
            "last": "Gilleron",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "INRIA Lille",
                "location": {
                    "settlement": "Magnet",
                    "country": "France"
                }
            },
            "email": "[email protected]"
        },
        {
            "first": "Pascal",
            "middle": [],
            "last": "Denis",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "INRIA Lille",
                "location": {
                    "settlement": "Magnet",
                    "country": "France"
                }
            },
            "email": "[email protected]"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "In this article, we describe our submission to the CODI-CRAC 2021 Shared Task on Anaphora Resolution in Dialogues-Track BR (Gold) 1. We demonstrate the performance of an end-to-end transformer-based higher-order coreference model finetuned for the task of full bridging. We find that while our approach is not effective at modeling the complexities of the task, it performs well on bridging resolution, suggesting a need for investigations into a robust anaphor identification model for future improvements.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "In this article, we describe our submission to the CODI-CRAC 2021 Shared Task on Anaphora Resolution in Dialogues-Track BR (Gold) 1. We demonstrate the performance of an end-to-end transformer-based higher-order coreference model finetuned for the task of full bridging. We find that while our approach is not effective at modeling the complexities of the task, it performs well on bridging resolution, suggesting a need for investigations into a robust anaphor identification model for future improvements.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Anaphora is a discourse level phenomenon wherein a linguistic entity (referred to as anaphor) is associated with some other linguistic entity (referred to as an antecedent) within a document (Tognini-Bonelli, 2001 ). Broadly, the phenomenon is divided into coreference and bridging anaphora depending on whether the anaphoric references are linked to associated antecedents with an identical (is-a), or a non-identical (\u00ac is-a) relation, respectively. Following is an example of bridging anaphora -the focus of this article:",
                "cite_spans": [
                    {
                        "start": 191,
                        "end": 213,
                        "text": "(Tognini-Bonelli, 2001",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Starbucks has a new take on the unicorn cappuccino. One employee accidentally leaked a picture of the secret new drink.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Here, the noun phrase \"One employee\" (bridging anaphor) is anaphorically linked to the antecedent -\"Starbucks\". In this instance, bridging anaphor can be thought of as an expression with an implicit argument, i.e., one employee (of Starbucks) .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The task of full bridging is that of identifying anaphors from a given set of linguistic entities in the document and linking them with their nonidentical associated antecedent. This task is arguably more difficult and relatively understudied than that of entity coreference resolution -which involves identifying coreferent linguistic entities. This difficulty can be seen from the fact that Bridging anaphors are less likely to conform to syntactic or surface clues (Kobayashi and Ng, 2020) , and the low inter-annotator agreement for bridging annotations (Markert et al., 2012) . Hindrances to rapid progress on the task, however, also include lack of ample gold labeled data (R\u00f6siger, 2018; Hou, 2020) , and standardised evaluation schemes (Kobayashi and Ng, 2020) . The CODI-CRAC 2021 shared task (Khosla et al., 2021) is thus a welcome addition to the existing set of datasets in the field as it provides a consistent benchmark across multiple gold-annotated datasets. However, unlike the task variant that the majority of existing approaches tackle, the shared task also includes identification of the bridging anaphors as a part of the task. That is, most existing approaches (Lassalle and Denis, 2011; Hou et al., 2013; Hou, 2018a,b) assume the anaphor (here, \"one employee\") to be given, and are limited to selecting the correct antecedent for this phrase, amongst a predefined list of linguistic entities. The identification of anaphors compounds the difficulty of the task, owing to, amongst other things, the number of markables (linguistic entities) in a document (See Table 1 ), and low recall of anaphoric noun phrases in existing datasets .",
                "cite_spans": [
                    {
                        "start": 468,
                        "end": 492,
                        "text": "(Kobayashi and Ng, 2020)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 558,
                        "end": 580,
                        "text": "(Markert et al., 2012)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 679,
                        "end": 694,
                        "text": "(R\u00f6siger, 2018;",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 695,
                        "end": 705,
                        "text": "Hou, 2020)",
                        "ref_id": null
                    },
                    {
                        "start": 744,
                        "end": 768,
                        "text": "(Kobayashi and Ng, 2020)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 802,
                        "end": 823,
                        "text": "(Khosla et al., 2021)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 1184,
                        "end": 1210,
                        "text": "(Lassalle and Denis, 2011;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 1211,
                        "end": 1228,
                        "text": "Hou et al., 2013;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 1229,
                        "end": 1242,
                        "text": "Hou, 2018a,b)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1583,
                        "end": 1590,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "That said, coreference resolution is a more complex task in terms of the decisions to be taken for correct predictions. Coreference chains are variadic, whereas relations representing bridging anaphors are binary. Further, contemporary approaches treat mention detection as a part of the task. The neural architectures thus proposed for coreference resolution are often more expressive than the task of full bridging (with gold markables) requires. Based on this observation, we aim to find whether the aforementioned neural architectures can be adapted for solving a linguistically complex but simpler (in the above stated terms) task of full bridging. To that end, we experiment with the independent variant of the transformer based higher-order coreference model (Joshi et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 766,
                        "end": 786,
                        "text": "(Joshi et al., 2019)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We empirically find that the approach is inadequate in solving the task, and posit that the currently available amount of gold-labeled data is insufficient for this family of approaches. This suggests a need for more data, or the use of external information in solving the full bridging task when using this family of approaches. However, we observe that when tasked with only the resolution of bridging anaphors (i.e., the anaphoric markables are provided as a part of the task), this approach performs significantly better, suggesting that a twostep identification and resolution approach might be beneficial for the task.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this section, we introduce domain specific terms used throughout the article, and formalise the different variants of tasks corresponding to identification and association of bridging anaphors. We use the nomenclature used in .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Description",
                "sec_num": "2"
            },
            {
                "text": "Markables: A set of linguistic entities in a document of which anaphors and antecedents are both subsets.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Description",
                "sec_num": "2"
            },
            {
                "text": "Bridging Anaphor: A markable whose interpretation depends upon an antecedent, or more generally, which is implicitly linked to an antecedent with a non-identity relation. We refer to them as simply anaphors in the rest of this article.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Description",
                "sec_num": "2"
            },
            {
                "text": "Antecedent: The markable which is related to the anaphor with an implicit non-identity relation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Description",
                "sec_num": "2"
            },
            {
                "text": "There are two primary variants of the task, defined as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Variants",
                "sec_num": "2.1"
            },
            {
                "text": "\u2022 Bridging Resolution: Given a document, and bridging anaphor markables, the task is that of finding the associated antecedent corresponding to each given bridging anaphors, from one of the markables preceding it.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Variants",
                "sec_num": "2.1"
            },
            {
                "text": "\u2022 Full Bridging: Given a document, identify the bridging anaphors and find their associ-ated antecedent from one of the markables preceding it.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Variants",
                "sec_num": "2.1"
            },
            {
                "text": "If the markables are provided alongwith the corpus annotations, we call them gold markables. Otherwise, the approaches solving the task are expected to predict these markables. We refer to the latter as predicted markables.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Variants",
                "sec_num": "2.1"
            },
            {
                "text": "The CODI-CRAC 2021 Shared-Task: Anaphora Resolution in Dialogues -Track BR (Gold) that we target is thus that of Full Bridging with Gold Markables 2 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Variants",
                "sec_num": "2.1"
            },
            {
                "text": "3 Approach",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Variants",
                "sec_num": "2.1"
            },
            {
                "text": "Our full bridging system is based on the independent version (Joshi et al., 2019) of the higher-order coreference resolution model described in (Lee et al., 2018) . As their model is designed for the coreference resolution with predicted markables, we adapt it for the full bridging task with gold markables. In this sub-section, we provide a brief overview of our augmented model and the associated problem formulation. Following the footsteps of (Lee et al., 2018), we formulate the problem as selecting an antecedent y i , from the set \u03b3(i), for each markable m i in the document. The set includes a dummy antecedent and all the markables in the document before m i , that is \u03b3(i) = { , m 1 , ..., m i\u22121 }. A non-dummy assignment represents an anaphor-antecedent link between m i and y i , while a dummy assignment means that the markable has no antecedent in the document i.e., the markable is not a bridging anaphor.",
                "cite_spans": [
                    {
                        "start": 61,
                        "end": 81,
                        "text": "(Joshi et al., 2019)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 144,
                        "end": 162,
                        "text": "(Lee et al., 2018)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Full Bridging with Higher-Order coreference model",
                "sec_num": "3.1"
            },
            {
                "text": "For each markable m i , the model learns a distribution P (y i ) over all the previous markable set \u03b3(i):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Full Bridging with Higher-Order coreference model",
                "sec_num": "3.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P (y i ) = e s(m i ,y i ) y \u2208\u03b3(i) e s(m i ,y )",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Full Bridging with Higher-Order coreference model",
                "sec_num": "3.1"
            },
            {
                "text": "The s(x,y) is the scoring function consisting of three parts defined as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Full Bridging with Higher-Order coreference model",
                "sec_num": "3.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "s(x, y) = s m (x) + s m (y) + s p (x, y) (2) s m (x) = FFNN m (x) (3) s p (x, y) = FFNN p (x, y, \u03c6(x, y))",
                        "eq_num": "(4)"
                    }
                ],
                "section": "Full Bridging with Higher-Order coreference model",
                "sec_num": "3.1"
            },
            {
                "text": "Here x and y are the encoded representation of the two markables. These encodings are obtained by concatenating the transformer's output at the start and end of the span along with the attention vector computed over the output representation of the tokens in the span. \u03c6(x, y) refers to the hand crafted features (the genre indicating the dataset to which this document belongs , speaker-ids, length of the two markables, and the number of tokens between them), while FFNN m and FFNN p represents feed forward network.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Full Bridging with Higher-Order coreference model",
                "sec_num": "3.1"
            },
            {
                "text": "Recall that the approach in (Lee et al., 2018 ) is factored into a two-staged beam search. The first stage is responsible for predicting markables: a beam of up to M potential markables is computed based on the spans with the highest markable scores s m (x) out of all possible text spans, up to a certain width, in a document. In the second stage, the pairwise scores s p (x, y) are then only computed between the top markables, in a coarse-to-fine manner. Since we have access to the gold markables, we repurpose the markable scorer s m (x) to score markables as possible antecedents or anaphors. The number of markables can be large in documents, thus the beam search is necessary to keep memory costs down, otherwise the pairwise scoring would not be feasible.",
                "cite_spans": [
                    {
                        "start": 28,
                        "end": 45,
                        "text": "(Lee et al., 2018",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Full Bridging with Higher-Order coreference model",
                "sec_num": "3.1"
            },
            {
                "text": "We refer interested readers to (Lee et al., 2018) for a more detailed explanation of the model, including the coarse-to-fine pairwise scorer. The model is trained by the marginal log-likelihood of the possible correct antecedents. We further add a binary cross entropy based supervision over the outputs of the markable scorer s m (i), labeling markables as 0 if its neither an antecedent or an anaphor, and 1 if it is either of the two.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Full Bridging with Higher-Order coreference model",
                "sec_num": "3.1"
            },
            {
                "text": "We adapt the model explained above to also solve the Bridging Resolution task (See Sec. 2.1). That is, since the set of anaphor markables is given, we do not intend for the model to identity anaphors, as well as resolve their antecedents, but only do the latter. This allows simplifications to the model and training setting: first, we can pass each anaphor, together with the document (up to the end of the anaphor sentence), into the model at a time, predicting one antecedent for the input anaphor given the relevant part of the document, instead of passing the entire document into the model and predicting all the anaphors and their antecedents at the same time. This change in setting considerably alleviates memory constraints, since the pairwise scorer s p (x, y) is only computed between the one given anaphor and the possible antecedent markables, as opposed to an n by n pairwise scorer in the full bridging setting. This eliminates the need for both the mention scorer s m (x) and the coarse part of the coarse to fine pairwise scorer, leaving just the higher order, \"fine\" pairwise scorer described in (Lee et al., 2018) . Also, this allows the use of a cross entropy loss over all possible antecedents (excluding the dummy class, as we know each labeled anaphor has an antecedent) for each anaphor. Finally, we remove the auxiliary supervision over the markable scorer outputs, as the scorer is no longer used.",
                "cite_spans": [
                    {
                        "start": 1115,
                        "end": 1133,
                        "text": "(Lee et al., 2018)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Bridging Resolution with Higher-Order coreference model",
                "sec_num": "3.2"
            },
            {
                "text": "In this first experiment, we perform full bridging (with gold mentions) over the provided datasets (Sec. 4.1).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4"
            },
            {
                "text": "The shared task is comprised of conversational documents from four domains, annotated with bridging anaphors using the Universal Anaphora format (Poesio et al., 1999) . The five domains are: Switchboard: A subset of the Switchboard Dialog Act Corpus (Godfrey et al., 1992) , this dataset consists of transcribed phone conversations between two participants about varied topics including child care, recycling and news media. We filter out transcribed speech disfluencies (such as \"emm\", \"ahh\", \"uh\", etc) based on a hand-crafted list of bi-grams as a pre-processing step. Light: Light is a collection of \"character driven, human-human crowdworker interaction involving action, emotes and dialogue\" (Urbanek et al., 2019) in the context of a fantasy text adventure game. Persuasion: A collection of crowdsourced online conversations where a persuader tries to convince the persuadee to donate to a charity were introduced in (Wang et al., 2019 ). An annotated subset of these conversations are a part of this shared task. AMI: Some of the transcripts of multi-speaker office meetings (Carletta, 2006) were annotated with bridging anaphors. Generally, these conversations are the longest of the four.",
                "cite_spans": [
                    {
                        "start": 145,
                        "end": 166,
                        "text": "(Poesio et al., 1999)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 250,
                        "end": 272,
                        "text": "(Godfrey et al., 1992)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 698,
                        "end": 720,
                        "text": "(Urbanek et al., 2019)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 924,
                        "end": 942,
                        "text": "(Wang et al., 2019",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 1083,
                        "end": 1099,
                        "text": "(Carletta, 2006)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "4.1"
            },
            {
                "text": "In all four cases, the test set is held out but Table 1 : Some statistics about the train sets of the datasets used in the shared task. From left to right, we report (i) the number of anaphors across all documents, (ii) number of documents, (iii) avg. length of each document, (iv) avg. number of markables in a document, and, (v) avg. number of tokens between an anaphor and its antecedent.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 48,
                        "end": 55,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "4.1"
            },
            {
                "text": "documents from the train set are annotated with markables, bridging anaphors and their antecedents. Apart from these, annotated instances from Trains-1993 (Allen, James and Heeman, Peter A., 1995 ), and Trains-1991 (Gross et al., 1993 Spoken Dialog Corpus, a subset of the ARRAU corpus (Uryupina et al., 2020) were used for training the models as well. Table 1 contains further statistics on the train set of these datasets.",
                "cite_spans": [
                    {
                        "start": 143,
                        "end": 154,
                        "text": "Trains-1993",
                        "ref_id": null
                    },
                    {
                        "start": 155,
                        "end": 195,
                        "text": "(Allen, James and Heeman, Peter A., 1995",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 196,
                        "end": 214,
                        "text": "), and Trains-1991",
                        "ref_id": null
                    },
                    {
                        "start": 215,
                        "end": 234,
                        "text": "(Gross et al., 1993",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 286,
                        "end": 309,
                        "text": "(Uryupina et al., 2020)",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 353,
                        "end": 360,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "4.1"
            },
            {
                "text": "We use Entity-F1 (Pradhan et al., 2012) as our metric for this experiment. We initialize our model, as outlined in Sec. 3.1 with a transformer based encoder with bert-base-uncased weights (Devlin et al., 2019) provided on the HuggingFace Model Hub (Wolf et al., 2020) , and freeze it before subsequent fine-tuning. We use a two layer network with its hidden dimension and dropouts specified below, and a ReLU activation in the feed forward layers indicated in Eqn. 4. During training, we set the batch size as 1, vary the hidden dimension of feed forward subnetworks between {256, 512}, and their dropout between {0.0, 0.3, 0.5}. We also experiment with multiple class weights for auxiliary supervision over the mention scorer's outputs, to compensate for the imbalance between anaphoric and non-anaphoric markables. We vary the inclusion of hand-crafted features (see \u03c6(x, y) in Eq. 4 and the description of hand crafted features in Sec. 3.1) as a part of the grid search.",
                "cite_spans": [
                    {
                        "start": 248,
                        "end": 267,
                        "text": "(Wolf et al., 2020)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "4.2"
            },
            {
                "text": "This experiment also represents our submission to the shared task. Corresponding to each of the aforementioned datasets, we submit a separate model. The hyperparameters for these models are found by running a 5-fold cross validation based grid search where, in each fold, the models are trained on 80% of instances of the correspond-ing dataset, and 100% of train instances of the remaining datasets 3 , and is evaluated on the held out instances from the corresponding dataset. Once the hyperparameters are fixed corresponding to a dataset, we retrain the model from scratch on all training instances of all datasets for up to 20 epochs. The performance of the approach can be found in Table 2 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 687,
                        "end": 694,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "4.2"
            },
            {
                "text": "We find that our end-to-end approach performs suboptimally on all four datasets. Upon closer inspection, this performance is indicative of the challenge arisen by the amount of markables in a document. For instance, a document in Persuasion (F1: 16.28) contains only 134 markables on average, whereas a document in AMI (F1: 6.00) contains 1381 markables. This alludes to an inverse correlation between the average number of markables in document of a dataset and the entity F1 score on it. Also, the \"Avg. words between\" column in Table 1 indicates that anaphors and antecedents lie closer to each other in Persuasion when compared to other datasets. We hypothesise that this correlation, modeled as a part of hand-crafted features is actively exploited by our approach to increase a higher relative performance on the task.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "4.3"
            },
            {
                "text": "Moreover, full bridging can be thought of as a combination of anaphor identification and bridging resolution. In order to ascertain whether our approach falters disproportionately on either of the two tasks, we perform a subsequent bridging resolution experiment over the train sets of these datasets (as they contain identified anaphors).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "4.3"
            },
            {
                "text": "We make the changes to the model and training procedure as outlined in Sec. 3.2. We keep the Table 2 : Results, and settings of our submission to the shared task as detailed in Sec. 4.2. As mentioned, we use the Entity-F1 metric to report the performance. All train refers to the collection of all instances from the training set of the datasets mentioned in Sec. 4.1, and 5CV dev refer to the development subsets, as they occur in each fold of the aforementioned 5-fold cross-validation based grid search in Sec. 4.2. same hyperparameters (and grid search based hyperparameter search) as above, and train one model to make the predictions. However, unlike before, this experiment is performed in a 5-fold cross validation setup. Specifically, in each fold, we treat 20% of instances from each dataset as the test set. Another 10% are reserved for hyperparameter optimisation, and the remaining 70% of the instances are used for training the model. The performance reported in Table 3 is averaged over the five folds.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 93,
                        "end": 100,
                        "text": "Table 2",
                        "ref_id": null
                    },
                    {
                        "start": 977,
                        "end": 984,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Bridging Resolution",
                "sec_num": "4.4"
            },
            {
                "text": "We also report the performance of two baselines, outlined below. Random: We select one of the markables at random which appears either in the first sentence of the document, or up to two sentences behind the anaphor. This sentence based strategy seemed to perform better than the one used in Poesio et al., 2004) .",
                "cite_spans": [
                    {
                        "start": 292,
                        "end": 312,
                        "text": "Poesio et al., 2004)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baselines",
                "sec_num": "4.4.1"
            },
            {
                "text": "Skip-Gram: We take the mean of pretrained Skip-Gram (Mikolov et al., 2013) embeddings of every token in a markable to create its vector representation. Then, using the cosine distance as a measure of anaphora, we select the antecedent which lies closest to the anaphor.",
                "cite_spans": [
                    {
                        "start": 52,
                        "end": 74,
                        "text": "(Mikolov et al., 2013)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baselines",
                "sec_num": "4.4.1"
            },
            {
                "text": "We find that while the task is far from solved, our approach is significantly better at bridging resolution, compared to full bridging. That is, our model is unable to perform anaphor identification with a reasonable accuracy leading to a much worse per-formance on the full bridging task. Interestingly, the performance gap between the random and skipgram baseline suggests that anaphor and antecedent markables often lie close in the vector spaces in a non-trivial amount of cases.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "4.4.2"
            },
            {
                "text": "Across different datasets, we observe a similar trend as in the previous experiment. Our approach (as well as the skip-gram baseline) achieve its highest score on Persuasion, followed by Switchboard, Light and AMI. The performance gap between AMI and the next best approach is not as stark here (-9.3% here; -23% in Exp. 1). This can be explained by observing the random baseline. Its performance suggests that the sentences around the anaphor in AMI conversations have the least amount of markables to choose from, thereby making the task slightly easier.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "4.4.2"
            },
            {
                "text": "In this work, we experiment with a higher-order coreference model based end-to-end approach for the full bridging task over conversational documents. We find that it is unable to model the task's complexities, however, its performance on bridging resolution is significantly better. This suggests a different approach to anaphor detection is needed, whether it be a stand alone anaphor detection model or a more guided adaptation of the higher-order coreference model (Joshi et al., 2019) that better suits the bridging task. We leave investigations along this line for the future. We also aim to experiment with approaches that can prime a model towards conversational documents, such as including the SpanBERT (Joshi et al., 2020) pretraining objective as a pre-finetuning step.",
                "cite_spans": [
                    {
                        "start": 468,
                        "end": 488,
                        "text": "(Joshi et al., 2019)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 712,
                        "end": 732,
                        "text": "(Joshi et al., 2020)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "Task home pagehttps://competitions. codalab.org/competitions/30312",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "For the purposes of further analysis, we also consider Bridging Resolution with Gold Markables over provided train sets.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Including Trains-91 and Trains-93 datasets",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Trains spoken dialog corpus",
                "authors": [
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Allen",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [
                            "A"
                        ],
                        "last": "Heeman",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.35111/VDZW-3271"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Allen, James and Heeman, Peter A. 1995. Trains spo- ken dialog corpus.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Announcing the ami meeting corpus",
                "authors": [
                    {
                        "first": "Jean",
                        "middle": [],
                        "last": "Carletta",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "The ELRA Newsletter",
                "volume": "11",
                "issue": "1",
                "pages": "3--5",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jean Carletta. 2006. Announcing the ami meeting cor- pus. The ELRA Newsletter, 11(1):3-5.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "BERT: pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/n19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Pa- pers), pages 4171-4186. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "SWITCHBOARD: telephone speech corpus for research and development",
                "authors": [
                    {
                        "first": "John",
                        "middle": [
                            "J"
                        ],
                        "last": "Godfrey",
                        "suffix": ""
                    },
                    {
                        "first": "Edward",
                        "middle": [],
                        "last": "Holliman",
                        "suffix": ""
                    },
                    {
                        "first": "Jane",
                        "middle": [],
                        "last": "Mcdaniel",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '92",
                "volume": "",
                "issue": "",
                "pages": "517--520",
                "other_ids": {
                    "DOI": [
                        "10.1109/ICASSP.1992.225858"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "John J. Godfrey, Edward Holliman, and Jane McDaniel. 1992. SWITCHBOARD: telephone speech corpus for research and development. In 1992 IEEE Inter- national Conference on Acoustics, Speech, and Sig- nal Processing, ICASSP '92, San Francisco, Califor- nia, USA, March 23-26, 1992, pages 517-520. IEEE Computer Society.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "The trains 91 dialogues",
                "authors": [
                    {
                        "first": "Derek",
                        "middle": [],
                        "last": "Gross",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Allen",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Traum",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Derek Gross, James Allen, and David Traum. 1993. The trains 91 dialogues.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "A deterministic algorithm for bridging anaphora resolution",
                "authors": [
                    {
                        "first": "Yufang",
                        "middle": [],
                        "last": "Hou",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1938--1948",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/d18-1219"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yufang Hou. 2018a. A deterministic algorithm for bridging anaphora resolution. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 -November 4, 2018, pages 1938-1948. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Enhanced word representations for bridging anaphora resolution",
                "authors": [
                    {
                        "first": "Yufang",
                        "middle": [],
                        "last": "Hou",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT",
                "volume": "2",
                "issue": "",
                "pages": "1--7",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/n18-2001"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yufang Hou. 2018b. Enhanced word representations for bridging anaphora resolution. In Proceedings of the 2018 Conference of the North American Chap- ter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 2 (Short Papers), pages 1-7. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Bridging anaphora resolution as question answering",
                "authors": [],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "2020",
                "issue": "",
                "pages": "1428--1438",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.132"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yufang Hou. 2020. Bridging anaphora resolution as question answering. In Proceedings of the 58th An- nual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 1428-1438. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Global inference for bridging anaphora resolution",
                "authors": [
                    {
                        "first": "Yufang",
                        "middle": [],
                        "last": "Hou",
                        "suffix": ""
                    },
                    {
                        "first": "Katja",
                        "middle": [],
                        "last": "Markert",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Strube",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "907--917",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yufang Hou, Katja Markert, and Michael Strube. 2013. Global inference for bridging anaphora resolution. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, pages 907-917.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Spanbert: Improving pre-training by representing and predicting spans",
                "authors": [
                    {
                        "first": "Mandar",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Danqi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Yinhan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [
                            "S"
                        ],
                        "last": "Weld",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Trans. Assoc. Comput. Linguistics",
                "volume": "8",
                "issue": "",
                "pages": "64--77",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and Omer Levy. 2020. Spanbert: Improving pre-training by representing and predicting spans. Trans. Assoc. Comput. Lin- guistics, 8:64-77.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "BERT for coreference resolution: Baselines and analysis",
                "authors": [
                    {
                        "first": "Mandar",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [
                            "S"
                        ],
                        "last": "Weld",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "5802--5807",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1588"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mandar Joshi, Omer Levy, Luke Zettlemoyer, and Daniel S. Weld. 2019. BERT for coreference reso- lution: Baselines and analysis. In Proceedings of the 2019 Conference on Empirical Methods in Nat- ural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, Novem- ber 3-7, 2019, pages 5802-5807. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "The codi-crac 2021 shared task on anaphora, bridging, and discourse deixis in dialogue",
                "authors": [
                    {
                        "first": "Sopan",
                        "middle": [],
                        "last": "Khosla",
                        "suffix": ""
                    },
                    {
                        "first": "Juntao",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Ramesh",
                        "middle": [],
                        "last": "Manuvinakurike",
                        "suffix": ""
                    },
                    {
                        "first": "Vincent",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "Massimo",
                        "middle": [],
                        "last": "Poesio",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Strube",
                        "suffix": ""
                    },
                    {
                        "first": "Carolyn",
                        "middle": [],
                        "last": "Ros\u00e9",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the CODI-CRAC 2021",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sopan Khosla, Juntao Yu, Ramesh Manuvinakurike, Vincent Ng, Massimo Poesio, Michael Strube, and Carolyn Ros\u00e9. 2021. The codi-crac 2021 shared task on anaphora, bridging, and discourse deixis in dialogue. In Proceedings of the CODI-CRAC 2021",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Shared Task on Anaphora, Bridging, and Discourse Deixis in Dialogue",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shared Task on Anaphora, Bridging, and Discourse Deixis in Dialogue, Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Bridging resolution: A survey of the state of the art",
                "authors": [
                    {
                        "first": "Hideo",
                        "middle": [],
                        "last": "Kobayashi",
                        "suffix": ""
                    },
                    {
                        "first": "Vincent",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 28th International Conference on Computational Linguistics",
                "volume": "2020",
                "issue": "",
                "pages": "3708--3721",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.coling-main.331"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hideo Kobayashi and Vincent Ng. 2020. Bridging res- olution: A survey of the state of the art. In Proceed- ings of the 28th International Conference on Com- putational Linguistics, COLING 2020, Barcelona, Spain (Online), December 8-13, 2020, pages 3708- 3721. International Committee on Computational Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Leveraging different meronym discovery methods for bridging resolution in french",
                "authors": [
                    {
                        "first": "Emmanuel",
                        "middle": [],
                        "last": "Lassalle",
                        "suffix": ""
                    },
                    {
                        "first": "Pascal",
                        "middle": [],
                        "last": "Denis",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Anaphora Processing and Applications -8th Discourse Anaphora and Anaphor Resolution Colloquium",
                "volume": "7099",
                "issue": "",
                "pages": "35--46",
                "other_ids": {
                    "DOI": [
                        "10.1007/978-3-642-25917-3_4"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Emmanuel Lassalle and Pascal Denis. 2011. Leverag- ing different meronym discovery methods for bridg- ing resolution in french. In Anaphora Process- ing and Applications -8th Discourse Anaphora and Anaphor Resolution Colloquium, DAARC 2011, Faro, Portugal, October 6-7, 2011. Revised Selected Papers, volume 7099 of Lecture Notes in Computer Science, pages 35-46. Springer.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Higher-order coreference resolution with coarse-tofine inference",
                "authors": [
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Luheng",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "2",
                "issue": "",
                "pages": "687--692",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N18-2108"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018. Higher-order coreference resolution with coarse-to- fine inference. In Proceedings of the 2018 Confer- ence of the North American Chapter of the Associ- ation for Computational Linguistics: Human Lan- guage Technologies, Volume 2 (Short Papers), pages 687-692, New Orleans, Louisiana. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Collective classification for fine-grained information status",
                "authors": [
                    {
                        "first": "Katja",
                        "middle": [],
                        "last": "Markert",
                        "suffix": ""
                    },
                    {
                        "first": "Yufang",
                        "middle": [],
                        "last": "Hou",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Strube",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "The 50th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference",
                "volume": "1",
                "issue": "",
                "pages": "795--804",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Katja Markert, Yufang Hou, and Michael Strube. 2012. Collective classification for fine-grained information status. In The 50th Annual Meeting of the Associa- tion for Computational Linguistics, Proceedings of the Conference, July 8-14, 2012, Jeju Island, Korea -Volume 1: Long Papers, pages 795-804. The Asso- ciation for Computer Linguistics.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Efficient estimation of word representations in vector space",
                "authors": [
                    {
                        "first": "Tom\u00e1s",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    },
                    {
                        "first": "Kai",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Greg",
                        "middle": [],
                        "last": "Corrado",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Dean",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "1st International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tom\u00e1s Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word represen- tations in vector space. In 1st International Con- ference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "The mate meta-scheme for coreference in dialogues in multiple languages",
                "authors": [
                    {
                        "first": "Massimo",
                        "middle": [],
                        "last": "Poesio",
                        "suffix": ""
                    },
                    {
                        "first": "Florence",
                        "middle": [],
                        "last": "Bruneseaux",
                        "suffix": ""
                    },
                    {
                        "first": "Laurent",
                        "middle": [],
                        "last": "Romary",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Massimo Poesio, Florence Bruneseaux, and Laurent Romary. 1999. The mate meta-scheme for corefer- ence in dialogues in multiple languages. In ACL'99",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Workshop Towards Standards and Tools for Discourse Tagging",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "65--74",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Workshop Towards Standards and Tools for Dis- course Tagging, pages 65-74.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Learning to resolve bridging references",
                "authors": [
                    {
                        "first": "Massimo",
                        "middle": [],
                        "last": "Poesio",
                        "suffix": ""
                    },
                    {
                        "first": "Rahul",
                        "middle": [],
                        "last": "Mehta",
                        "suffix": ""
                    },
                    {
                        "first": "Axel",
                        "middle": [],
                        "last": "Maroudas",
                        "suffix": ""
                    },
                    {
                        "first": "Janet",
                        "middle": [],
                        "last": "Hitzeman",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "143--150",
                "other_ids": {
                    "DOI": [
                        "10.3115/1218955.1218974"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Massimo Poesio, Rahul Mehta, Axel Maroudas, and Janet Hitzeman. 2004. Learning to resolve bridging references. In Proceedings of the 42nd Annual Meet- ing of the Association for Computational Linguistics, 21-26 July, 2004, Barcelona, Spain, pages 143-150. ACL.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning -Proceedings of the Shared Task: Modeling Multilingual Unrestricted Coreference in OntoNotes",
                "authors": [
                    {
                        "first": "Alessandro",
                        "middle": [],
                        "last": "Sameer Pradhan",
                        "suffix": ""
                    },
                    {
                        "first": "Nianwen",
                        "middle": [],
                        "last": "Moschitti",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Xue",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "EMNLP-CoNLL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sameer Pradhan, Alessandro Moschitti, and Nianwen Xue, editors. 2012. Joint Conference on Empiri- cal Methods in Natural Language Processing and Computational Natural Language Learning -Pro- ceedings of the Shared Task: Modeling Multilingual Unrestricted Coreference in OntoNotes, EMNLP- CoNLL 2012, July 13, 2012, Jeju Island, Korea. ACL.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "BASHI: A corpus of wall street journal articles annotated with bridging links",
                "authors": [
                    {
                        "first": "Ina",
                        "middle": [],
                        "last": "R\u00f6siger",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Eleventh International Conference on Language Resources and Evaluation, LREC 2018",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ina R\u00f6siger. 2018. BASHI: A corpus of wall street journal articles annotated with bridging links. In Proceedings of the Eleventh International Confer- ence on Language Resources and Evaluation, LREC 2018, Miyazaki, Japan, May 7-12, 2018. European Language Resources Association (ELRA).",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Bridging resolution: Task definition, corpus resources and rule-based experiments",
                "authors": [
                    {
                        "first": "Ina",
                        "middle": [],
                        "last": "R\u00f6siger",
                        "suffix": ""
                    },
                    {
                        "first": "Arndt",
                        "middle": [],
                        "last": "Riester",
                        "suffix": ""
                    },
                    {
                        "first": "Jonas",
                        "middle": [],
                        "last": "Kuhn",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 27th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "3516--3528",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ina R\u00f6siger, Arndt Riester, and Jonas Kuhn. 2018. Bridging resolution: Task definition, corpus re- sources and rule-based experiments. In Proceedings of the 27th International Conference on Computa- tional Linguistics, COLING 2018, Santa Fe, New Mexico, USA, August 20-26, 2018, pages 3516- 3528. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Corpus linguistics at work",
                "authors": [
                    {
                        "first": "Elena",
                        "middle": [],
                        "last": "Tognini-Bonelli",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "6",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Elena Tognini-Bonelli. 2001. Corpus linguistics at work, volume 6. John Benjamins Publishing.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Learning to speak and act in a fantasy text adventure game",
                "authors": [
                    {
                        "first": "Jack",
                        "middle": [],
                        "last": "Urbanek",
                        "suffix": ""
                    },
                    {
                        "first": "Angela",
                        "middle": [],
                        "last": "Fan",
                        "suffix": ""
                    },
                    {
                        "first": "Siddharth",
                        "middle": [],
                        "last": "Karamcheti",
                        "suffix": ""
                    },
                    {
                        "first": "Saachi",
                        "middle": [],
                        "last": "Jain",
                        "suffix": ""
                    },
                    {
                        "first": "Samuel",
                        "middle": [],
                        "last": "Humeau",
                        "suffix": ""
                    },
                    {
                        "first": "Emily",
                        "middle": [],
                        "last": "Dinan",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Rockt\u00e4schel",
                        "suffix": ""
                    },
                    {
                        "first": "Douwe",
                        "middle": [],
                        "last": "Kiela",
                        "suffix": ""
                    },
                    {
                        "first": "Arthur",
                        "middle": [],
                        "last": "Szlam",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Weston",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "673--683",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1062"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jack Urbanek, Angela Fan, Siddharth Karamcheti, Saachi Jain, Samuel Humeau, Emily Dinan, Tim Rockt\u00e4schel, Douwe Kiela, Arthur Szlam, and Ja- son Weston. 2019. Learning to speak and act in a fantasy text adventure game. In Proceedings of the 2019 Conference on Empirical Methods in Nat- ural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, Novem- ber 3-7, 2019, pages 673-683. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Annotating a broad range of anaphoric phenomena, in a variety of genres: the ARRAU corpus",
                "authors": [
                    {
                        "first": "Olga",
                        "middle": [],
                        "last": "Uryupina",
                        "suffix": ""
                    },
                    {
                        "first": "Ron",
                        "middle": [],
                        "last": "Artstein",
                        "suffix": ""
                    },
                    {
                        "first": "Antonella",
                        "middle": [],
                        "last": "Bristot",
                        "suffix": ""
                    },
                    {
                        "first": "Federica",
                        "middle": [],
                        "last": "Cavicchio",
                        "suffix": ""
                    },
                    {
                        "first": "Francesca",
                        "middle": [],
                        "last": "Delogu",
                        "suffix": ""
                    },
                    {
                        "first": "Kepa Joseba",
                        "middle": [],
                        "last": "Rodr\u00edguez",
                        "suffix": ""
                    },
                    {
                        "first": "Massimo",
                        "middle": [],
                        "last": "Poesio",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Nat. Lang. Eng",
                "volume": "26",
                "issue": "1",
                "pages": "95--128",
                "other_ids": {
                    "DOI": [
                        "10.1017/S1351324919000056"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Olga Uryupina, Ron Artstein, Antonella Bristot, Feder- ica Cavicchio, Francesca Delogu, Kepa Joseba Ro- dr\u00edguez, and Massimo Poesio. 2020. Annotating a broad range of anaphoric phenomena, in a variety of genres: the ARRAU corpus. Nat. Lang. Eng., 26(1):95-128.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Persuasion for good: Towards a personalized persuasive dialogue system for social good",
                "authors": [
                    {
                        "first": "Xuewei",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Weiyan",
                        "middle": [],
                        "last": "Shi",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "Yoojung",
                        "middle": [],
                        "last": "Oh",
                        "suffix": ""
                    },
                    {
                        "first": "Sijia",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Jingwen",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Zhou",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019",
                "volume": "1",
                "issue": "",
                "pages": "5635--5649",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/p19-1566"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Xuewei Wang, Weiyan Shi, Richard Kim, Yoojung Oh, Sijia Yang, Jingwen Zhang, and Zhou Yu. 2019. Per- suasion for good: Towards a personalized persuasive dialogue system for social good. In Proceedings of the 57th Conference of the Association for Compu- tational Linguistics, ACL 2019, Florence, Italy, July 28-August 2, 2019, Volume 1: Long Papers, pages 5635-5649. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Transformers: State-of-the-art natural language processing",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Wolf",
                        "suffix": ""
                    },
                    {
                        "first": "Lysandre",
                        "middle": [],
                        "last": "Debut",
                        "suffix": ""
                    },
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Sanh",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Chaumond",
                        "suffix": ""
                    },
                    {
                        "first": "Clement",
                        "middle": [],
                        "last": "Delangue",
                        "suffix": ""
                    },
                    {
                        "first": "Anthony",
                        "middle": [],
                        "last": "Moi",
                        "suffix": ""
                    },
                    {
                        "first": "Pierric",
                        "middle": [],
                        "last": "Cistac",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Rault",
                        "suffix": ""
                    },
                    {
                        "first": "R\u00e9mi",
                        "middle": [],
                        "last": "Louf",
                        "suffix": ""
                    },
                    {
                        "first": "Morgan",
                        "middle": [],
                        "last": "Funtowicz",
                        "suffix": ""
                    },
                    {
                        "first": "Joe",
                        "middle": [],
                        "last": "Davison",
                        "suffix": ""
                    },
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Shleifer",
                        "suffix": ""
                    },
                    {
                        "first": "Clara",
                        "middle": [],
                        "last": "Patrick Von Platen",
                        "suffix": ""
                    },
                    {
                        "first": "Yacine",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Jernite",
                        "suffix": ""
                    },
                    {
                        "first": "Canwen",
                        "middle": [],
                        "last": "Plu",
                        "suffix": ""
                    },
                    {
                        "first": "Teven",
                        "middle": [
                            "Le"
                        ],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Sylvain",
                        "middle": [],
                        "last": "Scao",
                        "suffix": ""
                    },
                    {
                        "first": "Mariama",
                        "middle": [],
                        "last": "Gugger",
                        "suffix": ""
                    },
                    {
                        "first": "Quentin",
                        "middle": [],
                        "last": "Drame",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [
                            "M"
                        ],
                        "last": "Lhoest",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Rush",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "38--45",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, R\u00e9mi Louf, Morgan Funtow- icz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Transformers: State-of-the-art natural language pro- cessing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38-45, Online. Asso- ciation for Computational Linguistics.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF3": {
                "html": null,
                "num": null,
                "content": "<table/>",
                "type_str": "table",
                "text": "Results of the experiment outlined in Sec. 4.4."
            }
        }
    }
}