File size: 91,703 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 |
{
"paper_id": "2021",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T13:27:30.733727Z"
},
"title": "Adapted End-to-End Coreference Resolution System for Anaphoric Identities in Dialogues",
"authors": [
{
"first": "Liyan",
"middle": [],
"last": "Xu",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Emory University",
"location": {
"settlement": "Atlanta",
"region": "GA"
}
},
"email": "[email protected]"
},
{
"first": "Jinho",
"middle": [
"D"
],
"last": "Choi",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Emory University",
"location": {
"settlement": "Atlanta",
"region": "GA"
}
},
"email": "[email protected]"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "We present an effective system adapted from the end-to-end neural coreference resolution model, targeting on the task of anaphora resolution in dialogues. Three aspects are specifically addressed in our approach, including the support of singletons, encoding speakers and turns throughout dialogue interactions, and knowledge transfer utilizing existing resources. Despite the simplicity of our adaptation strategies, they are shown to bring significant impact to the final performance, with up to 27 F1 improvement over the baseline. Our final system ranks the 1st place on the leaderboard of the anaphora resolution track in the CRAC 2021 shared task, and achieves the best evaluation results on all four datasets.",
"pdf_parse": {
"paper_id": "2021",
"_pdf_hash": "",
"abstract": [
{
"text": "We present an effective system adapted from the end-to-end neural coreference resolution model, targeting on the task of anaphora resolution in dialogues. Three aspects are specifically addressed in our approach, including the support of singletons, encoding speakers and turns throughout dialogue interactions, and knowledge transfer utilizing existing resources. Despite the simplicity of our adaptation strategies, they are shown to bring significant impact to the final performance, with up to 27 F1 improvement over the baseline. Our final system ranks the 1st place on the leaderboard of the anaphora resolution track in the CRAC 2021 shared task, and achieves the best evaluation results on all four datasets.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Coreference resolution of anaphoric identities (a.k.a. anaphora resolution) is a long-studied Natural Language Processing (NLP) task, and is still considered one of the unsolved problems, as it demands deep semantic understanding as well as world knowledge. Although there is a significant performance boost recently by the neural decoders (Lee et al., 2017 (Lee et al., , 2018 and deep contextualized encoders such as BERT and SpanBERT (Joshi et al., 2019 (Joshi et al., , 2020 , the majority of the experiments are based on OntoNotes (Pradhan et al., 2012) from the CoNLL 2012 shared task, which may overestimate the model performance due to two perspectives: the lack of support for harder cases such as singletons and split-antecedents, and the lack of focus on real-world dialogues. In this work, we target on the task of anaphora resolution in the CRAC 2021 shared task (Khosla et al., 2021) that addresses both perspectives, and present an effective coreference resolution system that is adapted from the recent end-to-end coreference model. All datasets in the CRAC 2021 shared task are in the Universal Anaphora format. For simplicity, we refer to it as the UA format, and refer to the annotation scheme of the CoNLL 2012 shared task as the CoNLL format. The UA format is an extension of the CoNLL format, and further supports bridging references and discourse deixis. For anaphora resolution, the UA format differs from the CoNLL format on three aspects: the support of singletons, split-antecedents, and non-referring expressions (excluded from the current evaluation). Our approach specifically addresses the singleton problem (Section 3.1), which is shown to be a critical component under the UA setting that brings 17-22 F1 improvement on all datasets (Section 5.2). Few recent work has studied the split-antecedent problem (Zhou and Choi, 2018) , and we leave the split-antecedents as future work.",
"cite_spans": [
{
"start": 340,
"end": 357,
"text": "(Lee et al., 2017",
"ref_id": "BIBREF8"
},
{
"start": 358,
"end": 377,
"text": "(Lee et al., , 2018",
"ref_id": "BIBREF9"
},
{
"start": 437,
"end": 456,
"text": "(Joshi et al., 2019",
"ref_id": "BIBREF4"
},
{
"start": 457,
"end": 478,
"text": "(Joshi et al., , 2020",
"ref_id": "BIBREF3"
},
{
"start": 876,
"end": 897,
"text": "(Khosla et al., 2021)",
"ref_id": "BIBREF5"
},
{
"start": 1838,
"end": 1859,
"text": "(Zhou and Choi, 2018)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In addition to singletons, our approach also emphasizes on the speaker encoding (Section 3.3) and knowledge transfer (Section 3.4) to address the dialogue-domain perspective. Especially, we use a simple strategy of speaker-augmented encoding that captures the speaker interaction and dialogueturn information, utilizing the strong Transformers encoder. It has been shown by the previous study that conversational metadata such as speakers can be significant for coreference resolution on dialogue documents (Luo et al., 2009) , and we do see 2-3 F1 improvement on three datasets by simply applying the speaker encoding strategy (Section 5.3).",
"cite_spans": [
{
"start": 507,
"end": 525,
"text": "(Luo et al., 2009)",
"ref_id": "BIBREF11"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Knowledge transfer from other existing resources is also shown to be important in our approach. Two different strategies are experimented, and the domain-adaptation strategy is able to bring large improvement, boosting 8 F1 for LIGHT and 6 F1 on PSUA (Table 3 ).",
"cite_spans": [],
"ref_spans": [
{
"start": 251,
"end": 259,
"text": "(Table 3",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Our final system ranks the 1st place on the leaderboard of the anaphora resolution track in the CRAC 2021 shared task, and achieves the best evaluation results on all four datasets, with 63.96 F1 for AMI, 80.33 F1 for LIGHT, 78.41 F1 for PSUA, 74.49 F1 for SWBD (Section 5.1). A brief summary of our final submission is shown in Table 4 .",
"cite_spans": [],
"ref_spans": [
{
"start": 329,
"end": 336,
"text": "Table 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Pretrained Transformers encoders have been successfully adopted by recent coreference resolution models and shown significant improvement (Joshi et al., 2019 (Joshi et al., , 2020 . We also adopt the Transformers encoder in our approach because of its superior performance. For the neural decoder, there have been two popular directions from recent work. One is mention-ranking-based, where the model predicts only one antecedent for each mention without focusing on the cluster structure (Wiseman et al., 2015; Lee et al., 2017; Wu et al., 2020) . The other is cluster-based, where the model maintains the predicted clusters and performs cluster merging Manning, 2015, 2016; Xia et al., 2020; Yu et al., 2020) . We adopt the mention-ranking framework in our approach because of its simplicity as well as its state-of-the-art decoding performance.",
"cite_spans": [
{
"start": 138,
"end": 157,
"text": "(Joshi et al., 2019",
"ref_id": "BIBREF4"
},
{
"start": 158,
"end": 179,
"text": "(Joshi et al., , 2020",
"ref_id": "BIBREF3"
},
{
"start": 489,
"end": 511,
"text": "(Wiseman et al., 2015;",
"ref_id": "BIBREF14"
},
{
"start": 512,
"end": 529,
"text": "Lee et al., 2017;",
"ref_id": "BIBREF8"
},
{
"start": 530,
"end": 546,
"text": "Wu et al., 2020)",
"ref_id": "BIBREF15"
},
{
"start": 655,
"end": 675,
"text": "Manning, 2015, 2016;",
"ref_id": null
},
{
"start": 676,
"end": 693,
"text": "Xia et al., 2020;",
"ref_id": "BIBREF16"
},
{
"start": 694,
"end": 710,
"text": "Yu et al., 2020)",
"ref_id": "BIBREF18"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Our baseline model MR adopts the mention-ranking strategy, and follows the architecture of the end-toend neural coreference resolution model (Lee et al., 2017 (Lee et al., , 2018 with a Transformer encoder (Joshi et al., 2019 (Joshi et al., , 2020 . Given a document with T tokens, the model first enumerates all valid spans, and scores every span for being a likely mention, denoted by the mention score s m . The model then greedily selects top \u03bbT spans by s m as mention candidates that may appear in the final coreference clusters. Let X = (x 1 , . . . , x \u03bbT ) be the list of all mention candidates in the document, ordered by their appearance. For each mention candidate x i \u2208 X , the model selects a single coreferent antecedent from all its preceding mention candidates, denoted by Y i = ( , x 1 , . . . , x i\u22121 ), with being a \"dummy\" antecedent that may be selected when x i is not anaphoric (no antecedents).",
"cite_spans": [
{
"start": 141,
"end": 158,
"text": "(Lee et al., 2017",
"ref_id": "BIBREF8"
},
{
"start": 159,
"end": 178,
"text": "(Lee et al., , 2018",
"ref_id": "BIBREF9"
},
{
"start": 206,
"end": 225,
"text": "(Joshi et al., 2019",
"ref_id": "BIBREF4"
},
{
"start": 226,
"end": 247,
"text": "(Joshi et al., , 2020",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Mention-Ranking (MR)",
"sec_num": "3.1"
},
{
"text": "The antecedent selection is performed by the pairwise scoring process between the current mention candidate x i and each of its preceding candidate y \u2208 Y i . The final pairwise score s(x i , y) consists of three scores: how likely each candidate being a mention, measured by the mention score s m ; and how likely they refer to the same entity, measured by the antecedent score s a . The final score s(x i , y) can be denoted as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Mention-Ranking (MR)",
"sec_num": "3.1"
},
{
"text": "s(x i , y) = s m (x i ) + s m (y) + s a (x i , y, \u03c6(x i , y))",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Mention-Ranking (MR)",
"sec_num": "3.1"
},
{
"text": "Both s m and s a are computed by the FeedForward Neural Network (FFNN), and \u03c6(x i , y) represents additional meta features. Unlike previous work, we do not include the specific genre as a feature; instead, we simply use a binary feature on whether the document is dialogue-based or article-based, since dialogues can exhibit quite different traits from written articles (Akta\u015f and Stede, 2020) . We also adopt a speaker feature that indicates whether two candidates are from the same speaker, or whether the speaker information is not available, which is important for written articles or two-party dialogues. In Section 3.3, we further adapt more speaker encoding to benefit multispeaker dialogues and the personal pronoun issue.",
"cite_spans": [
{
"start": 370,
"end": 393,
"text": "(Akta\u015f and Stede, 2020)",
"ref_id": "BIBREF0"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Mention-Ranking (MR)",
"sec_num": "3.1"
},
{
"text": "For inference, the selected antecedent is the preceding candidate with the most pairwise score, denoted by argmax y \u2208Y i s(x i , y ). For training, the marginal log-likelihood of all gold antecedent\u015d Y i \u2286 Y i for each x i \u2208 X is optimized, denoted by the loss L c :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Mention-Ranking (MR)",
"sec_num": "3.1"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "P (y) = e s(x i ,y) y \u2208Y i e s(x i ,y )",
"eq_num": "(1)"
}
],
"section": "Mention-Ranking (MR)",
"sec_num": "3.1"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "L c = \u2212 log x i \u2208X \u0177\u2208\u0176 i P (\u0177)",
"eq_num": "(2)"
}
],
"section": "Mention-Ranking (MR)",
"sec_num": "3.1"
},
{
"text": "As the UA format does support singletons, MR would fail to predict those singleton clusters, since the antecedent selection can only generate clusters with at least one pair of mentions. Several previous work has addressed the singleton problem from different perspectives (Yu et al., 2020; Zaporojets et al., 2021 ). Our SR model is built upon MR and further recognizes singletons based on the simple strategy as follows: we make use of the mention score s m in the antecedent selection process, and create a singleton cluster for any candidates with s m > 0 that have not yet found any antecedents, which poses an additional requirement on the mention score, such that only valid mentions should have s m > 0. Let \u03a8 + \u2286 X be the set of gold mention candidates, and \u03a8 \u2212 = X \\ \u03a8 + be the set of other mention candidates. We optimize the mention score with the binary cross-entropy loss L m the new gym",
"cite_spans": [
{
"start": 273,
"end": 290,
"text": "(Yu et al., 2020;",
"ref_id": "BIBREF18"
},
{
"start": 291,
"end": 314,
"text": "Zaporojets et al., 2021",
"ref_id": "BIBREF19"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Singleton Recognition (SR)",
"sec_num": "3.2"
},
{
"text": "1.1 He 1.8 Mike 1.3 that building -0.1 food truck 0.6 workout place -0.3 slightly -2.9",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Singleton Recognition (SR)",
"sec_num": "3.2"
},
{
"text": "Figure 1: Example of the new antecedent selection process that support singletons (Section 3.2). Each arrow indicates the selected antecedent (the dummy antecedent is excluded), and the mention score s m is shown below each mention. Mentions of the same predicted clusters are marked in the same color. Although no antecedent is selected for \"food truck\", it will still be assigned as a singleton cluster because of s m = 0.6 > 0. \"that building\" and \"workout place\" are still assigned to the corresponding cluster even though their s m < 0, to allow some slacks on the mention score prediction. \"slightly\" will not be assigned to any clusters.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Singleton Recognition (SR)",
"sec_num": "3.2"
},
{
"text": "and joinly train with the coreference loss L c :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Singleton Recognition (SR)",
"sec_num": "3.2"
},
{
"text": "L m = \u2212 x i \u2208\u03a8 + log \u03c3(s m (x i )) \u2212 x j \u2208\u03a8 \u2212 log(1 \u2212 \u03c3(s m (x j ))) (3) L = L c + \u03b1 m \u2022 L m (4)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Singleton Recognition (SR)",
"sec_num": "3.2"
},
{
"text": "\u03c3 is the sigmoid function, and \u03b1 m is a hyperparameter. L is the final loss composed of two tasks.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Singleton Recognition (SR)",
"sec_num": "3.2"
},
{
"text": "In practice, we also perform negative sampling on \u03a8 \u2212 dynamically, so that \u03a8 + and \u03a8 \u2212 are of similar sizes (|\u03a8",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Singleton Recognition (SR)",
"sec_num": "3.2"
},
{
"text": "+ | \u2248 |\u03a8 \u2212 |)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Singleton Recognition (SR)",
"sec_num": "3.2"
},
{
"text": ", to alleviate the negative effects from the skewed class distribution.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Singleton Recognition (SR)",
"sec_num": "3.2"
},
{
"text": "In the new selection process, we still regard the selected non-dummy antecedent y to be valid by y = argmax y \u2208Y i s(x i , y ), even though the mention score of either candidate can be negative (s m (x i ) < 0 or s m (y) < 0). This is to allow certain slacks on the mention score prediction which could help with the mention recall. Figure 1 shows three different cases of the predicted clusters by the SR model.",
"cite_spans": [],
"ref_spans": [
{
"start": 333,
"end": 341,
"text": "Figure 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Singleton Recognition (SR)",
"sec_num": "3.2"
},
{
"text": "Our SE model is further adapted upon SR model and aims to strengthen the speaker encoding for each candidate representation. As we are targeting on the coreference resolution in dialogues, encoding speaker interactions becomes more critical, especially for the correct understanding of the speaker-grounded personal pronouns that are more frequent in dialogues than other non-dialogue genres (Akta\u015f and Stede, 2020) .",
"cite_spans": [
{
"start": 392,
"end": 415,
"text": "(Akta\u015f and Stede, 2020)",
"ref_id": "BIBREF0"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Speaker Encoding (SE)",
"sec_num": "3.3"
},
{
"text": "The speaker feature introduced in Section 3.1 provides shallow distinction on whether two mentions are from the same speaker. However, the speaker interactions across dialogue turns are not presented in the document encoding; therefore, the representation of each candidate has no awareness on the speaker interactions at all. To provide deeper knowledge on the interactions, we adopt a simple but effective strategy that is similar to some other work in speaker encoding (Le et al., 2019; Wu et al., 2020) : a special speaker token is prepended to each sentence, and we feed the new speaker-augmented document to the encoder directly. Table 1 shows an example on this speaker augmentation. Each speaker is indexed by the order of the first appearance in the dialogue. All the special speaker tokens are added to the tokenizer vocabulary, and will be picked up in the tokenization and encoding process. Therefore, all encoded candidate representation in the SE model is conditioned on the entire speaker interactions, and automatically learns to fuse the information of speakers and turns in the training process. A special speaker token is assigned to each speaker and prepended to each corresponding sentence.",
"cite_spans": [
{
"start": 472,
"end": 489,
"text": "(Le et al., 2019;",
"ref_id": "BIBREF7"
},
{
"start": 490,
"end": 506,
"text": "Wu et al., 2020)",
"ref_id": "BIBREF15"
}
],
"ref_spans": [
{
"start": 636,
"end": 643,
"text": "Table 1",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Speaker Encoding (SE)",
"sec_num": "3.3"
},
{
"text": "We also emphasize on the knowledge transfer in this task, as the training resources of dialogue corpora annotated in the UA format are limit and expensive to obtain, while there already exist largerscale training corpora for other domains in different annotation schemes, e.g. the OntoNotes dataset in the CoNLL format that mainly consists of nondialogue genres. For clarity, we denote the provided data annotated in the UA format as UAD, and other existing data in non-UA format as OD. We investigate two common ways to make use of OD in the training for SE, denoted as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Knowledge Transfer",
"sec_num": "3.4"
},
{
"text": "\u2022 SE +M : Mix OD and UAD together as a larger dataset, regarding OD as data augmentation that provides more knowledge.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Knowledge Transfer",
"sec_num": "3.4"
},
{
"text": "\u2022 SE +P : Pretrain the model on OD first, then further train the model on UAD only, regarding training on UAD as domain adaptation.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Knowledge Transfer",
"sec_num": "3.4"
},
{
"text": "Above two choices are plausible in our approach, because we only use data in the CoNLL format for OD, which is still largely similar to the UA format, despite the difference on the singletons, non-referring expressions, and split-antecedents. Similarly, we denote the model as SR +M/P if the SR model is used instead of SE.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Knowledge Transfer",
"sec_num": "3.4"
},
{
"text": "For data in the UA format (UAD), we use the AR-RAU corpus (Poesio et al., 2018) from the CRAC 2018/2021 shared task. Four sub-corpora are used as the training set for UAD, namely TRAINS-93, PEAR, RST, GNOME. One sub-corpus named TRAINS-91 is used as one of the development (dev) set. In addition, four other corpora from the CRAC 2021 shared task are also used as the development set as well as the final test set, namely AMI, LIGHT, Persuasion for Good (PSUA), Switchboard (SWBD). All above datasets are of the dialogue domain except for RST and GNOME. Table 2 shows the detailed statistics of all UAD datasets. Note that certain datasets do not provide speaker information, therefore their averaged numbers of speakers per document are shown as 0.",
"cite_spans": [
{
"start": 58,
"end": 79,
"text": "(Poesio et al., 2018)",
"ref_id": "BIBREF12"
}
],
"ref_spans": [
{
"start": 554,
"end": 561,
"text": "Table 2",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "Experiments 4.1 Datasets",
"sec_num": "4"
},
{
"text": "For non-UA format data (OD), we use two datasets in the CoNLL format: OntoNotes (ON) (Pradhan et al., 2012) and BOLT (Li et al., 2016) . OntoNotes consists of documents in six genres, where only two genres \"Telephone Conversation\" and \"Broadcast Conversation\" are of the dialogue domain; we use the same provided train/dev/test split for OntoNotes. BOLT has the same annotation scheme as OntoNotes and consists of documents from discussion forums, instant messages and telephone conversations. We perform a random 80/10/10 split for the train/dev/test set of BOLT. Detailed statistics of both datasets are shown in the bottom of Table 2 .",
"cite_spans": [
{
"start": 117,
"end": 134,
"text": "(Li et al., 2016)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [
{
"start": 629,
"end": 636,
"text": "Table 2",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "Experiments 4.1 Datasets",
"sec_num": "4"
},
{
"text": "We only perform one trivial preprocessing step specific to the training set of UAD datasets: remove all non-referring expressions and regard them as non-mentions, as they will not be counted in the final evaluation (Section 5). In addition, our current approach does not consider split-antecedents, which we will leave as future work.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Preprocessing",
"sec_num": "4.2"
},
{
"text": "Our system is based on the PyTorch implementation of the end-to-end coreference resolution model from Xu and Choi (2020), and we follow the similar hyperparameter settings. Specifically, SpanBERT Large (Joshi et al., 2020) is used as the Transformers encoder with maximum sequence length of 512. Long documents are split into multiple sequences, and each sequence is encoded by SpanBERT Large independently, as suggested by (Joshi et al., 2019) . During training, we limit the maximum sequences to be 3 due to the GPU memory constraints, and a long document will be truncated into multiple documents if it exceeds the maximum sequences.",
"cite_spans": [
{
"start": 202,
"end": 222,
"text": "(Joshi et al., 2020)",
"ref_id": "BIBREF3"
},
{
"start": 424,
"end": 444,
"text": "(Joshi et al., 2019)",
"ref_id": "BIBREF4"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Implementation",
"sec_num": "4.3"
},
{
"text": "Hyperparameters For all datasets, nested mentions are always enabled. We set the \u03bb = 0.5 and maximum span width to be 30 in the span enumer- 1) . The macro-averaged F1 of MUC, B 3 , and CEAF \u03c64 is the main evaluation metric. Section 3 describes the details of all listed approaches. SE +P +DEV is the setting of our final submission to the CRAC 2021 shared task, where all available development sets are also added in the training process for SE +P (Section 5.1).",
"cite_spans": [],
"ref_spans": [
{
"start": 141,
"end": 143,
"text": "1)",
"ref_id": null
}
],
"eq_spans": [],
"section": "Implementation",
"sec_num": "4.3"
},
{
"text": "Predicted mentions Baseline MR ( \u00a73.1). The end-to-end coreference resolution model with the SpanBERT encoder (Joshi et al., 2020; Xu and Choi, 2020) is used as the baseline. Approach SE +P +DEV ( \u00a73.4). The final model is built upon baseline with three key adaptations: 1) An updated antecedent selection process is used to support singletons, with an additional optimization on the mention scores. 2) Speaker-augmentation strategy is used to encode the speakers and dialogue-turns. 3) Knowledge transfer is employed that pretrains the model on CoNLL datasets, then further trains on the UA datasets as a domain adaptation step. The final submission includes the dev data into training. Train Data TRAINS-93, PEAR, RST, GNOME, ON, BOLT ( \u00a74.1) Dev Data TRAINS-91, AMI, LIGHT, PSUA, SWBD, ON, BOLT ( \u00a74.1) Table 4 : Summary of our final submission to the CRAC 2021 shared task. Train/Dev Data: all datasets we use for the training set and development set.",
"cite_spans": [
{
"start": 110,
"end": 130,
"text": "(Joshi et al., 2020;",
"ref_id": "BIBREF3"
},
{
"start": 131,
"end": 149,
"text": "Xu and Choi, 2020)",
"ref_id": "BIBREF17"
}
],
"ref_spans": [
{
"start": 806,
"end": 813,
"text": "Table 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "Resolution of anaphoric identities Setting",
"sec_num": null
},
{
"text": "ation stage, and limit the maximum antecedents to be 50 in the pair scoring process. Adam optimizer is used for the optimization, with the weight decay rate of 10 \u22122 and gradient clipping norm of 1. We employ the learning rate of 1\u00d710 \u22125 for Transformers parameters, and 3 \u00d7 10 \u22124 for task parameters. \u03b1 m = 0.1 is used for Eq (4). In particular, we do not apply any higher-order inferences, as their benefits are shown trivial (Xu and Choi, 2020) .",
"cite_spans": [
{
"start": 428,
"end": 447,
"text": "(Xu and Choi, 2020)",
"ref_id": "BIBREF17"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Resolution of anaphoric identities Setting",
"sec_num": null
},
{
"text": "Training When training UAD or OD alone, we concatenate and mix all its corresponding corpora together as the training data. For SE +M , we concatenate and mix all available training corpora together regardless of UAD or OD. All experiments are conducted on a Nvidia A100 GPU. 20 training epochs are used for all the settings, and the training takes around 1-2 hours for UAD and 3-4 hours for OD.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Resolution of anaphoric identities Setting",
"sec_num": null
},
{
"text": "In particular, development sets are not added to the training data, except for our final submission to the shared task, where the best-performed model has been identified, then we train the final model with the same setting but adding all development sets in the training (Section 5.1).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Resolution of anaphoric identities Setting",
"sec_num": null
},
{
"text": "The Universal Anaphora Scorer 1 is used in the official evaluation process. For the task of anaphora resolution, the main evaluation metric is the averaged F1 score of MUC, B 3 and CEAF \u03c6 4 , same as the CoNLL 2012 shared task. Singletons and splitantecedents are included in the evaluation, while non-referring expressions are excluded. Table 3 shows the evaluation results on the test set of four datasets using different approaches. Among all approaches without adding the dev sets into training, SE +P achieves the best results on all four datasets. Another SE +P model is then trained with adding the dev sets as our final submission, dentoed by SE +P +DEV, which further yields the best results, and ranks the 1st place at the \"anaphoric identity\" track in the CRAC 2021 shared task. Table 4 lists the summary of our final submission to the shared task.",
"cite_spans": [],
"ref_spans": [
{
"start": 338,
"end": 345,
"text": "Table 3",
"ref_id": "TABREF5"
},
{
"start": 790,
"end": 797,
"text": "Table 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "Results and Analysis",
"sec_num": "5"
},
{
"text": "One of the main differences between the UA and CoNLL format is that UA supports singletons, as UA annotates all noun phrases. The left side of Table 6 shows the total number and percentage of the singleton clusters on the test set of four datasets. Singletons are indeed prevalent, and all four datasets have at least 73% of their gold clusters as singletons. Therefore, recognizing singletons can become critical for coreference resolution on the UA formatted data.",
"cite_spans": [],
"ref_spans": [
{
"start": 143,
"end": 150,
"text": "Table 6",
"ref_id": "TABREF9"
}
],
"eq_spans": [],
"section": "Analysis: Singleton Recognition",
"sec_num": "5.2"
},
{
"text": "Comparing MR and SR in Table 3 , it is clear that singleton recognition plays a pivotal role in the final performance, with SR outperforming MR by a huge margin of 17-22 Avg F1 on all four datasets. To further examine the performance of SR, we collect the precision/recall of the predicted mentions by different models, as well as the precision/recall of predicted singletons over gold singletons, as 1 https://github.com/juntaoy/universal-anaphora-scorer shown in Table 5 . Compared with MR, all models that support singletons receive huge gains on the mention recall with 26-36% improvement, with relatively small 5-10% degradation on the mention precision. More interestingly, most SR/SE-related models are able to recover the majority of gold singletons on all four datasets, up to 73% recall on LIGHT, demonstrating the effectiveness of the mention score optimization in Eq (3) and the new antecedent selection process. Nevertheless, the best F1 for singletons is still below 67 out of four datasets, suggesting that resolving singletons alone can be a challenging aspect already.",
"cite_spans": [],
"ref_spans": [
{
"start": 23,
"end": 30,
"text": "Table 3",
"ref_id": "TABREF5"
},
{
"start": 465,
"end": 472,
"text": "Table 5",
"ref_id": "TABREF7"
}
],
"eq_spans": [],
"section": "Analysis: Singleton Recognition",
"sec_num": "5.2"
},
{
"text": "Despite the simple strategy of speaker-augmented encoding described in Section 3.3, SE +P shows decent improvement over its counterpart SR +P , with 2-3% enhancement on Avg F1 on all datasets, except for LIGHT that has only trivial improvement, confirming that stronger speaker encoding is indeed important for the dialogue domain.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Analysis: Speaker Encoding",
"sec_num": "5.3"
},
{
"text": "Meanwhile, SE does not show advantages over SR due to the fact that the current training corpora of all ARRAU datasets do not provide the speakers (Table 2) ; consequently, neither models could learn to use the speaker information, resulting in similar performance. This on the other side also demonstrates the significance of knowledge transfer that utilizes other existing resources.",
"cite_spans": [],
"ref_spans": [
{
"start": 147,
"end": 156,
"text": "(Table 2)",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "Analysis: Speaker Encoding",
"sec_num": "5.3"
},
{
"text": "Comparing the two knowledge transfer strategies, the pretraining paradigm SE +P performs significantly better than the mixing paradigm SE +M . In fact, while the pretraining brings improvement over SE, the mixing paradigm even performs worse than without knowledge transfer, likely because of the domain mismatch and the annotation format mismatch, showing that the pretraining strategy should always be preferred in this case.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Analysis: Knowledge Transfer",
"sec_num": "5.4"
},
{
"text": "The impact of the pretraining on OD can be dataset-specific, as shown by Table 3 . SE +P is able to boost performance upon SE by a good margin on AMI/SWBD with 0.5/2.6 F1 respectively, while LIGHT/PSUA can benefit significantly, with 6.7/8.1 F1 improvement. Encouraged by the results, we suggest to further explore the utilization of existing resources as a future direction.",
"cite_spans": [],
"ref_spans": [
{
"start": 73,
"end": 80,
"text": "Table 3",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "Analysis: Knowledge Transfer",
"sec_num": "5.4"
},
{
"text": "In this work, we present an adapted end-to-end coreference resolution system for anaphoric identities in dialogues, specifically addressing three aspects: the support for singletons, stronger speaker and turn encoding through the dialogue interactions, as well as the knowledge transfer utilizing other existing resources. Our final system achieves the best results on all four datasets on the leaderboard of the CRAC 2021 shared task, and further analysis is performed to show the effectiveness of our proposed adaptation strategies.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6"
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Variation in coreference strategies across genres and production media",
"authors": [
{
"first": "Berfin",
"middle": [],
"last": "Akta\u015f",
"suffix": ""
},
{
"first": "Manfred",
"middle": [],
"last": "Stede",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 28th International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "5774--5785",
"other_ids": {
"DOI": [
"10.18653/v1/2020.coling-main.508"
]
},
"num": null,
"urls": [],
"raw_text": "Berfin Akta\u015f and Manfred Stede. 2020. Variation in coreference strategies across genres and produc- tion media. In Proceedings of the 28th Inter- national Conference on Computational Linguistics, pages 5774-5785, Barcelona, Spain (Online). Inter- national Committee on Computational Linguistics.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Entity-centric coreference resolution with model stacking",
"authors": [
{
"first": "Kevin",
"middle": [],
"last": "Clark",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Christopher",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
"volume": "1",
"issue": "",
"pages": "1405--1415",
"other_ids": {
"DOI": [
"10.3115/v1/P15-1136"
]
},
"num": null,
"urls": [],
"raw_text": "Kevin Clark and Christopher D. Manning. 2015. Entity-centric coreference resolution with model stacking. In Proceedings of the 53rd Annual Meet- ing of the Association for Computational Linguistics and the 7th International Joint Conference on Natu- ral Language Processing (Volume 1: Long Papers), pages 1405-1415, Beijing, China. Association for Computational Linguistics.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Improving coreference resolution by learning entitylevel distributed representations",
"authors": [
{
"first": "Kevin",
"middle": [],
"last": "Clark",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Christopher",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "643--653",
"other_ids": {
"DOI": [
"10.18653/v1/P16-1061"
]
},
"num": null,
"urls": [],
"raw_text": "Kevin Clark and Christopher D. Manning. 2016. Im- proving coreference resolution by learning entity- level distributed representations. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 643-653, Berlin, Germany. Association for Computational Linguistics.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Spanbert: Improving pre-training by representing and predicting spans",
"authors": [
{
"first": "Mandar",
"middle": [],
"last": "Joshi",
"suffix": ""
},
{
"first": "Danqi",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Yinhan",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Daniel",
"middle": [
"S"
],
"last": "Weld",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
},
{
"first": "Omer",
"middle": [],
"last": "Levy",
"suffix": ""
}
],
"year": 2020,
"venue": "Transactions of the Association for Computational Linguistics",
"volume": "8",
"issue": "",
"pages": "64--77",
"other_ids": {
"DOI": [
"10.1162/tacl_a_00300"
]
},
"num": null,
"urls": [],
"raw_text": "Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and Omer Levy. 2020. Spanbert: Improving pre-training by representing and predicting spans. Transactions of the Associa- tion for Computational Linguistics, 8:64-77.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "BERT for coreference resolution: Baselines and analysis",
"authors": [
{
"first": "Mandar",
"middle": [],
"last": "Joshi",
"suffix": ""
},
{
"first": "Omer",
"middle": [],
"last": "Levy",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Weld",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "5803--5808",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1588"
]
},
"num": null,
"urls": [],
"raw_text": "Mandar Joshi, Omer Levy, Luke Zettlemoyer, and Daniel Weld. 2019. BERT for coreference reso- lution: Baselines and analysis. In Proceedings of the 2019 Conference on Empirical Methods in Nat- ural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5803-5808, Hong Kong, China. Association for Computational Linguistics.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "The codi-crac 2021 shared task on anaphora, bridging, and discourse deixis in dialogue",
"authors": [
{
"first": "Sopan",
"middle": [],
"last": "Khosla",
"suffix": ""
},
{
"first": "Juntao",
"middle": [],
"last": "Yu",
"suffix": ""
},
{
"first": "Ramesh",
"middle": [],
"last": "Manuvinakurike",
"suffix": ""
},
{
"first": "Vincent",
"middle": [],
"last": "Ng",
"suffix": ""
},
{
"first": "Massimo",
"middle": [],
"last": "Poesio",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Strube",
"suffix": ""
},
{
"first": "Carolyn",
"middle": [],
"last": "Ros\u00e9",
"suffix": ""
}
],
"year": 2021,
"venue": "Proceedings of the CODI-CRAC 2021",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sopan Khosla, Juntao Yu, Ramesh Manuvinakurike, Vincent Ng, Massimo Poesio, Michael Strube, and Carolyn Ros\u00e9. 2021. The codi-crac 2021 shared task on anaphora, bridging, and discourse deixis in dialogue. In Proceedings of the CODI-CRAC 2021",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Shared Task on Anaphora, Bridging, and Discourse Deixis in Dialogue",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shared Task on Anaphora, Bridging, and Discourse Deixis in Dialogue. Association for Computational Linguistics.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Who is speaking to whom? learning to identify utterance addressee in multi-party conversations",
"authors": [
{
"first": "Ran",
"middle": [],
"last": "Le",
"suffix": ""
},
{
"first": "Wenpeng",
"middle": [],
"last": "Hu",
"suffix": ""
},
{
"first": "Mingyue",
"middle": [],
"last": "Shang",
"suffix": ""
},
{
"first": "Zhenjun",
"middle": [],
"last": "You",
"suffix": ""
},
{
"first": "Lidong",
"middle": [],
"last": "Bing",
"suffix": ""
},
{
"first": "Dongyan",
"middle": [],
"last": "Zhao",
"suffix": ""
},
{
"first": "Rui",
"middle": [],
"last": "Yan",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "1909--1919",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1199"
]
},
"num": null,
"urls": [],
"raw_text": "Ran Le, Wenpeng Hu, Mingyue Shang, Zhenjun You, Lidong Bing, Dongyan Zhao, and Rui Yan. 2019. Who is speaking to whom? learning to identify ut- terance addressee in multi-party conversations. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 1909- 1919, Hong Kong, China. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "End-to-end neural coreference resolution",
"authors": [
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Luheng",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Mike",
"middle": [],
"last": "Lewis",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "188--197",
"other_ids": {
"DOI": [
"10.18653/v1/D17-1018"
]
},
"num": null,
"urls": [],
"raw_text": "Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle- moyer. 2017. End-to-end neural coreference reso- lution. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 188-197, Copenhagen, Denmark. Association for Computational Linguistics.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Higher-order coreference resolution with coarse-tofine inference",
"authors": [
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Luheng",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "2",
"issue": "",
"pages": "687--692",
"other_ids": {
"DOI": [
"10.18653/v1/N18-2108"
]
},
"num": null,
"urls": [],
"raw_text": "Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018. Higher-order coreference resolution with coarse-to- fine inference. In Proceedings of the 2018 Confer- ence of the North American Chapter of the Associ- ation for Computational Linguistics: Human Lan- guage Technologies, Volume 2 (Short Papers), pages 687-692, New Orleans, Louisiana. Association for Computational Linguistics.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Large multi-lingual, multi-level and multigenre annotation corpus",
"authors": [
{
"first": "Xuansong",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Martha",
"middle": [],
"last": "Palmer",
"suffix": ""
},
{
"first": "Nianwen",
"middle": [],
"last": "Xue",
"suffix": ""
},
{
"first": "Lance",
"middle": [],
"last": "Ramshaw",
"suffix": ""
},
{
"first": "Mohamed",
"middle": [],
"last": "Maamouri",
"suffix": ""
},
{
"first": "Ann",
"middle": [],
"last": "Bies",
"suffix": ""
},
{
"first": "Kathryn",
"middle": [],
"last": "Conger",
"suffix": ""
},
{
"first": "Stephen",
"middle": [],
"last": "Grimes",
"suffix": ""
},
{
"first": "Stephanie",
"middle": [],
"last": "Strassel",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)",
"volume": "",
"issue": "",
"pages": "906--913",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xuansong Li, Martha Palmer, Nianwen Xue, Lance Ramshaw, Mohamed Maamouri, Ann Bies, Kathryn Conger, Stephen Grimes, and Stephanie Strassel. 2016. Large multi-lingual, multi-level and multi- genre annotation corpus. In Proceedings of the Tenth International Conference on Language Re- sources and Evaluation (LREC'16), pages 906-913, Portoro\u017e, Slovenia. European Language Resources Association (ELRA).",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Improving coreference resolution by using conversational metadata",
"authors": [
{
"first": "Xiaoqiang",
"middle": [],
"last": "Luo",
"suffix": ""
},
{
"first": "Radu",
"middle": [],
"last": "Florian",
"suffix": ""
},
{
"first": "Todd",
"middle": [],
"last": "Ward",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Short Papers",
"volume": "",
"issue": "",
"pages": "201--204",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xiaoqiang Luo, Radu Florian, and Todd Ward. 2009. Improving coreference resolution by using conver- sational metadata. In Proceedings of Human Lan- guage Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Short Papers, pages 201-204, Boulder, Colorado. Association for Computational Linguistics.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Anaphora resolution with the ARRAU corpus",
"authors": [
{
"first": "Massimo",
"middle": [],
"last": "Poesio",
"suffix": ""
},
{
"first": "Yulia",
"middle": [],
"last": "Grishina",
"suffix": ""
},
{
"first": "Varada",
"middle": [],
"last": "Kolhatkar",
"suffix": ""
},
{
"first": "Nafise",
"middle": [],
"last": "Moosavi",
"suffix": ""
},
{
"first": "Ina",
"middle": [],
"last": "Roesiger",
"suffix": ""
},
{
"first": "Adam",
"middle": [],
"last": "Roussel",
"suffix": ""
},
{
"first": "Fabian",
"middle": [],
"last": "Simonjetz",
"suffix": ""
},
{
"first": "Alexandra",
"middle": [],
"last": "Uma",
"suffix": ""
},
{
"first": "Olga",
"middle": [],
"last": "Uryupina",
"suffix": ""
},
{
"first": "Juntao",
"middle": [],
"last": "Yu",
"suffix": ""
},
{
"first": "Heike",
"middle": [],
"last": "Zinsmeister",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the First Workshop on Computational Models of Reference, Anaphora and Coreference",
"volume": "",
"issue": "",
"pages": "11--22",
"other_ids": {
"DOI": [
"10.18653/v1/W18-0702"
]
},
"num": null,
"urls": [],
"raw_text": "Massimo Poesio, Yulia Grishina, Varada Kolhatkar, Nafise Moosavi, Ina Roesiger, Adam Roussel, Fabian Simonjetz, Alexandra Uma, Olga Uryupina, Juntao Yu, and Heike Zinsmeister. 2018. Anaphora resolution with the ARRAU corpus. In Proceedings of the First Workshop on Computational Models of Reference, Anaphora and Coreference, pages 11-22, New Orleans, Louisiana. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "CoNLL-2012 shared task: Modeling multilingual unrestricted coreference in OntoNotes",
"authors": [
{
"first": "Alessandro",
"middle": [],
"last": "Sameer Pradhan",
"suffix": ""
},
{
"first": "Nianwen",
"middle": [],
"last": "Moschitti",
"suffix": ""
},
{
"first": "Olga",
"middle": [],
"last": "Xue",
"suffix": ""
},
{
"first": "Yuchen",
"middle": [],
"last": "Uryupina",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Zhang",
"suffix": ""
}
],
"year": 2012,
"venue": "Joint Conference on EMNLP and CoNLL -Shared Task",
"volume": "",
"issue": "",
"pages": "1--40",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Olga Uryupina, and Yuchen Zhang. 2012. CoNLL- 2012 shared task: Modeling multilingual unre- stricted coreference in OntoNotes. In Joint Confer- ence on EMNLP and CoNLL -Shared Task, pages 1-40, Jeju Island, Korea. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Learning anaphoricity and antecedent ranking features for coreference resolution",
"authors": [
{
"first": "Sam",
"middle": [],
"last": "Wiseman",
"suffix": ""
},
{
"first": "Alexander",
"middle": [
"M"
],
"last": "Rush",
"suffix": ""
},
{
"first": "Stuart",
"middle": [],
"last": "Shieber",
"suffix": ""
},
{
"first": "Jason",
"middle": [],
"last": "Weston",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
"volume": "1",
"issue": "",
"pages": "1416--1426",
"other_ids": {
"DOI": [
"10.3115/v1/P15-1137"
]
},
"num": null,
"urls": [],
"raw_text": "Sam Wiseman, Alexander M. Rush, Stuart Shieber, and Jason Weston. 2015. Learning anaphoricity and an- tecedent ranking features for coreference resolution. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Lan- guage Processing (Volume 1: Long Papers), pages 1416-1426, Beijing, China. Association for Compu- tational Linguistics.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "CorefQA: Coreference resolution as query-based span prediction",
"authors": [
{
"first": "Wei",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Fei",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Arianna",
"middle": [],
"last": "Yuan",
"suffix": ""
},
{
"first": "Fei",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Jiwei",
"middle": [],
"last": "Li",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "6953--6963",
"other_ids": {
"DOI": [
"10.18653/v1/2020.acl-main.622"
]
},
"num": null,
"urls": [],
"raw_text": "Wei Wu, Fei Wang, Arianna Yuan, Fei Wu, and Ji- wei Li. 2020. CorefQA: Coreference resolution as query-based span prediction. In Proceedings of the 58th Annual Meeting of the Association for Compu- tational Linguistics, pages 6953-6963, Online. As- sociation for Computational Linguistics.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Incremental neural coreference resolution in constant memory",
"authors": [
{
"first": "Patrick",
"middle": [],
"last": "Xia",
"suffix": ""
},
{
"first": "Jo\u00e3o",
"middle": [],
"last": "Sedoc",
"suffix": ""
},
{
"first": "Benjamin",
"middle": [],
"last": "Van Durme",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "8617--8624",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Patrick Xia, Jo\u00e3o Sedoc, and Benjamin Van Durme. 2020. Incremental neural coreference resolution in constant memory. In Proceedings of the 2020 Con- ference on Empirical Methods in Natural Language Processing (EMNLP), pages 8617-8624, Online. As- sociation for Computational Linguistics.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Revealing the myth of higher-order inference in coreference resolution",
"authors": [
{
"first": "Liyan",
"middle": [],
"last": "Xu",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Jinho",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Choi",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "8527--8533",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Liyan Xu and Jinho D. Choi. 2020. Revealing the myth of higher-order inference in coreference resolution. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 8527-8533, Online. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "A cluster ranking model for full anaphora resolution",
"authors": [
{
"first": "Juntao",
"middle": [],
"last": "Yu",
"suffix": ""
},
{
"first": "Alexandra",
"middle": [],
"last": "Uma",
"suffix": ""
},
{
"first": "Massimo",
"middle": [],
"last": "Poesio",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of The 12th Language Resources and Evaluation Conference",
"volume": "",
"issue": "",
"pages": "11--20",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Juntao Yu, Alexandra Uma, and Massimo Poesio. 2020. A cluster ranking model for full anaphora resolution. In Proceedings of The 12th Language Resources and Evaluation Conference, pages 11-20, Marseille, France. European Language Resources Association.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Dwie: An entity-centric dataset for multi-task document-level information extraction",
"authors": [
{
"first": "Klim",
"middle": [],
"last": "Zaporojets",
"suffix": ""
},
{
"first": "Johannes",
"middle": [],
"last": "Deleu",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Develder",
"suffix": ""
},
{
"first": "Thomas",
"middle": [],
"last": "Demeester",
"suffix": ""
}
],
"year": 2021,
"venue": "Information Processing & Management",
"volume": "58",
"issue": "4",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Klim Zaporojets, Johannes Deleu, Chris Develder, and Thomas Demeester. 2021. Dwie: An entity-centric dataset for multi-task document-level information extraction. Information Processing & Management, 58(4):102563.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "They exist! introducing plural mentions to coreference resolution and entity linking",
"authors": [
{
"first": "Ethan",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Jinho",
"middle": [
"D"
],
"last": "Choi",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 27th International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "24--34",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ethan Zhou and Jinho D. Choi. 2018. They exist! in- troducing plural mentions to coreference resolution and entity linking. In Proceedings of the 27th Inter- national Conference on Computational Linguistics, pages 24-34, Santa Fe, New Mexico, USA. Associ- ation for Computational Linguistics.",
"links": null
}
},
"ref_entries": {
"TABREF0": {
"num": null,
"html": null,
"content": "<table><tr><td>John: Do you know Mike?</td></tr><tr><td>Mary: He is my best friend!</td></tr><tr><td>Paul: I like him too!</td></tr><tr><td>Mary: We should meet together!</td></tr><tr><td>[SPK1]</td></tr></table>",
"text": "Do you know Mike ? [SPK2] He is my best friend ! [SPK3] I like him too ! [SPK2] We should meet together !",
"type_str": "table"
},
"TABREF1": {
"num": null,
"html": null,
"content": "<table/>",
"text": "Example for the speaker-augmented encoding.",
"type_str": "table"
},
"TABREF3": {
"num": null,
"html": null,
"content": "<table/>",
"text": "",
"type_str": "table"
},
"TABREF5": {
"num": null,
"html": null,
"content": "<table/>",
"text": "",
"type_str": "table"
},
"TABREF6": {
"num": null,
"html": null,
"content": "<table><tr><td/><td/><td>Mentions</td><td/><td colspan=\"2\">Singletons</td></tr><tr><td/><td>P</td><td>R</td><td>F</td><td>P</td><td>R</td><td>F</td></tr><tr><td>MR</td><td colspan=\"3\">90.3 40.6 56.1</td><td>-</td><td>-</td><td>-</td></tr><tr><td>SR</td><td colspan=\"3\">84.7 76.4 80.3</td><td colspan=\"3\">44.7 54.8 49.2</td></tr><tr><td colspan=\"4\">SR +P 83.1 74.3 78.5</td><td colspan=\"3\">42.8 54.0 47.8</td></tr><tr><td>SE</td><td colspan=\"3\">83.4 77.7 80.4</td><td colspan=\"3\">43.1 55.9 48.7</td></tr><tr><td colspan=\"4\">SE +M 81.5 69.5 75.0</td><td colspan=\"3\">29.8 35.7 32.5</td></tr><tr><td colspan=\"4\">SE +P 84.1 77.9 80.9</td><td colspan=\"3\">45.8 53.5 49.4</td></tr><tr><td/><td colspan=\"4\">(a) Statistics on the test set of AMI.</td><td/></tr><tr><td/><td/><td>Mentions</td><td/><td colspan=\"2\">Singletons</td></tr><tr><td/><td>P</td><td>R</td><td>F</td><td>P</td><td>R</td><td>F</td></tr><tr><td>MR</td><td colspan=\"3\">97.1 60.0 74.2</td><td>-</td><td>-</td><td>-</td></tr><tr><td>SR</td><td colspan=\"3\">87.7 86.8 87.2</td><td colspan=\"3\">56.3 72.1 63.2</td></tr><tr><td colspan=\"4\">SR +P 90.1 89.4 89.7</td><td colspan=\"3\">65.1 68.3 66.6</td></tr><tr><td>SE</td><td colspan=\"3\">87.6 86.3 87.0</td><td colspan=\"3\">55.0 73.6 62.9</td></tr><tr><td colspan=\"4\">SE +M 91.4 71.7 80.3</td><td colspan=\"3\">43.1 23.9 30.8</td></tr><tr><td colspan=\"4\">SE +P 90.0 89.6 89.8</td><td colspan=\"3\">62.1 68.4 65.1</td></tr><tr><td/><td colspan=\"5\">(b) Statistics on the test set of LIGHT.</td></tr><tr><td/><td/><td>Mentions</td><td/><td colspan=\"2\">Singletons</td></tr><tr><td/><td>P</td><td>R</td><td>F</td><td>P</td><td>R</td><td>F</td></tr><tr><td>MR</td><td colspan=\"3\">94.9 56.8 71.1</td><td>-</td><td>-</td><td>-</td></tr><tr><td>SR</td><td colspan=\"3\">89.5 85.4 87.4</td><td colspan=\"3\">66.2 55.4 60.3</td></tr><tr><td colspan=\"4\">SR +P 91.8 86.4 89.0</td><td colspan=\"3\">74.3 51.5 60.8</td></tr><tr><td>SE</td><td colspan=\"3\">88.8 86.0 87.4</td><td colspan=\"3\">64.6 57.2 60.7</td></tr><tr><td colspan=\"4\">SE +M 90.5 69.9 78.9</td><td colspan=\"3\">53.6 26.0 35.1</td></tr><tr><td colspan=\"4\">SE +P 91.9 87.4 89.6</td><td colspan=\"3\">74.8 54.4 63.0</td></tr><tr><td colspan=\"3\">(c) Mentions</td><td/><td colspan=\"2\">Singletons</td></tr><tr><td/><td>P</td><td>R</td><td>F</td><td>P</td><td>R</td><td>F</td></tr><tr><td>MR</td><td colspan=\"3\">92.0 54.0 68.1</td><td>-</td><td>-</td><td>-</td></tr><tr><td>SR</td><td colspan=\"3\">85.7 80.1 82.8</td><td colspan=\"3\">54.0 51.8 52.9</td></tr><tr><td colspan=\"4\">SR +P 86.3 80.3 83.2</td><td colspan=\"3\">52.9 50.5 51.7</td></tr><tr><td>SE</td><td colspan=\"3\">85.0 80.6 82.7</td><td colspan=\"3\">53.3 54.0 53.7</td></tr><tr><td colspan=\"4\">SE +M 86.3 68.9 76.6</td><td colspan=\"3\">39.2 31.7 35.1</td></tr><tr><td colspan=\"4\">SE +P 87.4 81.0 84.1</td><td colspan=\"3\">56.9 50.5 53.5</td></tr><tr><td>(d)</td><td/><td/><td/><td/><td/></tr></table>",
"text": "Statistics on the test set of Persuasion for Good (PSUA). Statistics on the test set of Switchboard (SWBD).",
"type_str": "table"
},
"TABREF7": {
"num": null,
"html": null,
"content": "<table/>",
"text": "Statistics of different approaches on the test set of four datasets. The left side shows the Precision/Recall/F1 (P/R/F) of the predicted mentions over gold mentions, and the right side shows the predicted singletons over gold singletons.",
"type_str": "table"
},
"TABREF9": {
"num": null,
"html": null,
"content": "<table/>",
"text": "Statistics on the test set of all four datasets. #AC: total number of all clusters. #SC: total number of singleton clusters, with the corresponding percentage indicated inside parentheses. #AM: total number of all mentions. #PM: total number of personal pronoun mentions, with the percentage inside parentheses. All statistics exclude non-referring expressions.",
"type_str": "table"
}
}
}
} |