File size: 91,703 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T13:27:30.733727Z"
    },
    "title": "Adapted End-to-End Coreference Resolution System for Anaphoric Identities in Dialogues",
    "authors": [
        {
            "first": "Liyan",
            "middle": [],
            "last": "Xu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Emory University",
                "location": {
                    "settlement": "Atlanta",
                    "region": "GA"
                }
            },
            "email": "[email protected]"
        },
        {
            "first": "Jinho",
            "middle": [
                "D"
            ],
            "last": "Choi",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Emory University",
                "location": {
                    "settlement": "Atlanta",
                    "region": "GA"
                }
            },
            "email": "[email protected]"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We present an effective system adapted from the end-to-end neural coreference resolution model, targeting on the task of anaphora resolution in dialogues. Three aspects are specifically addressed in our approach, including the support of singletons, encoding speakers and turns throughout dialogue interactions, and knowledge transfer utilizing existing resources. Despite the simplicity of our adaptation strategies, they are shown to bring significant impact to the final performance, with up to 27 F1 improvement over the baseline. Our final system ranks the 1st place on the leaderboard of the anaphora resolution track in the CRAC 2021 shared task, and achieves the best evaluation results on all four datasets.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We present an effective system adapted from the end-to-end neural coreference resolution model, targeting on the task of anaphora resolution in dialogues. Three aspects are specifically addressed in our approach, including the support of singletons, encoding speakers and turns throughout dialogue interactions, and knowledge transfer utilizing existing resources. Despite the simplicity of our adaptation strategies, they are shown to bring significant impact to the final performance, with up to 27 F1 improvement over the baseline. Our final system ranks the 1st place on the leaderboard of the anaphora resolution track in the CRAC 2021 shared task, and achieves the best evaluation results on all four datasets.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Coreference resolution of anaphoric identities (a.k.a. anaphora resolution) is a long-studied Natural Language Processing (NLP) task, and is still considered one of the unsolved problems, as it demands deep semantic understanding as well as world knowledge. Although there is a significant performance boost recently by the neural decoders (Lee et al., 2017 (Lee et al., , 2018 and deep contextualized encoders such as BERT and SpanBERT (Joshi et al., 2019 (Joshi et al., , 2020 , the majority of the experiments are based on OntoNotes (Pradhan et al., 2012) from the CoNLL 2012 shared task, which may overestimate the model performance due to two perspectives: the lack of support for harder cases such as singletons and split-antecedents, and the lack of focus on real-world dialogues. In this work, we target on the task of anaphora resolution in the CRAC 2021 shared task (Khosla et al., 2021) that addresses both perspectives, and present an effective coreference resolution system that is adapted from the recent end-to-end coreference model. All datasets in the CRAC 2021 shared task are in the Universal Anaphora format. For simplicity, we refer to it as the UA format, and refer to the annotation scheme of the CoNLL 2012 shared task as the CoNLL format. The UA format is an extension of the CoNLL format, and further supports bridging references and discourse deixis. For anaphora resolution, the UA format differs from the CoNLL format on three aspects: the support of singletons, split-antecedents, and non-referring expressions (excluded from the current evaluation). Our approach specifically addresses the singleton problem (Section 3.1), which is shown to be a critical component under the UA setting that brings 17-22 F1 improvement on all datasets (Section 5.2). Few recent work has studied the split-antecedent problem (Zhou and Choi, 2018) , and we leave the split-antecedents as future work.",
                "cite_spans": [
                    {
                        "start": 340,
                        "end": 357,
                        "text": "(Lee et al., 2017",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 358,
                        "end": 377,
                        "text": "(Lee et al., , 2018",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 437,
                        "end": 456,
                        "text": "(Joshi et al., 2019",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 457,
                        "end": 478,
                        "text": "(Joshi et al., , 2020",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 876,
                        "end": 897,
                        "text": "(Khosla et al., 2021)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 1838,
                        "end": 1859,
                        "text": "(Zhou and Choi, 2018)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In addition to singletons, our approach also emphasizes on the speaker encoding (Section 3.3) and knowledge transfer (Section 3.4) to address the dialogue-domain perspective. Especially, we use a simple strategy of speaker-augmented encoding that captures the speaker interaction and dialogueturn information, utilizing the strong Transformers encoder. It has been shown by the previous study that conversational metadata such as speakers can be significant for coreference resolution on dialogue documents (Luo et al., 2009) , and we do see 2-3 F1 improvement on three datasets by simply applying the speaker encoding strategy (Section 5.3).",
                "cite_spans": [
                    {
                        "start": 507,
                        "end": 525,
                        "text": "(Luo et al., 2009)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Knowledge transfer from other existing resources is also shown to be important in our approach. Two different strategies are experimented, and the domain-adaptation strategy is able to bring large improvement, boosting 8 F1 for LIGHT and 6 F1 on PSUA (Table 3 ).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 251,
                        "end": 259,
                        "text": "(Table 3",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our final system ranks the 1st place on the leaderboard of the anaphora resolution track in the CRAC 2021 shared task, and achieves the best evaluation results on all four datasets, with 63.96 F1 for AMI, 80.33 F1 for LIGHT, 78.41 F1 for PSUA, 74.49 F1 for SWBD (Section 5.1). A brief summary of our final submission is shown in Table 4 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 329,
                        "end": 336,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Pretrained Transformers encoders have been successfully adopted by recent coreference resolution models and shown significant improvement (Joshi et al., 2019 (Joshi et al., , 2020 . We also adopt the Transformers encoder in our approach because of its superior performance. For the neural decoder, there have been two popular directions from recent work. One is mention-ranking-based, where the model predicts only one antecedent for each mention without focusing on the cluster structure (Wiseman et al., 2015; Lee et al., 2017; Wu et al., 2020) . The other is cluster-based, where the model maintains the predicted clusters and performs cluster merging Manning, 2015, 2016; Xia et al., 2020; Yu et al., 2020) . We adopt the mention-ranking framework in our approach because of its simplicity as well as its state-of-the-art decoding performance.",
                "cite_spans": [
                    {
                        "start": 138,
                        "end": 157,
                        "text": "(Joshi et al., 2019",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 158,
                        "end": 179,
                        "text": "(Joshi et al., , 2020",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 489,
                        "end": 511,
                        "text": "(Wiseman et al., 2015;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 512,
                        "end": 529,
                        "text": "Lee et al., 2017;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 530,
                        "end": 546,
                        "text": "Wu et al., 2020)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 655,
                        "end": 675,
                        "text": "Manning, 2015, 2016;",
                        "ref_id": null
                    },
                    {
                        "start": 676,
                        "end": 693,
                        "text": "Xia et al., 2020;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 694,
                        "end": 710,
                        "text": "Yu et al., 2020)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Our baseline model MR adopts the mention-ranking strategy, and follows the architecture of the end-toend neural coreference resolution model (Lee et al., 2017 (Lee et al., , 2018 with a Transformer encoder (Joshi et al., 2019 (Joshi et al., , 2020 . Given a document with T tokens, the model first enumerates all valid spans, and scores every span for being a likely mention, denoted by the mention score s m . The model then greedily selects top \u03bbT spans by s m as mention candidates that may appear in the final coreference clusters. Let X = (x 1 , . . . , x \u03bbT ) be the list of all mention candidates in the document, ordered by their appearance. For each mention candidate x i \u2208 X , the model selects a single coreferent antecedent from all its preceding mention candidates, denoted by Y i = ( , x 1 , . . . , x i\u22121 ), with being a \"dummy\" antecedent that may be selected when x i is not anaphoric (no antecedents).",
                "cite_spans": [
                    {
                        "start": 141,
                        "end": 158,
                        "text": "(Lee et al., 2017",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 159,
                        "end": 178,
                        "text": "(Lee et al., , 2018",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 206,
                        "end": 225,
                        "text": "(Joshi et al., 2019",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 226,
                        "end": 247,
                        "text": "(Joshi et al., , 2020",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mention-Ranking (MR)",
                "sec_num": "3.1"
            },
            {
                "text": "The antecedent selection is performed by the pairwise scoring process between the current mention candidate x i and each of its preceding candidate y \u2208 Y i . The final pairwise score s(x i , y) consists of three scores: how likely each candidate being a mention, measured by the mention score s m ; and how likely they refer to the same entity, measured by the antecedent score s a . The final score s(x i , y) can be denoted as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mention-Ranking (MR)",
                "sec_num": "3.1"
            },
            {
                "text": "s(x i , y) = s m (x i ) + s m (y) + s a (x i , y, \u03c6(x i , y))",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mention-Ranking (MR)",
                "sec_num": "3.1"
            },
            {
                "text": "Both s m and s a are computed by the FeedForward Neural Network (FFNN), and \u03c6(x i , y) represents additional meta features. Unlike previous work, we do not include the specific genre as a feature; instead, we simply use a binary feature on whether the document is dialogue-based or article-based, since dialogues can exhibit quite different traits from written articles (Akta\u015f and Stede, 2020) . We also adopt a speaker feature that indicates whether two candidates are from the same speaker, or whether the speaker information is not available, which is important for written articles or two-party dialogues. In Section 3.3, we further adapt more speaker encoding to benefit multispeaker dialogues and the personal pronoun issue.",
                "cite_spans": [
                    {
                        "start": 370,
                        "end": 393,
                        "text": "(Akta\u015f and Stede, 2020)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mention-Ranking (MR)",
                "sec_num": "3.1"
            },
            {
                "text": "For inference, the selected antecedent is the preceding candidate with the most pairwise score, denoted by argmax y \u2208Y i s(x i , y ). For training, the marginal log-likelihood of all gold antecedent\u015d Y i \u2286 Y i for each x i \u2208 X is optimized, denoted by the loss L c :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mention-Ranking (MR)",
                "sec_num": "3.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P (y) = e s(x i ,y) y \u2208Y i e s(x i ,y )",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Mention-Ranking (MR)",
                "sec_num": "3.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "L c = \u2212 log x i \u2208X \u0177\u2208\u0176 i P (\u0177)",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Mention-Ranking (MR)",
                "sec_num": "3.1"
            },
            {
                "text": "As the UA format does support singletons, MR would fail to predict those singleton clusters, since the antecedent selection can only generate clusters with at least one pair of mentions. Several previous work has addressed the singleton problem from different perspectives (Yu et al., 2020; Zaporojets et al., 2021 ). Our SR model is built upon MR and further recognizes singletons based on the simple strategy as follows: we make use of the mention score s m in the antecedent selection process, and create a singleton cluster for any candidates with s m > 0 that have not yet found any antecedents, which poses an additional requirement on the mention score, such that only valid mentions should have s m > 0. Let \u03a8 + \u2286 X be the set of gold mention candidates, and \u03a8 \u2212 = X \\ \u03a8 + be the set of other mention candidates. We optimize the mention score with the binary cross-entropy loss L m the new gym",
                "cite_spans": [
                    {
                        "start": 273,
                        "end": 290,
                        "text": "(Yu et al., 2020;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 291,
                        "end": 314,
                        "text": "Zaporojets et al., 2021",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Singleton Recognition (SR)",
                "sec_num": "3.2"
            },
            {
                "text": "1.1 He 1.8 Mike 1.3 that building -0.1 food truck 0.6 workout place -0.3 slightly -2.9",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Singleton Recognition (SR)",
                "sec_num": "3.2"
            },
            {
                "text": "Figure 1: Example of the new antecedent selection process that support singletons (Section 3.2). Each arrow indicates the selected antecedent (the dummy antecedent is excluded), and the mention score s m is shown below each mention. Mentions of the same predicted clusters are marked in the same color. Although no antecedent is selected for \"food truck\", it will still be assigned as a singleton cluster because of s m = 0.6 > 0. \"that building\" and \"workout place\" are still assigned to the corresponding cluster even though their s m < 0, to allow some slacks on the mention score prediction. \"slightly\" will not be assigned to any clusters.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Singleton Recognition (SR)",
                "sec_num": "3.2"
            },
            {
                "text": "and joinly train with the coreference loss L c :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Singleton Recognition (SR)",
                "sec_num": "3.2"
            },
            {
                "text": "L m = \u2212 x i \u2208\u03a8 + log \u03c3(s m (x i )) \u2212 x j \u2208\u03a8 \u2212 log(1 \u2212 \u03c3(s m (x j ))) (3) L = L c + \u03b1 m \u2022 L m (4)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Singleton Recognition (SR)",
                "sec_num": "3.2"
            },
            {
                "text": "\u03c3 is the sigmoid function, and \u03b1 m is a hyperparameter. L is the final loss composed of two tasks.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Singleton Recognition (SR)",
                "sec_num": "3.2"
            },
            {
                "text": "In practice, we also perform negative sampling on \u03a8 \u2212 dynamically, so that \u03a8 + and \u03a8 \u2212 are of similar sizes (|\u03a8",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Singleton Recognition (SR)",
                "sec_num": "3.2"
            },
            {
                "text": "+ | \u2248 |\u03a8 \u2212 |)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Singleton Recognition (SR)",
                "sec_num": "3.2"
            },
            {
                "text": ", to alleviate the negative effects from the skewed class distribution.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Singleton Recognition (SR)",
                "sec_num": "3.2"
            },
            {
                "text": "In the new selection process, we still regard the selected non-dummy antecedent y to be valid by y = argmax y \u2208Y i s(x i , y ), even though the mention score of either candidate can be negative (s m (x i ) < 0 or s m (y) < 0). This is to allow certain slacks on the mention score prediction which could help with the mention recall. Figure 1 shows three different cases of the predicted clusters by the SR model.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 333,
                        "end": 341,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Singleton Recognition (SR)",
                "sec_num": "3.2"
            },
            {
                "text": "Our SE model is further adapted upon SR model and aims to strengthen the speaker encoding for each candidate representation. As we are targeting on the coreference resolution in dialogues, encoding speaker interactions becomes more critical, especially for the correct understanding of the speaker-grounded personal pronouns that are more frequent in dialogues than other non-dialogue genres (Akta\u015f and Stede, 2020) .",
                "cite_spans": [
                    {
                        "start": 392,
                        "end": 415,
                        "text": "(Akta\u015f and Stede, 2020)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Speaker Encoding (SE)",
                "sec_num": "3.3"
            },
            {
                "text": "The speaker feature introduced in Section 3.1 provides shallow distinction on whether two mentions are from the same speaker. However, the speaker interactions across dialogue turns are not presented in the document encoding; therefore, the representation of each candidate has no awareness on the speaker interactions at all. To provide deeper knowledge on the interactions, we adopt a simple but effective strategy that is similar to some other work in speaker encoding (Le et al., 2019; Wu et al., 2020) : a special speaker token is prepended to each sentence, and we feed the new speaker-augmented document to the encoder directly. Table 1 shows an example on this speaker augmentation. Each speaker is indexed by the order of the first appearance in the dialogue. All the special speaker tokens are added to the tokenizer vocabulary, and will be picked up in the tokenization and encoding process. Therefore, all encoded candidate representation in the SE model is conditioned on the entire speaker interactions, and automatically learns to fuse the information of speakers and turns in the training process. A special speaker token is assigned to each speaker and prepended to each corresponding sentence.",
                "cite_spans": [
                    {
                        "start": 472,
                        "end": 489,
                        "text": "(Le et al., 2019;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 490,
                        "end": 506,
                        "text": "Wu et al., 2020)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 636,
                        "end": 643,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Speaker Encoding (SE)",
                "sec_num": "3.3"
            },
            {
                "text": "We also emphasize on the knowledge transfer in this task, as the training resources of dialogue corpora annotated in the UA format are limit and expensive to obtain, while there already exist largerscale training corpora for other domains in different annotation schemes, e.g. the OntoNotes dataset in the CoNLL format that mainly consists of nondialogue genres. For clarity, we denote the provided data annotated in the UA format as UAD, and other existing data in non-UA format as OD. We investigate two common ways to make use of OD in the training for SE, denoted as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Knowledge Transfer",
                "sec_num": "3.4"
            },
            {
                "text": "\u2022 SE +M : Mix OD and UAD together as a larger dataset, regarding OD as data augmentation that provides more knowledge.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Knowledge Transfer",
                "sec_num": "3.4"
            },
            {
                "text": "\u2022 SE +P : Pretrain the model on OD first, then further train the model on UAD only, regarding training on UAD as domain adaptation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Knowledge Transfer",
                "sec_num": "3.4"
            },
            {
                "text": "Above two choices are plausible in our approach, because we only use data in the CoNLL format for OD, which is still largely similar to the UA format, despite the difference on the singletons, non-referring expressions, and split-antecedents. Similarly, we denote the model as SR +M/P if the SR model is used instead of SE.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Knowledge Transfer",
                "sec_num": "3.4"
            },
            {
                "text": "For data in the UA format (UAD), we use the AR-RAU corpus (Poesio et al., 2018) from the CRAC 2018/2021 shared task. Four sub-corpora are used as the training set for UAD, namely TRAINS-93, PEAR, RST, GNOME. One sub-corpus named TRAINS-91 is used as one of the development (dev) set. In addition, four other corpora from the CRAC 2021 shared task are also used as the development set as well as the final test set, namely AMI, LIGHT, Persuasion for Good (PSUA), Switchboard (SWBD). All above datasets are of the dialogue domain except for RST and GNOME. Table 2 shows the detailed statistics of all UAD datasets. Note that certain datasets do not provide speaker information, therefore their averaged numbers of speakers per document are shown as 0.",
                "cite_spans": [
                    {
                        "start": 58,
                        "end": 79,
                        "text": "(Poesio et al., 2018)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 554,
                        "end": 561,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Experiments 4.1 Datasets",
                "sec_num": "4"
            },
            {
                "text": "For non-UA format data (OD), we use two datasets in the CoNLL format: OntoNotes (ON) (Pradhan et al., 2012) and BOLT (Li et al., 2016) . OntoNotes consists of documents in six genres, where only two genres \"Telephone Conversation\" and \"Broadcast Conversation\" are of the dialogue domain; we use the same provided train/dev/test split for OntoNotes. BOLT has the same annotation scheme as OntoNotes and consists of documents from discussion forums, instant messages and telephone conversations. We perform a random 80/10/10 split for the train/dev/test set of BOLT. Detailed statistics of both datasets are shown in the bottom of Table 2 .",
                "cite_spans": [
                    {
                        "start": 117,
                        "end": 134,
                        "text": "(Li et al., 2016)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 629,
                        "end": 636,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Experiments 4.1 Datasets",
                "sec_num": "4"
            },
            {
                "text": "We only perform one trivial preprocessing step specific to the training set of UAD datasets: remove all non-referring expressions and regard them as non-mentions, as they will not be counted in the final evaluation (Section 5). In addition, our current approach does not consider split-antecedents, which we will leave as future work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preprocessing",
                "sec_num": "4.2"
            },
            {
                "text": "Our system is based on the PyTorch implementation of the end-to-end coreference resolution model from Xu and Choi (2020), and we follow the similar hyperparameter settings. Specifically, SpanBERT Large (Joshi et al., 2020) is used as the Transformers encoder with maximum sequence length of 512. Long documents are split into multiple sequences, and each sequence is encoded by SpanBERT Large independently, as suggested by (Joshi et al., 2019) . During training, we limit the maximum sequences to be 3 due to the GPU memory constraints, and a long document will be truncated into multiple documents if it exceeds the maximum sequences.",
                "cite_spans": [
                    {
                        "start": 202,
                        "end": 222,
                        "text": "(Joshi et al., 2020)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 424,
                        "end": 444,
                        "text": "(Joshi et al., 2019)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Implementation",
                "sec_num": "4.3"
            },
            {
                "text": "Hyperparameters For all datasets, nested mentions are always enabled. We set the \u03bb = 0.5 and maximum span width to be 30 in the span enumer- 1) . The macro-averaged F1 of MUC, B 3 , and CEAF \u03c64 is the main evaluation metric. Section 3 describes the details of all listed approaches. SE +P +DEV is the setting of our final submission to the CRAC 2021 shared task, where all available development sets are also added in the training process for SE +P (Section 5.1).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 141,
                        "end": 143,
                        "text": "1)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Implementation",
                "sec_num": "4.3"
            },
            {
                "text": "Predicted mentions Baseline MR ( \u00a73.1). The end-to-end coreference resolution model with the SpanBERT encoder (Joshi et al., 2020; Xu and Choi, 2020) is used as the baseline. Approach SE +P +DEV ( \u00a73.4). The final model is built upon baseline with three key adaptations: 1) An updated antecedent selection process is used to support singletons, with an additional optimization on the mention scores. 2) Speaker-augmentation strategy is used to encode the speakers and dialogue-turns. 3) Knowledge transfer is employed that pretrains the model on CoNLL datasets, then further trains on the UA datasets as a domain adaptation step. The final submission includes the dev data into training. Train Data TRAINS-93, PEAR, RST, GNOME, ON, BOLT ( \u00a74.1) Dev Data TRAINS-91, AMI, LIGHT, PSUA, SWBD, ON, BOLT ( \u00a74.1) Table 4 : Summary of our final submission to the CRAC 2021 shared task. Train/Dev Data: all datasets we use for the training set and development set.",
                "cite_spans": [
                    {
                        "start": 110,
                        "end": 130,
                        "text": "(Joshi et al., 2020;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 131,
                        "end": 149,
                        "text": "Xu and Choi, 2020)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 806,
                        "end": 813,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Resolution of anaphoric identities Setting",
                "sec_num": null
            },
            {
                "text": "ation stage, and limit the maximum antecedents to be 50 in the pair scoring process. Adam optimizer is used for the optimization, with the weight decay rate of 10 \u22122 and gradient clipping norm of 1. We employ the learning rate of 1\u00d710 \u22125 for Transformers parameters, and 3 \u00d7 10 \u22124 for task parameters. \u03b1 m = 0.1 is used for Eq (4). In particular, we do not apply any higher-order inferences, as their benefits are shown trivial (Xu and Choi, 2020) .",
                "cite_spans": [
                    {
                        "start": 428,
                        "end": 447,
                        "text": "(Xu and Choi, 2020)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Resolution of anaphoric identities Setting",
                "sec_num": null
            },
            {
                "text": "Training When training UAD or OD alone, we concatenate and mix all its corresponding corpora together as the training data. For SE +M , we concatenate and mix all available training corpora together regardless of UAD or OD. All experiments are conducted on a Nvidia A100 GPU. 20 training epochs are used for all the settings, and the training takes around 1-2 hours for UAD and 3-4 hours for OD.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Resolution of anaphoric identities Setting",
                "sec_num": null
            },
            {
                "text": "In particular, development sets are not added to the training data, except for our final submission to the shared task, where the best-performed model has been identified, then we train the final model with the same setting but adding all development sets in the training (Section 5.1).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Resolution of anaphoric identities Setting",
                "sec_num": null
            },
            {
                "text": "The Universal Anaphora Scorer 1 is used in the official evaluation process. For the task of anaphora resolution, the main evaluation metric is the averaged F1 score of MUC, B 3 and CEAF \u03c6 4 , same as the CoNLL 2012 shared task. Singletons and splitantecedents are included in the evaluation, while non-referring expressions are excluded. Table 3 shows the evaluation results on the test set of four datasets using different approaches. Among all approaches without adding the dev sets into training, SE +P achieves the best results on all four datasets. Another SE +P model is then trained with adding the dev sets as our final submission, dentoed by SE +P +DEV, which further yields the best results, and ranks the 1st place at the \"anaphoric identity\" track in the CRAC 2021 shared task. Table 4 lists the summary of our final submission to the shared task.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 338,
                        "end": 345,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 790,
                        "end": 797,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "One of the main differences between the UA and CoNLL format is that UA supports singletons, as UA annotates all noun phrases. The left side of Table 6 shows the total number and percentage of the singleton clusters on the test set of four datasets. Singletons are indeed prevalent, and all four datasets have at least 73% of their gold clusters as singletons. Therefore, recognizing singletons can become critical for coreference resolution on the UA formatted data.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 143,
                        "end": 150,
                        "text": "Table 6",
                        "ref_id": "TABREF9"
                    }
                ],
                "eq_spans": [],
                "section": "Analysis: Singleton Recognition",
                "sec_num": "5.2"
            },
            {
                "text": "Comparing MR and SR in Table 3 , it is clear that singleton recognition plays a pivotal role in the final performance, with SR outperforming MR by a huge margin of 17-22 Avg F1 on all four datasets. To further examine the performance of SR, we collect the precision/recall of the predicted mentions by different models, as well as the precision/recall of predicted singletons over gold singletons, as 1 https://github.com/juntaoy/universal-anaphora-scorer shown in Table 5 . Compared with MR, all models that support singletons receive huge gains on the mention recall with 26-36% improvement, with relatively small 5-10% degradation on the mention precision. More interestingly, most SR/SE-related models are able to recover the majority of gold singletons on all four datasets, up to 73% recall on LIGHT, demonstrating the effectiveness of the mention score optimization in Eq (3) and the new antecedent selection process. Nevertheless, the best F1 for singletons is still below 67 out of four datasets, suggesting that resolving singletons alone can be a challenging aspect already.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 23,
                        "end": 30,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 465,
                        "end": 472,
                        "text": "Table 5",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Analysis: Singleton Recognition",
                "sec_num": "5.2"
            },
            {
                "text": "Despite the simple strategy of speaker-augmented encoding described in Section 3.3, SE +P shows decent improvement over its counterpart SR +P , with 2-3% enhancement on Avg F1 on all datasets, except for LIGHT that has only trivial improvement, confirming that stronger speaker encoding is indeed important for the dialogue domain.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis: Speaker Encoding",
                "sec_num": "5.3"
            },
            {
                "text": "Meanwhile, SE does not show advantages over SR due to the fact that the current training corpora of all ARRAU datasets do not provide the speakers (Table 2) ; consequently, neither models could learn to use the speaker information, resulting in similar performance. This on the other side also demonstrates the significance of knowledge transfer that utilizes other existing resources.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 147,
                        "end": 156,
                        "text": "(Table 2)",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Analysis: Speaker Encoding",
                "sec_num": "5.3"
            },
            {
                "text": "Comparing the two knowledge transfer strategies, the pretraining paradigm SE +P performs significantly better than the mixing paradigm SE +M . In fact, while the pretraining brings improvement over SE, the mixing paradigm even performs worse than without knowledge transfer, likely because of the domain mismatch and the annotation format mismatch, showing that the pretraining strategy should always be preferred in this case.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis: Knowledge Transfer",
                "sec_num": "5.4"
            },
            {
                "text": "The impact of the pretraining on OD can be dataset-specific, as shown by Table 3 . SE +P is able to boost performance upon SE by a good margin on AMI/SWBD with 0.5/2.6 F1 respectively, while LIGHT/PSUA can benefit significantly, with 6.7/8.1 F1 improvement. Encouraged by the results, we suggest to further explore the utilization of existing resources as a future direction.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 73,
                        "end": 80,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Analysis: Knowledge Transfer",
                "sec_num": "5.4"
            },
            {
                "text": "In this work, we present an adapted end-to-end coreference resolution system for anaphoric identities in dialogues, specifically addressing three aspects: the support for singletons, stronger speaker and turn encoding through the dialogue interactions, as well as the knowledge transfer utilizing other existing resources. Our final system achieves the best results on all four datasets on the leaderboard of the CRAC 2021 shared task, and further analysis is performed to show the effectiveness of our proposed adaptation strategies.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Variation in coreference strategies across genres and production media",
                "authors": [
                    {
                        "first": "Berfin",
                        "middle": [],
                        "last": "Akta\u015f",
                        "suffix": ""
                    },
                    {
                        "first": "Manfred",
                        "middle": [],
                        "last": "Stede",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 28th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "5774--5785",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.coling-main.508"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Berfin Akta\u015f and Manfred Stede. 2020. Variation in coreference strategies across genres and produc- tion media. In Proceedings of the 28th Inter- national Conference on Computational Linguistics, pages 5774-5785, Barcelona, Spain (Online). Inter- national Committee on Computational Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Entity-centric coreference resolution with model stacking",
                "authors": [
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Christopher",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
                "volume": "1",
                "issue": "",
                "pages": "1405--1415",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/P15-1136"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kevin Clark and Christopher D. Manning. 2015. Entity-centric coreference resolution with model stacking. In Proceedings of the 53rd Annual Meet- ing of the Association for Computational Linguistics and the 7th International Joint Conference on Natu- ral Language Processing (Volume 1: Long Papers), pages 1405-1415, Beijing, China. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Improving coreference resolution by learning entitylevel distributed representations",
                "authors": [
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Christopher",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "643--653",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P16-1061"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kevin Clark and Christopher D. Manning. 2016. Im- proving coreference resolution by learning entity- level distributed representations. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 643-653, Berlin, Germany. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Spanbert: Improving pre-training by representing and predicting spans",
                "authors": [
                    {
                        "first": "Mandar",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Danqi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Yinhan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [
                            "S"
                        ],
                        "last": "Weld",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "8",
                "issue": "",
                "pages": "64--77",
                "other_ids": {
                    "DOI": [
                        "10.1162/tacl_a_00300"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and Omer Levy. 2020. Spanbert: Improving pre-training by representing and predicting spans. Transactions of the Associa- tion for Computational Linguistics, 8:64-77.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "BERT for coreference resolution: Baselines and analysis",
                "authors": [
                    {
                        "first": "Mandar",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Weld",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "5803--5808",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1588"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mandar Joshi, Omer Levy, Luke Zettlemoyer, and Daniel Weld. 2019. BERT for coreference reso- lution: Baselines and analysis. In Proceedings of the 2019 Conference on Empirical Methods in Nat- ural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5803-5808, Hong Kong, China. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "The codi-crac 2021 shared task on anaphora, bridging, and discourse deixis in dialogue",
                "authors": [
                    {
                        "first": "Sopan",
                        "middle": [],
                        "last": "Khosla",
                        "suffix": ""
                    },
                    {
                        "first": "Juntao",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Ramesh",
                        "middle": [],
                        "last": "Manuvinakurike",
                        "suffix": ""
                    },
                    {
                        "first": "Vincent",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "Massimo",
                        "middle": [],
                        "last": "Poesio",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Strube",
                        "suffix": ""
                    },
                    {
                        "first": "Carolyn",
                        "middle": [],
                        "last": "Ros\u00e9",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the CODI-CRAC 2021",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sopan Khosla, Juntao Yu, Ramesh Manuvinakurike, Vincent Ng, Massimo Poesio, Michael Strube, and Carolyn Ros\u00e9. 2021. The codi-crac 2021 shared task on anaphora, bridging, and discourse deixis in dialogue. In Proceedings of the CODI-CRAC 2021",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Shared Task on Anaphora, Bridging, and Discourse Deixis in Dialogue",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shared Task on Anaphora, Bridging, and Discourse Deixis in Dialogue. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Who is speaking to whom? learning to identify utterance addressee in multi-party conversations",
                "authors": [
                    {
                        "first": "Ran",
                        "middle": [],
                        "last": "Le",
                        "suffix": ""
                    },
                    {
                        "first": "Wenpeng",
                        "middle": [],
                        "last": "Hu",
                        "suffix": ""
                    },
                    {
                        "first": "Mingyue",
                        "middle": [],
                        "last": "Shang",
                        "suffix": ""
                    },
                    {
                        "first": "Zhenjun",
                        "middle": [],
                        "last": "You",
                        "suffix": ""
                    },
                    {
                        "first": "Lidong",
                        "middle": [],
                        "last": "Bing",
                        "suffix": ""
                    },
                    {
                        "first": "Dongyan",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Rui",
                        "middle": [],
                        "last": "Yan",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "1909--1919",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1199"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ran Le, Wenpeng Hu, Mingyue Shang, Zhenjun You, Lidong Bing, Dongyan Zhao, and Rui Yan. 2019. Who is speaking to whom? learning to identify ut- terance addressee in multi-party conversations. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 1909- 1919, Hong Kong, China. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "End-to-end neural coreference resolution",
                "authors": [
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Luheng",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "188--197",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D17-1018"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle- moyer. 2017. End-to-end neural coreference reso- lution. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 188-197, Copenhagen, Denmark. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Higher-order coreference resolution with coarse-tofine inference",
                "authors": [
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Luheng",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "2",
                "issue": "",
                "pages": "687--692",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N18-2108"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018. Higher-order coreference resolution with coarse-to- fine inference. In Proceedings of the 2018 Confer- ence of the North American Chapter of the Associ- ation for Computational Linguistics: Human Lan- guage Technologies, Volume 2 (Short Papers), pages 687-692, New Orleans, Louisiana. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Large multi-lingual, multi-level and multigenre annotation corpus",
                "authors": [
                    {
                        "first": "Xuansong",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Martha",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    },
                    {
                        "first": "Nianwen",
                        "middle": [],
                        "last": "Xue",
                        "suffix": ""
                    },
                    {
                        "first": "Lance",
                        "middle": [],
                        "last": "Ramshaw",
                        "suffix": ""
                    },
                    {
                        "first": "Mohamed",
                        "middle": [],
                        "last": "Maamouri",
                        "suffix": ""
                    },
                    {
                        "first": "Ann",
                        "middle": [],
                        "last": "Bies",
                        "suffix": ""
                    },
                    {
                        "first": "Kathryn",
                        "middle": [],
                        "last": "Conger",
                        "suffix": ""
                    },
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Grimes",
                        "suffix": ""
                    },
                    {
                        "first": "Stephanie",
                        "middle": [],
                        "last": "Strassel",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)",
                "volume": "",
                "issue": "",
                "pages": "906--913",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xuansong Li, Martha Palmer, Nianwen Xue, Lance Ramshaw, Mohamed Maamouri, Ann Bies, Kathryn Conger, Stephen Grimes, and Stephanie Strassel. 2016. Large multi-lingual, multi-level and multi- genre annotation corpus. In Proceedings of the Tenth International Conference on Language Re- sources and Evaluation (LREC'16), pages 906-913, Portoro\u017e, Slovenia. European Language Resources Association (ELRA).",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Improving coreference resolution by using conversational metadata",
                "authors": [
                    {
                        "first": "Xiaoqiang",
                        "middle": [],
                        "last": "Luo",
                        "suffix": ""
                    },
                    {
                        "first": "Radu",
                        "middle": [],
                        "last": "Florian",
                        "suffix": ""
                    },
                    {
                        "first": "Todd",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Short Papers",
                "volume": "",
                "issue": "",
                "pages": "201--204",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiaoqiang Luo, Radu Florian, and Todd Ward. 2009. Improving coreference resolution by using conver- sational metadata. In Proceedings of Human Lan- guage Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Short Papers, pages 201-204, Boulder, Colorado. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Anaphora resolution with the ARRAU corpus",
                "authors": [
                    {
                        "first": "Massimo",
                        "middle": [],
                        "last": "Poesio",
                        "suffix": ""
                    },
                    {
                        "first": "Yulia",
                        "middle": [],
                        "last": "Grishina",
                        "suffix": ""
                    },
                    {
                        "first": "Varada",
                        "middle": [],
                        "last": "Kolhatkar",
                        "suffix": ""
                    },
                    {
                        "first": "Nafise",
                        "middle": [],
                        "last": "Moosavi",
                        "suffix": ""
                    },
                    {
                        "first": "Ina",
                        "middle": [],
                        "last": "Roesiger",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Roussel",
                        "suffix": ""
                    },
                    {
                        "first": "Fabian",
                        "middle": [],
                        "last": "Simonjetz",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Uma",
                        "suffix": ""
                    },
                    {
                        "first": "Olga",
                        "middle": [],
                        "last": "Uryupina",
                        "suffix": ""
                    },
                    {
                        "first": "Juntao",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Heike",
                        "middle": [],
                        "last": "Zinsmeister",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the First Workshop on Computational Models of Reference, Anaphora and Coreference",
                "volume": "",
                "issue": "",
                "pages": "11--22",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W18-0702"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Massimo Poesio, Yulia Grishina, Varada Kolhatkar, Nafise Moosavi, Ina Roesiger, Adam Roussel, Fabian Simonjetz, Alexandra Uma, Olga Uryupina, Juntao Yu, and Heike Zinsmeister. 2018. Anaphora resolution with the ARRAU corpus. In Proceedings of the First Workshop on Computational Models of Reference, Anaphora and Coreference, pages 11-22, New Orleans, Louisiana. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "CoNLL-2012 shared task: Modeling multilingual unrestricted coreference in OntoNotes",
                "authors": [
                    {
                        "first": "Alessandro",
                        "middle": [],
                        "last": "Sameer Pradhan",
                        "suffix": ""
                    },
                    {
                        "first": "Nianwen",
                        "middle": [],
                        "last": "Moschitti",
                        "suffix": ""
                    },
                    {
                        "first": "Olga",
                        "middle": [],
                        "last": "Xue",
                        "suffix": ""
                    },
                    {
                        "first": "Yuchen",
                        "middle": [],
                        "last": "Uryupina",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Joint Conference on EMNLP and CoNLL -Shared Task",
                "volume": "",
                "issue": "",
                "pages": "1--40",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Olga Uryupina, and Yuchen Zhang. 2012. CoNLL- 2012 shared task: Modeling multilingual unre- stricted coreference in OntoNotes. In Joint Confer- ence on EMNLP and CoNLL -Shared Task, pages 1-40, Jeju Island, Korea. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Learning anaphoricity and antecedent ranking features for coreference resolution",
                "authors": [
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Wiseman",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [
                            "M"
                        ],
                        "last": "Rush",
                        "suffix": ""
                    },
                    {
                        "first": "Stuart",
                        "middle": [],
                        "last": "Shieber",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Weston",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
                "volume": "1",
                "issue": "",
                "pages": "1416--1426",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/P15-1137"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sam Wiseman, Alexander M. Rush, Stuart Shieber, and Jason Weston. 2015. Learning anaphoricity and an- tecedent ranking features for coreference resolution. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Lan- guage Processing (Volume 1: Long Papers), pages 1416-1426, Beijing, China. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "CorefQA: Coreference resolution as query-based span prediction",
                "authors": [
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Fei",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Arianna",
                        "middle": [],
                        "last": "Yuan",
                        "suffix": ""
                    },
                    {
                        "first": "Fei",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Jiwei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "6953--6963",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.622"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Wei Wu, Fei Wang, Arianna Yuan, Fei Wu, and Ji- wei Li. 2020. CorefQA: Coreference resolution as query-based span prediction. In Proceedings of the 58th Annual Meeting of the Association for Compu- tational Linguistics, pages 6953-6963, Online. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Incremental neural coreference resolution in constant memory",
                "authors": [
                    {
                        "first": "Patrick",
                        "middle": [],
                        "last": "Xia",
                        "suffix": ""
                    },
                    {
                        "first": "Jo\u00e3o",
                        "middle": [],
                        "last": "Sedoc",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Van Durme",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "8617--8624",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Patrick Xia, Jo\u00e3o Sedoc, and Benjamin Van Durme. 2020. Incremental neural coreference resolution in constant memory. In Proceedings of the 2020 Con- ference on Empirical Methods in Natural Language Processing (EMNLP), pages 8617-8624, Online. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Revealing the myth of higher-order inference in coreference resolution",
                "authors": [
                    {
                        "first": "Liyan",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Jinho",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "8527--8533",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Liyan Xu and Jinho D. Choi. 2020. Revealing the myth of higher-order inference in coreference resolution. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 8527-8533, Online. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "A cluster ranking model for full anaphora resolution",
                "authors": [
                    {
                        "first": "Juntao",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Uma",
                        "suffix": ""
                    },
                    {
                        "first": "Massimo",
                        "middle": [],
                        "last": "Poesio",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of The 12th Language Resources and Evaluation Conference",
                "volume": "",
                "issue": "",
                "pages": "11--20",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Juntao Yu, Alexandra Uma, and Massimo Poesio. 2020. A cluster ranking model for full anaphora resolution. In Proceedings of The 12th Language Resources and Evaluation Conference, pages 11-20, Marseille, France. European Language Resources Association.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Dwie: An entity-centric dataset for multi-task document-level information extraction",
                "authors": [
                    {
                        "first": "Klim",
                        "middle": [],
                        "last": "Zaporojets",
                        "suffix": ""
                    },
                    {
                        "first": "Johannes",
                        "middle": [],
                        "last": "Deleu",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Develder",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Demeester",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Information Processing & Management",
                "volume": "58",
                "issue": "4",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Klim Zaporojets, Johannes Deleu, Chris Develder, and Thomas Demeester. 2021. Dwie: An entity-centric dataset for multi-task document-level information extraction. Information Processing & Management, 58(4):102563.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "They exist! introducing plural mentions to coreference resolution and entity linking",
                "authors": [
                    {
                        "first": "Ethan",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Jinho",
                        "middle": [
                            "D"
                        ],
                        "last": "Choi",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 27th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "24--34",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ethan Zhou and Jinho D. Choi. 2018. They exist! in- troducing plural mentions to coreference resolution and entity linking. In Proceedings of the 27th Inter- national Conference on Computational Linguistics, pages 24-34, Santa Fe, New Mexico, USA. Associ- ation for Computational Linguistics.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF0": {
                "num": null,
                "html": null,
                "content": "<table><tr><td>John: Do you know Mike?</td></tr><tr><td>Mary: He is my best friend!</td></tr><tr><td>Paul: I like him too!</td></tr><tr><td>Mary: We should meet together!</td></tr><tr><td>[SPK1]</td></tr></table>",
                "text": "Do you know Mike ? [SPK2] He is my best friend ! [SPK3] I like him too ! [SPK2] We should meet together !",
                "type_str": "table"
            },
            "TABREF1": {
                "num": null,
                "html": null,
                "content": "<table/>",
                "text": "Example for the speaker-augmented encoding.",
                "type_str": "table"
            },
            "TABREF3": {
                "num": null,
                "html": null,
                "content": "<table/>",
                "text": "",
                "type_str": "table"
            },
            "TABREF5": {
                "num": null,
                "html": null,
                "content": "<table/>",
                "text": "",
                "type_str": "table"
            },
            "TABREF6": {
                "num": null,
                "html": null,
                "content": "<table><tr><td/><td/><td>Mentions</td><td/><td colspan=\"2\">Singletons</td></tr><tr><td/><td>P</td><td>R</td><td>F</td><td>P</td><td>R</td><td>F</td></tr><tr><td>MR</td><td colspan=\"3\">90.3 40.6 56.1</td><td>-</td><td>-</td><td>-</td></tr><tr><td>SR</td><td colspan=\"3\">84.7 76.4 80.3</td><td colspan=\"3\">44.7 54.8 49.2</td></tr><tr><td colspan=\"4\">SR +P 83.1 74.3 78.5</td><td colspan=\"3\">42.8 54.0 47.8</td></tr><tr><td>SE</td><td colspan=\"3\">83.4 77.7 80.4</td><td colspan=\"3\">43.1 55.9 48.7</td></tr><tr><td colspan=\"4\">SE +M 81.5 69.5 75.0</td><td colspan=\"3\">29.8 35.7 32.5</td></tr><tr><td colspan=\"4\">SE +P 84.1 77.9 80.9</td><td colspan=\"3\">45.8 53.5 49.4</td></tr><tr><td/><td colspan=\"4\">(a) Statistics on the test set of AMI.</td><td/></tr><tr><td/><td/><td>Mentions</td><td/><td colspan=\"2\">Singletons</td></tr><tr><td/><td>P</td><td>R</td><td>F</td><td>P</td><td>R</td><td>F</td></tr><tr><td>MR</td><td colspan=\"3\">97.1 60.0 74.2</td><td>-</td><td>-</td><td>-</td></tr><tr><td>SR</td><td colspan=\"3\">87.7 86.8 87.2</td><td colspan=\"3\">56.3 72.1 63.2</td></tr><tr><td colspan=\"4\">SR +P 90.1 89.4 89.7</td><td colspan=\"3\">65.1 68.3 66.6</td></tr><tr><td>SE</td><td colspan=\"3\">87.6 86.3 87.0</td><td colspan=\"3\">55.0 73.6 62.9</td></tr><tr><td colspan=\"4\">SE +M 91.4 71.7 80.3</td><td colspan=\"3\">43.1 23.9 30.8</td></tr><tr><td colspan=\"4\">SE +P 90.0 89.6 89.8</td><td colspan=\"3\">62.1 68.4 65.1</td></tr><tr><td/><td colspan=\"5\">(b) Statistics on the test set of LIGHT.</td></tr><tr><td/><td/><td>Mentions</td><td/><td colspan=\"2\">Singletons</td></tr><tr><td/><td>P</td><td>R</td><td>F</td><td>P</td><td>R</td><td>F</td></tr><tr><td>MR</td><td colspan=\"3\">94.9 56.8 71.1</td><td>-</td><td>-</td><td>-</td></tr><tr><td>SR</td><td colspan=\"3\">89.5 85.4 87.4</td><td colspan=\"3\">66.2 55.4 60.3</td></tr><tr><td colspan=\"4\">SR +P 91.8 86.4 89.0</td><td colspan=\"3\">74.3 51.5 60.8</td></tr><tr><td>SE</td><td colspan=\"3\">88.8 86.0 87.4</td><td colspan=\"3\">64.6 57.2 60.7</td></tr><tr><td colspan=\"4\">SE +M 90.5 69.9 78.9</td><td colspan=\"3\">53.6 26.0 35.1</td></tr><tr><td colspan=\"4\">SE +P 91.9 87.4 89.6</td><td colspan=\"3\">74.8 54.4 63.0</td></tr><tr><td colspan=\"3\">(c) Mentions</td><td/><td colspan=\"2\">Singletons</td></tr><tr><td/><td>P</td><td>R</td><td>F</td><td>P</td><td>R</td><td>F</td></tr><tr><td>MR</td><td colspan=\"3\">92.0 54.0 68.1</td><td>-</td><td>-</td><td>-</td></tr><tr><td>SR</td><td colspan=\"3\">85.7 80.1 82.8</td><td colspan=\"3\">54.0 51.8 52.9</td></tr><tr><td colspan=\"4\">SR +P 86.3 80.3 83.2</td><td colspan=\"3\">52.9 50.5 51.7</td></tr><tr><td>SE</td><td colspan=\"3\">85.0 80.6 82.7</td><td colspan=\"3\">53.3 54.0 53.7</td></tr><tr><td colspan=\"4\">SE +M 86.3 68.9 76.6</td><td colspan=\"3\">39.2 31.7 35.1</td></tr><tr><td colspan=\"4\">SE +P 87.4 81.0 84.1</td><td colspan=\"3\">56.9 50.5 53.5</td></tr><tr><td>(d)</td><td/><td/><td/><td/><td/></tr></table>",
                "text": "Statistics on the test set of Persuasion for Good (PSUA). Statistics on the test set of Switchboard (SWBD).",
                "type_str": "table"
            },
            "TABREF7": {
                "num": null,
                "html": null,
                "content": "<table/>",
                "text": "Statistics of different approaches on the test set of four datasets. The left side shows the Precision/Recall/F1 (P/R/F) of the predicted mentions over gold mentions, and the right side shows the predicted singletons over gold singletons.",
                "type_str": "table"
            },
            "TABREF9": {
                "num": null,
                "html": null,
                "content": "<table/>",
                "text": "Statistics on the test set of all four datasets. #AC: total number of all clusters. #SC: total number of singleton clusters, with the corresponding percentage indicated inside parentheses. #AM: total number of all mentions. #PM: total number of personal pronoun mentions, with the percentage inside parentheses. All statistics exclude non-referring expressions.",
                "type_str": "table"
            }
        }
    }
}