ACL-OCL / Base_JSON /prefixC /json /ccl /2020.ccl-1.33.json
Benjamin Aw
Add updated pkl file v3
6fa4bc9
{
"paper_id": "2020",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T12:54:49.205777Z"
},
"title": "Review of Entity Relation Extraction based on deep learning",
"authors": [
{
"first": "\u590f",
"middle": [
"\u590f"
],
"last": "\u590f\u632f \u632f \u632f\u6d9b",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Nanjing Normal University",
"location": {
"postCode": "210023",
"settlement": "Nanjing",
"region": "Jiangsu",
"country": "China"
}
},
"email": ""
},
{
"first": "\u66f2",
"middle": [],
"last": "\u66f2\u7ef4 \u7ef4 \u7ef4\u5149",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Nanjing Normal University",
"location": {
"postCode": "210023",
"settlement": "Nanjing",
"region": "Jiangsu",
"country": "China"
}
},
"email": ""
},
{
"first": "\u987e",
"middle": [
"\u987e"
],
"last": "\u987e\u5f66 \u5f66 \u5f66\u6167",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Nanjing Normal University",
"location": {
"postCode": "210023",
"settlement": "Nanjing",
"region": "Jiangsu",
"country": "China"
}
},
"email": ""
},
{
"first": "\u5468",
"middle": [
"\u5468"
],
"last": "\u5468\u4fca \u4fca \u4fca\u751f",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Nanjing Normal University",
"location": {
"postCode": "210023",
"settlement": "Nanjing",
"region": "Jiangsu",
"country": "China"
}
},
"email": ""
},
{
"first": "\u674e",
"middle": [
"\u674e"
],
"last": "\u674e\u658c",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Nanjing Normal University",
"location": {
"postCode": "210097",
"settlement": "Nanjing",
"region": "Jiangsu",
"country": "China"
}
},
"email": ""
},
{
"first": "Xia",
"middle": [],
"last": "Zhentao",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Nanjing Normal University",
"location": {
"postCode": "210023",
"settlement": "Nanjing",
"region": "Jiangsu",
"country": "China"
}
},
"email": ""
},
{
"first": "Q",
"middle": [
"U"
],
"last": "Weiguang",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Nanjing Normal University",
"location": {
"postCode": "210023",
"settlement": "Nanjing",
"region": "Jiangsu",
"country": "China"
}
},
"email": ""
},
{
"first": "G",
"middle": [
"U"
],
"last": "Yanhui",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Nanjing Normal University",
"location": {
"postCode": "210023",
"settlement": "Nanjing",
"region": "Jiangsu",
"country": "China"
}
},
"email": ""
},
{
"first": "Zhou",
"middle": [],
"last": "Junsheng",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Nanjing Normal University",
"location": {
"postCode": "210023",
"settlement": "Nanjing",
"region": "Jiangsu",
"country": "China"
}
},
"email": ""
},
{
"first": "L",
"middle": [
"I"
],
"last": "Bin",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Nanjing Normal University",
"location": {
"postCode": "210097",
"settlement": "Nanjing",
"region": "Jiangsu",
"country": "China"
}
},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "As a core task of Information Extraction, Entity Relation Extraction plays an important role in many Natural Language Processing applications such as knowledge graph, intelligent question answering system and semantic search. Relation extraction tasks aim to find the semantic relation between a pair of entity mentions from unstructured texts. This paper focuses on the sentence-level relation extraction, introduces the main datasets for this task, and expounds the current status of relation extraction technology which can be divided into: supervised relation extraction, distant supervision relation extraction and joint extraction of entities and relations. We compare the various models for this task and analyze their contributions and defects. Finally, the research status and methods of Chinese entity relation extraction are introduced.",
"pdf_parse": {
"paper_id": "2020",
"_pdf_hash": "",
"abstract": [
{
"text": "As a core task of Information Extraction, Entity Relation Extraction plays an important role in many Natural Language Processing applications such as knowledge graph, intelligent question answering system and semantic search. Relation extraction tasks aim to find the semantic relation between a pair of entity mentions from unstructured texts. This paper focuses on the sentence-level relation extraction, introduces the main datasets for this task, and expounds the current status of relation extraction technology which can be divided into: supervised relation extraction, distant supervision relation extraction and joint extraction of entities and relations. We compare the various models for this task and analyze their contributions and defects. Finally, the research status and methods of Chinese entity relation extraction are introduced.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "1 \u5f15 \u5f15 \u5f15\u8a00 \u8a00 \u8a00 \u4fe1\u606f\u62bd\u53d6\u662f\u81ea\u7136\u8bed\u8a00\u5904\u7406\u7684\u4e00\u9879\u91cd\u8981\u4efb\u52a1\uff0c\u5b83\u7684\u57fa\u672c\u76ee\u7684\u4e4b\u4e00\u662f\u4ece\u539f\u59cb\u7684\u975e\u7ed3\u6784\u5316\u6587\u672c\u4e2d \u63d0\u53d6\u6709\u610f\u4e49\u7684\u7ed3\u6784\u5316\u4fe1\u606f\uff0c\u4ee5\u7528\u4e8e\u667a\u80fd\u95ee\u7b54\u3001\u68c0\u7d22\u7b49\u81ea\u7136\u8bed\u8a00\u5904\u7406\u5e94\u7528\u3002\u4fe1\u606f\u62bd\u53d6\u672c\u8eab\u662f\u4e00\u9879 \u5e9e\u5927\u7684\u4efb\u52a1\uff0c\u5305\u62ec\u547d\u540d\u5b9e\u4f53\u8bc6\u522b\u3001\u5173\u7cfb\u62bd\u53d6\u3001\u4e8b\u4ef6\u62bd\u53d6\u7b49\u5b50\u4efb\u52a1\u3002\u672c\u6587\uff0c\u6211\u4eec\u805a\u7126\u5173\u7cfb\u62bd\u53d6\u4efb \u52a1\u3002 \u672c \u6587 \u5c06 \u5173 \u7cfb \u5b9a \u4e49 \u4e3a \u4e24 \u4e2a \u6216 \u591a \u4e2a \u5b9e \u4f53 \u4e4b \u95f4 \u7684 \u67d0 \u79cd \u8054 \u7cfb \uff0c \u5173 \u7cfb \u62bd \u53d6 \u5c31 \u662f \u81ea \u52a8 \u8bc6 \u522b \u5b9e \u4f53 \u4e4b \u95f4 \u5177 \u6709 \u7684 \u67d0 \u79cd \u8bed \u4e49 \u5173 \u7cfb \u3002 \u672c \u6587 \u6240 \u7814 \u7a76 \u7684 \u662f \u4e8c \u5143 \u5173 \u7cfb \u62bd \u53d6 \uff0c \u5173 \u6ce8 \u4e24 \u4e2a \u5b9e \u4f53 \u4e4b \u95f4 \u7684 \u8bed \u4e49 \u5173",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "\u5305\u542b10717\u4e2a\u6837\u672c\uff0c\u5176 \u4e2d8000\u4e2a\u7528\u4e8e\u8bad\u7ec3\uff0c2717\u4e2a\u7528\u4e8e\u6d4b\u8bd5\u3002\u6570\u636e\u96c6\u4e2d\u5305\u542b9\u79cd\u6709\u5e8f\u5173\u7cfb\u7c7b\u578b\u3002\u5173\u7cfb\u7684\u65b9\u5411\u6027\u5b9e\u9645\u4e0a\u4f7f \u5173\u7cfb\u7684\u6570\u91cf\u52a0\u500d\uff0c\u56e0\u4e3a\u53ea\u6709\u5728\u987a\u5e8f\u4e5f\u662f\u6b63\u786e\u7684\u60c5\u51b5\u4e0b\uff0c\u624d\u8ba4\u4e3a\u5b9e\u4f53\u5bf9\u88ab\u6b63\u786e\u6807\u8bb0\u3002\u6700\u7ec8\u6570\u636e\u96c6 \u670919\u79cd\u5173\u7cfb\u7c7b\u522b(\u5176\u4ed6\u7c7b\u578b\u4e3a2*9+1\u79cd)\u3002 2.2 \u8fdc \u8fdc \u8fdc\u7a0b \u7a0b \u7a0b\u76d1 \u76d1 \u76d1\u7763 \u7763 \u7763\u6570 \u6570 \u6570\u636e \u636e \u636e\u96c6 \u96c6 \u96c6 \u4e3a\u4e86\u907f\u514d\u624b\u5de5\u6784\u5efa\u7528\u4e8e\u5173\u7cfb\u62bd\u53d6\u6570\u636e\u96c6\u7684\u7e41\u91cd\u4efb\u52a1\uff0c\u8fdc\u7a0b\u76d1\u7763\u65b9\u6cd5 (Mintz et al., 2009) \u5c06 \u6587\u6863\u4e0e\u5df2\u77e5\u7684\u77e5\u8bc6\u5e93\u5bf9\u9f50\uff0c\u7528\u4e8e\u81ea\u52a8\u751f\u6210\u5927\u91cf\u8bad\u7ec3\u6570\u636e\u3002\u8fd9\u79cd\u65b9\u6cd5\u57fa\u4e8e\u8ddd\u79bb\u76d1\u7763\u5047\u8bbe\uff1a\u5982\u679c\u77e5 \u8bc6\u5e93\u4e2d\u7684\u5b9e\u4f53\u5bf9\u4e4b\u95f4\u5b58\u5728\u5173\u7cfb\uff0c\u90a3\u4e48\u6bcf\u4e2a\u5305\u542b\u8be5\u5b9e\u4f53\u5bf9\u7684\u6587\u6863\u90fd\u4f1a\u8868\u8fbe\u8be5\u5173\u7cfb\u3002\u4e0b\u9762\u4ecb\u7ecd\u7684\u6570 \u636e\u96c6\u662f\u57fa\u4e8e\u8fdc\u7a0b\u76d1\u7763\u65b9\u6cd5\u6784\u9020\u7684\u3002 New York Time(NYT)\u6570 \u6570 \u6570\u636e \u636e \u636e\u96c6 \u96c6 \u96c6\uff1a \uff1a \uff1a \u8fdc\u7a0b\u76d1\u7763\u5047\u8bbe\u662f\u4e00\u4e2a\u5f3a\u5047\u8bbe\u5e76\u4e14\u4f1a\u5bfc\u81f4\u9519\u8bef\u6807\u7b7e\u95ee\u9898\uff0c\u5373 \u63d0\u5230\u4e24\u4e2a\u5b9e\u4f53\u7684\u53e5\u5b50\u4e0d\u4e00\u5b9a\u8868\u8fbe\u4ed6\u4eec\u5728\u77e5\u8bc6\u5e93\u4e2d\u7684\u5173\u7cfb\u3002\u4e3a\u4e86\u7f13\u89e3\u8fd9\u4e00\u95ee\u9898\uff0c\u964d\u4f4e\u566a\u58f0\uff0c\u53ef \u4ee5\u5c06\u95ee\u9898\u5efa\u6a21\u4e3a\u4e00\u4e2a\u591a\u793a\u4f8b\u5b66\u4e60\u95ee\u9898\uff0c\u653e\u5bbd\u8fdc\u7a0b\u76d1\u7763\u5047\u8bbe (Riedel et al., 2010) (Collobert et al., 2008; Mikolov et al., 2013(a) ; Pennington et al., 2014; Mikolov et al., 2013(b) (Socher et al., 2012) ",
"cite_spans": [
{
"start": 165,
"end": 215,
"text": "\u4e3a\u4e86\u907f\u514d\u624b\u5de5\u6784\u5efa\u7528\u4e8e\u5173\u7cfb\u62bd\u53d6\u6570\u636e\u96c6\u7684\u7e41\u91cd\u4efb\u52a1\uff0c\u8fdc\u7a0b\u76d1\u7763\u65b9\u6cd5 (Mintz et al., 2009)",
"ref_id": null
},
{
"start": 450,
"end": 471,
"text": "(Riedel et al., 2010)",
"ref_id": "BIBREF37"
},
{
"start": 472,
"end": 496,
"text": "(Collobert et al., 2008;",
"ref_id": "BIBREF4"
},
{
"start": 497,
"end": 520,
"text": "Mikolov et al., 2013(a)",
"ref_id": null
},
{
"start": 523,
"end": 547,
"text": "Pennington et al., 2014;",
"ref_id": "BIBREF36"
},
{
"start": 548,
"end": 571,
"text": "Mikolov et al., 2013(b)",
"ref_id": null
},
{
"start": 572,
"end": 593,
"text": "(Socher et al., 2012)",
"ref_id": "BIBREF40"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "\u6211\u4eec\u5728\u540e\u7eed\u7ae0\u8282 \u8be6\u7ec6\u4ecb\u7ecd\u591a\u793a\u4f8b\u5b66\u4e60\u65b9\u6cd5\u3002\u8be5\u6570\u636e\u96c6\u901a\u8fc7\u5c06Freebase\u4e0e\u7ebd\u7ea6\u65f6\u62a5\u8bed\u6599\u5e93(NYT)\u7684\u5173\u7cfb\u5bf9\u9f50\u800c\u5f62 \u6210\u3002\u6570\u636e\u96c6\u5305\u542b53\u79cd\u53ef\u80fd\u7684\u5173\u7cfb\u7c7b\u522b\uff0c\u5305\u62ec\u4e00\u4e2a\u7279\u6b8a\u7684\u5173\u7cfb\u7c7b\u522bNA(\u8868\u793a\u5b9e\u4f53\u4e4b\u95f4\u6ca1\u6709\u5173\u7cfb)\u3002 \u8bad\u7ec3\u6570\u636e\u5305\u542b522611\u4e2a\u53e5\u5b50\uff0c281270\u4e2a\u5b9e\u4f53\u5bf9\u548c18252\u4e2a\u5173\u7cfb\u3002 3 \u6709 \u6709 \u6709\u76d1 \u76d1 \u76d1\u7763 \u7763 \u7763\u7684 \u7684 \u7684\u5173 \u5173 \u5173\u7cfb \u7cfb \u7cfb\u62bd \u62bd \u62bd\u53d6 \u53d6 \u53d6\u65b9 \u65b9 \u65b9\u6cd5 \u6cd5 \u6cd5\u7814 \u7814 \u7814\u7a76 \u7a76 \u7a76 \u6709\u76d1\u7763\u7684\u5173\u7cfb\u62bd\u53d6\u65b9\u6cd5\u88ab\u8ba4\u4e3a\u662f\u4e00\u4e2a\u591a\u5206\u7c7b\u95ee\u9898\uff0c\u901a\u5e38\u5206\u4e3a\u57fa\u4e8e\u7279\u5f81\u5de5\u7a0b\u7684\u65b9\u6cd5\u3001\u57fa\u4e8e\u6838 \u51fd\u6570\u7684\u65b9\u6cd5\u548c\u57fa\u4e8e\u795e\u7ecf\u7f51\u7edc\u7684\u65b9\u6cd5\u3002\u57fa\u4e8e\u7279\u5f81\u5de5\u7a0b\u5de5\u7a0b\u65b9\u6cd5\uff0c\u8bb8\u591a\u7814\u7a76\u7684\u4e3b\u8981\u5de5\u4f5c\u662f\u5982\u4f55\u80fd\u62bd \u53d6\u590d\u6742\u7684\u7279\u5f81\u3002\u57fa\u4e8e\u6838\u51fd\u6570\u7684\u65b9\u6cd5\uff0c\u76f4\u63a5\u4ee5\u539f\u59cb\u5b57\u7b26\u4e32\u4f5c\u4e3a\u5904\u7406\u5bf9\u8c61\uff0c\u8ba1\u7b97\u4e24\u4e2a\u5bf9\u8c61\u7684\u6838\u51fd \u6570\u3002\u5229\u7528\u795e\u7ecf\u7f51\u7edc\u53ef\u4ee5\u81ea\u52a8\u4ece\u6587\u672c\u4e2d\u83b7\u53d6\u8868\u5f81\u5173\u7cfb\u7684\u7279\u5f81\uff0c\u5b8c\u6210\u5173\u7cfb\u62bd\u53d6\u3002\u672c\u8282\u4e2d\uff0c\u6211\u4eec\u4e3b\u8981 \u4ecb\u7ecd\u795e\u7ecf\u7f51\u7edc\u7528\u4e8e\u5173\u7cfb\u62bd\u53d6\u7684\u65b9\u6cd5\u3002 \u8ba1\u7b97\u8bed\u8a00\u5b66 3.1 \u57fa \u57fa \u57fa\u4e8e \u4e8e \u4e8e\u795e \u795e \u795e\u7ecf \u7ecf \u7ecf\u7f51 \u7f51 \u7f51\u7edc \u7edc \u7edc\u7684 \u7684 \u7684\u65b9 \u65b9 \u65b9\u6cd5 \u6cd5 \u6cd5 \u5229\u7528\u795e\u7ecf\u7f51\u7edc\u8fdb\u884c\u5173\u7cfb\u62bd\u53d6\uff0c\u4e3b\u8981\u5206\u4e3a\u4e09\u4e2a\u6b65\u9aa4\uff1a\u7279\u5f81\u8868\u793a\u3001\u795e\u7ecf\u7f51\u7edc\u7684\u6784\u5efa\u4e0e\u5b66\u4e60\u548c\u6a21 \u578b\u5206\u7c7b\u3002\u5176\u4e2d\uff0c\u7279\u5f81\u8868\u793a\u662f\u5c06\u6587\u672c\u8868\u793a\u6210\u5206\u5e03\u5f0f\u7279\u5f81\u4fe1\u606f\uff0c\u6bd4\u5982\u5c06\u6587\u672c\u4e2d\u7684\u5355\u8bcd\u6620\u5c04\u4e3a\u4e3a\u5206\u5e03 \u5f0f\u8bcd\u5411\u91cf",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": ")\uff0c\u8fd9\u6837\u5c31\u907f\u514d\u4e86\u4f20\u7edf\u7279\u5f81\u5de5\u7a0b\u4e2d\u7279\u5f81\u5411\u91cf\u7684\u7a00\u758f\u6027\u95ee\u9898\u3002\u6211\u4eec\u628a\u73b0\u6709\u7684\u7814\u7a76\u65b9\u6cd5\u603b \u7ed3\u4e3a\u5982\u4e0b\u4e09\u7c7b\uff1a\u878d\u5408\u8bcd\u6c47\u7279\u5f81\u7684\u65b9\u6cd5\u3001\u57fa\u4e8e\u6700\u77ed\u4f9d\u5b58\u8def\u5f84\u7684\u65b9\u6cd5\u548c\u57fa\u4e8e\u6ce8\u610f\u529b\u673a\u5236\u7684\u65b9\u6cd5\u3002 3.1.1 \u878d \u878d \u878d\u5408 \u5408 \u5408\u8bcd \u8bcd \u8bcd\u6c47 \u6c47 \u6c47\u7279 \u7279 \u7279\u5f81 \u5f81 \u5f81\u7684 \u7684 \u7684\u795e \u795e \u795e\u7ecf \u7ecf \u7ecf\u7f51 \u7f51 \u7f51\u7edc \u7edc \u7edc\u6a21 \u6a21 \u6a21\u578b \u578b \u578b MV-RNN",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "\u662f\u6700\u65e9\u7684\u5229\u7528\u795e\u7ecf\u7f51\u7edc\u8fdb\u884c\u5173\u7cfb\u62bd\u53d6\u7684\u65b9\u6cd5,\u8be5\u65b9\u6cd5\u6cbf\u7740\u6210 \u5206\u89e3\u6790\u6811\u5efa\u7acb\u9012\u5f52\u795e\u7ecf\u7f51\u7edc\u5b66\u4e60\u6811\u7ed3\u6784\u4e2d\u5355\u8bcd\u6216\u77ed\u8bed\u7684\u8bed\u4e49\u5411\u91cf\u8868\u793a\u3002\u6811\u4e2d\u6bcf\u4e2a\u8282\u70b9\u7531\u77e9\u9635-\u5411 \u91cf(MV)\u8868\u793a\uff0c\u5411\u91cf\u7528\u6765\u8868\u793a\u6210\u5206\u7684\u5185\u5728\u542b\u4e49\uff0c\u77e9\u9635\u7528\u6765\u6355\u83b7\u5b83\u5982\u4f55\u6539\u53d8\u76f8\u90bb\u5355\u8bcd\u6216\u77ed\u8bed\u7684\u542b \u4e49\u3002\u5bf9\u4e8e\u5173\u7cfb\u5206\u7c7b\u4efb\u52a1\uff0c\u8be5\u65b9\u6cd5\u9996\u5148\u5728\u89e3\u6790\u6811\u4e2d\u627e\u5230\u8981\u5bf9\u5176\u5173\u7cfb\u8fdb\u884c\u5206\u7c7b\u7684\u4e24\u4e2a\u5b9e\u4f53\u4e4b\u95f4\u7684\u8def \u5f84\u3002\u7136\u540e\u9009\u62e9\u8def\u5f84\u7684\u6700\u9ad8\u8282\u70b9\uff0c\u5e76\u4f7f\u7528\u8be5\u8282\u70b9\u7684\u5411\u91cf\u4f5c\u4e3a\u7279\u5f81\u5bf9\u5173\u7cfb\u8fdb\u884c\u5206\u7c7b\uff0c\u540c\u65f6\u4ed6\u4eec\u5728\u6a21 \u578b\u4e2d\u52a0\u5165\u8bcd\u6027\u7279\u5f81\u3001\u547d\u540d\u5b9e\u4f53\u6807\u7b7e\u7279\u5f81\u548cWordNet\u8bed\u4e49\u7c7b\u522b\u7279\u5f81\u3002\u8be5\u65b9\u6cd5\u5728SemEval-2010\u6570\u636e \u96c6\u4e0aF1\u503c\u8fbe\u523082.4%\u3002",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "MV-RNN\u5305\u542b\u7279\u5f81\u5b66\u4e60\u8fc7\u7a0b\uff0c\u8fd9\u79cd\u65b9\u6cd5\u4f9d\u8d56\u9012\u5f52\u8fc7\u7a0b\u4e2d\u4f7f\u7528\u7684\u8bed\u6cd5\u6811\uff0c\u53e5\u6cd5\u5206\u6790\u4e2d\u7684\u9519\u8bef \u4f1a\u6291\u5236\u5b66\u4e60\u9ad8\u8d28\u91cf\u7279\u5f81\u7684\u80fd\u529b\u3002\u56e0\u6b64\uff0c\u73b0\u6709\u65b9\u6cd5\u5229\u7528\u5377\u79ef\u795e\u7ecf\u7f51\u7edc(CNN) (Zeng et al., 2014; Kim, 2014; Collobert et al., 2011) (Marcheggiani et al., 2017; Kipf et al., 2016 )\u7684\u542f\u53d1\uff0c\u4e00\u79cd\u9002\u7528\u4e8e\u5173\u7cfb\u62bd\u53d6\u7684\u56fe \u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u7684\u6269\u5c55\u65b9\u6cd5 \u5229\u7528\u9ad8\u6548\u7684\u56fe\u5377\u79ef\u8fd0\u7b97\u5bf9\u8f93\u5165\u8bed\u53e5\u7684\u4f9d\u5b58\u7ed3\u6784\u8fdb \u884c\u7f16\u7801\uff0c\u7136\u540e\u63d0\u53d6\u4ee5\u5b9e\u4f53\u4e3a\u4e2d\u5fc3\u7684\u8868\u793a\uff0c\u5b9e\u73b0\u5173\u7cfb\u9884\u6d4b\u3002\u6b64\u5916\u57fa\u4e8e\u6ce8\u610f\u529b\u5f15\u5bfc\u7684\u56fe\u5377\u79ef\u7f51\u7edc\u65b9 \u6cd5(AGGCNs) (Guo et al., 2019) (Zeng et al., 2015) 72.3 69.7 64.1 -PCNN+MIL (Zeng et al., 2015) 86.0 80.0 -69.0 PCNN+ATT (Lin et al., 2016) 76.2 73.1 67.4 -MIMLCNN (Jiang et al., 2016) 69.0 64.0 59.0 53.0 \u57fa \u57fa \u57fa\u4e8e \u4e8e \u4e8e\u5377 \u5377 \u5377\u79ef \u79ef \u79ef\u795e \u795e \u795e\u7ecf \u7ecf \u7ecf\u7f51 \u7f51 \u7f51\u7edc \u7edc \u7edc \u65b9 \u65b9 \u65b9\u6cd5 \u6cd5 \u6cd5 ResCNN-9 (Huang et al., 2017) 79.0 69.0 61.0 -APCNN+D (Ji et al., 2017) 87.0 83.0 -74.0 \u57fa \u57fa \u57fa\u4e8e \u4e8e \u4e8e\u6ce8 \u6ce8 \u6ce8\u610f \u610f \u610f\u529b \u529b \u529b\u673a \u673a \u673a\u5236 \u5236 \u5236\u7684 \u7684 \u7684 \u65b9 \u65b9 \u65b9\u6cd5 \u6cd5 \u6cd5 MLSSA (Du et al., 2018) 90.0 81.5 77.0 -LFDS 90.0 88.0 -83.0 \u878d \u878d \u878d\u5408 \u5408 \u5408\u77e5 \u77e5 \u77e5\u8bc6 \u8bc6 \u8bc6\u5e93 \u5e93 \u5e93\u7684 \u7684 \u7684 \u65b9 \u65b9 \u65b9\u6cd5 \u6cd5 \u6cd5 RESIDE (Vashishth et al., 2018) 84.0 78.5 75.6 - (Li et al., 2014) 0.835 0.762 0.797 0.608 0.361 0.453 (Miwa et al., 2016) 0.808 0.829 0.818 0.487 0.481 0.484 (Katiyar et al., 2017) 0.812 0.781 0.796 0.502 0.488 0.493 ACE04 0.844 0.829 0.836 0.501 0.487 0.494 (Li et al., 2014) 0.852 0.769 0.808 0.654 0.398 0.495 (Miwa et al., 2016) 0.852 0.769 0.808 0.572 0.540 0.556 (Zhang et al., 2017) -0.836 -0.575 (Katiyar et al., 2017) 0.840 0.813 0.831 0.605 0.553 0.578 (Sun et al., 2018) 0 (Zheng et al., 2017) 0.59 0.479 0.529 0.597 0.451 0.514 (Sun et al., 2018) 0.652 0.406 0.500 (Zeng et al., 2018) 0.610 0.566 0.587 (Takanobu et al., 2019) 0.714 0.586 0.644 (\u6b66\u6587\u96c5 et al., 2019) 78.41% COAE2016 (\u674e\u536b\u7586 et al., 2019) 81.49% (\u6b66\u6587\u96c5 et al., 2019) 73.94% ACE2005 78.71% DuIE 84.8% Table 4 : \u5173\u7cfb\u62bd\u53d6\u5728\u4e2d\u6587\u6570\u636e\u96c6\u4e0a\u7684\u7ed3\u679c 7 \u603b \u603b \u603b\u7ed3 \u7ed3 \u7ed3\u4e0e \u4e0e \u4e0e\u5c55 \u5c55 \u5c55\u671b \u671b \u671b",
"cite_spans": [
{
"start": 77,
"end": 96,
"text": "(Zeng et al., 2014;",
"ref_id": "BIBREF56"
},
{
"start": 97,
"end": 107,
"text": "Kim, 2014;",
"ref_id": "BIBREF18"
},
{
"start": 108,
"end": 131,
"text": "Collobert et al., 2011)",
"ref_id": "BIBREF3"
},
{
"start": 132,
"end": 159,
"text": "(Marcheggiani et al., 2017;",
"ref_id": "BIBREF29"
},
{
"start": 160,
"end": 177,
"text": "Kipf et al., 2016",
"ref_id": "BIBREF19"
},
{
"start": 281,
"end": 299,
"text": "(Guo et al., 2019)",
"ref_id": "BIBREF10"
},
{
"start": 300,
"end": 319,
"text": "(Zeng et al., 2015)",
"ref_id": "BIBREF55"
},
{
"start": 345,
"end": 364,
"text": "(Zeng et al., 2015)",
"ref_id": "BIBREF55"
},
{
"start": 390,
"end": 408,
"text": "(Lin et al., 2016)",
"ref_id": "BIBREF25"
},
{
"start": 433,
"end": 453,
"text": "(Jiang et al., 2016)",
"ref_id": "BIBREF15"
},
{
"start": 535,
"end": 555,
"text": "(Huang et al., 2017)",
"ref_id": "BIBREF13"
},
{
"start": 580,
"end": 597,
"text": "(Ji et al., 2017)",
"ref_id": "BIBREF14"
},
{
"start": 672,
"end": 689,
"text": "(Du et al., 2018)",
"ref_id": "BIBREF7"
},
{
"start": 776,
"end": 800,
"text": "(Vashishth et al., 2018)",
"ref_id": "BIBREF45"
},
{
"start": 818,
"end": 835,
"text": "(Li et al., 2014)",
"ref_id": "BIBREF21"
},
{
"start": 872,
"end": 891,
"text": "(Miwa et al., 2016)",
"ref_id": "BIBREF33"
},
{
"start": 928,
"end": 950,
"text": "(Katiyar et al., 2017)",
"ref_id": "BIBREF17"
},
{
"start": 1029,
"end": 1046,
"text": "(Li et al., 2014)",
"ref_id": "BIBREF21"
},
{
"start": 1083,
"end": 1102,
"text": "(Miwa et al., 2016)",
"ref_id": "BIBREF33"
},
{
"start": 1139,
"end": 1159,
"text": "(Zhang et al., 2017)",
"ref_id": "BIBREF58"
},
{
"start": 1174,
"end": 1196,
"text": "(Katiyar et al., 2017)",
"ref_id": "BIBREF17"
},
{
"start": 1233,
"end": 1251,
"text": "(Sun et al., 2018)",
"ref_id": "BIBREF42"
},
{
"start": 1254,
"end": 1274,
"text": "(Zheng et al., 2017)",
"ref_id": "BIBREF61"
},
{
"start": 1310,
"end": 1328,
"text": "(Sun et al., 2018)",
"ref_id": "BIBREF42"
},
{
"start": 1347,
"end": 1366,
"text": "(Zeng et al., 2018)",
"ref_id": "BIBREF57"
},
{
"start": 1385,
"end": 1408,
"text": "(Takanobu et al., 2019)",
"ref_id": "BIBREF43"
},
{
"start": 1427,
"end": 1445,
"text": "(\u6b66\u6587\u96c5 et al., 2019)",
"ref_id": null
},
{
"start": 1462,
"end": 1480,
"text": "(\u674e\u536b\u7586 et al., 2019)",
"ref_id": null
},
{
"start": 1488,
"end": 1506,
"text": "(\u6b66\u6587\u96c5 et al., 2019)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 1540,
"end": 1547,
"text": "Table 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "\u63d0\u53d6\u8bcd\u6c47\u548c\u53e5\u5b50\u7ea7\u5c42\u6b21\u7279\u5f81\uff0c\u7528\u4e8e\u5173\u7cfb\u62bd\u53d6\u4efb\u52a1\u3002\u8be5\u65b9\u6cd5\u4e0d \u9700\u8981\u590d\u6742\u7684\u53e5\u6cd5\u6216\u8bed\u4e49\u9884\u5904\u7406\uff0c\u6a21\u578b\u7684\u8f93\u5165\u662f\u4e00\u4e2a\u5e26\u6709\u4e24\u4e2a\u6807\u8bb0\u5b9e\u4f53\u540d\u8bcd\u7684\u53e5\u5b50\u3002\u7136\u540e\u901a\u8fc7\u8bcd \u5d4c\u5165\u5c06\u5355\u8bcd\u6620\u5c04\u4e3a\u5206\u5e03\u5f0f\u8bcd\u5411\u91cf\uff0c\u5206\u522b\u63d0\u53d6\u8bcd\u6c47\u7ea7\u7279\u5f81\u548c\u53e5\u5b50\u7ea7\u7279\u5f81\uff0c\u5e76\u76f4\u63a5\u5c06\u4e24\u79cd\u7279\u5f81\u62fc\u63a5 \u5f62\u6210\u6700\u7ec8\u7684\u7279\u5f81\u5411\u91cf\u3002\u5176\u4e2d\uff0c\u5c06\u5e26\u6807\u8bb0\u5b9e\u4f53\u53ca\u5176\u4e0a\u4e0b\u6587\u8bcd\u8bed\u6240\u5bf9\u5e94\u7684\u8bcd\u5411\u91cf\u548cWordNet\u4e2d\u8bed\u4e49 \u7c7b\u522b\u7279\u5f81\u62fc\u63a5\u4f5c\u4e3a\u8bcd\u6c47\u7ea7\u7279\u5f81\u5411\u91cf,\u7528\u6700\u5927\u6c60\u5316\u5377\u79ef\u795e\u7ecf\u7f51\u7edc(CNN)\u81ea\u52a8\u63d0\u53d6\u53e5\u5b50\u7ea7\u7279\u5f81\u8868\u793a\u3002 \u66f4\u8fdb\u4e00\u6b65\uff0cCR-CNN\u6a21\u578b (Santos et al., 2015)\u5229\u7528\u65b0\u7684\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u5904\u7406\u5173\u7cfb\u5206\u7c7b\u4efb\u52a1,\u5bf9\u4e8e \u7ed9\u5b9a\u7684\u8f93\u5165\u6587\u672c\uff0c\u6a21\u578b\u5c06\u5176\u8f6c\u6362\u6210\u5206\u5e03\u5f0f\u8868\u793a\uff0c\u7136\u540e\u901a\u8fc7\u5377\u79ef\u5c42\u6784\u9020\u53e5\u5b50\u7684\u7279\u5f81\u8868\u793ar\uff0c\u4e0d\u540c \u4e8eZeng\u4f7f\u7528softmax\u8ba1\u7b97\u5f97\u5206\uff0c\u8be5\u65b9\u6cd5\u6a21\u578b\u901a\u8fc7\u7c7b\u522b\u6743\u91cd\u77e9\u9635\u548cr\u6267\u884c\u70b9\u79ef\u64cd\u4f5c\u5f97\u5230\u6bcf\u4e2a\u5173\u7cfb\u7c7b \u522b\u7684\u5f97\u5206\uff0c\u5e76\u4e14\u91c7\u7528\u6392\u540d\u635f\u5931\u51fd\u6570\u8fdb\u884c\u8bad\u7ec3\u3002\u8be5\u5de5\u4f5c\u53ea\u4f7f\u7528\u8bcd\u5411\u91cf\u4f5c\u4e3a\u7279\u5f81\u8f93\u5165\uff0c\u6ca1\u6709\u4f7f\u7528\u4efb \u4f55\u5176\u4ed6\u5916\u90e8\u8d44\u6e90\u3002 3.1.2 \u57fa \u57fa \u57fa\u4e8e \u4e8e \u4e8e\u6700 \u6700 \u6700\u77ed \u77ed \u77ed\u4f9d \u4f9d \u4f9d\u5b58 \u5b58 \u5b58\u8def \u8def \u8def\u5f84 \u5f84 \u5f84\u7684 \u7684 \u7684\u795e \u795e \u795e\u7ecf \u7ecf \u7ecf\u7f51 \u7f51 \u7f51\u7edc \u7edc \u7edc\u6a21 \u6a21 \u6a21\u578b \u578b \u578b \u4e0a\u8ff0\u65b9\u6cd5\u5728\u5173\u7cfb\u62bd\u53d6\u4efb\u52a1\u4e0a\u662f\u6709\u6548\u7684\uff0c\u4f46\u662f\uff0c\u5f53\u4e3b\u8bed\u548c\u5bbe\u8bed\u4e4b\u95f4\u7684\u8ddd\u79bb\u8f83\u957f\u65f6\uff0c\u5f80\u5f80\u4f1a\u53d7 \u5230\u5176\u4ed6\u4e0d\u76f8\u5173\u4fe1\u606f\u7684\u5e72\u6270\u3002\u8003\u8651\u5230\u53e5\u6cd5\u7279\u5f81\u5728\u5173\u7cfb\u8bc6\u522b\u4e2d\u8d77\u5230\u81f3\u5173\u91cd\u8981\u7684\u4f5c\u7528\uff0c\u8bb8\u591a\u7814\u7a76\u901a \u8fc7\u795e\u7ecf\u7f51\u7edc\u4ece\u6700\u77ed\u4f9d\u5b58\u8def\u5f84\u4e2d\u5b66\u4e60\u5173\u7cfb\u8868\u793a\u3002\u8be5\u65b9\u6cd5\u57fa\u4e8e\u6700\u77ed\u8def\u5f84\u5047\u8bbe\uff1a\u5982\u679ce1\u548ce2\u662f\u53e5\u5b50\u4e2d \u7684\u4e24\u4e2a\u540d\u8bcd\u5b9e\u4f53\uff0c\u6211\u4eec\u5047\u8bbee1\u548ce2\u4e4b\u95f4\u7684\u6700\u77ed\u8def\u5f84\uff0c\u63cf\u8ff0\u4e86\u5b83\u4eec\u4e4b\u95f4\u7684\u5173\u7cfb\u3002\u8fd9\u662f\u56e0\u4e3a,(1)\u5982 \u679ce1\u548ce2\u662f\u5c5e\u4e8e\u540c\u4e00\u4e2a\u8c13\u8bcd\u7684\u8bba\u5143\uff0c\u90a3\u4e48\u5b83\u4eec\u7684\u6700\u77ed\u8def\u5f84\u5e94\u8be5\u901a\u8fc7\u8be5\u8c13\u8bcd\uff1b(2)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "\u63d0\u51fa\u7528\u4e8e\u5173\u7cfb\u62bd\u53d6\u3002\u8be5\u6a21\u578b\u7531M\u4e2a\u76f8\u540c\u7684\u5757\u7ec4\u6210\uff0c\u6bcf\u4e2a\u5757\u5305\u542b \u6ce8\u610f\u529b\u6307\u5bfc\u5c42\u3001\u5bc6\u96c6\u8fde\u63a5\u5c42\u548c\u7ebf\u6027\u7ec4\u5408\u5c42\u3002\u6a21\u578b\u76f4\u63a5\u628a\u6574\u68f5\u4f9d\u5b58\u6811\u4f5c\u4e3a\u8f93\u5165\uff0c\u6bcf\u4e2a\u5757\u4ee5\u8868\u793a\u56fe \u7684\u8282\u70b9\u5d4c\u5165\u548c\u90bb\u63a5\u77e9\u9635\u4f5c\u4e3a\u8f93\u5165\uff0c\u5728\u6ce8\u610f\u529b\u5f15\u5bfc\u5c42\u4e2d\uff0c\u5148\u5c06\u539f\u59cb\u7684\u56fe\u8f6c\u5316\u4e3a\u90bb\u63a5\u77e9\u9635\uff0c\u7136\u540e\u901a \u8fc7\u591a\u5934\u6ce8\u610f\u529b\u8f6c\u5316\u4e3a\u5168\u8fde\u63a5\u7684\u57fa\u4e8e\u6ce8\u610f\u529b\u6307\u5bfc\u7684\u90bb\u63a5\u77e9\u9635\uff0c\u77e9\u9635\u4e2d\u7684\u6bcf\u4e2a\u5143\u7d20\u5bf9\u5e94\u76f8\u5e94\u8282\u70b9\u4e4b \u95f4\u8fb9\u7684\u6743\u91cd\uff0c\u4ece\u800c\u6355\u6349\u5230\u9886\u57df\u7684\u4fe1\u606f\u3002\u5bc6\u96c6\u8fde\u63a5\u5c42\u5f97\u5230\u7684\u77e9\u9635\u88ab\u9001\u5165N\u4e2a\u5355\u72ec\u7684\u5bc6\u96c6\u8fde\u63a5\u5c42\uff0c \u4ea7\u751f\u65b0\u7684\u8868\u793a\u3002\u6700\u540e\uff0c\u5e94\u7528\u7ebf\u6027\u7ec4\u5408\u5c06N\u4e2a\u7d27\u5bc6\u8fde\u63a5\u7684\u5c42\u7684\u8f93\u51fa\u7ec4\u5408\u6210\u9690\u85cf\u7684\u8868\u793a\u3002\u7ecf\u8fc7\u4e0a\u8ff0 \u6ce8\u610f\u529b\u5f15\u5bfc\u7684\u56fe\u5377\u79ef\u6a21\u578b\uff0c\u5f97\u5230\u6240\u6709tokens\u7684\u8868\u5f81\uff0c\u7136\u540e\u5c06\u53e5\u5b50\u7684\u8868\u5f81\u548c\u5b9e\u4f53\u8868\u5f81\u5408\u5e76\uff0c\u8fd0\u7528 \u524d\u9988\u795e\u7ecf\u7f51\u7edc\u5f97\u5230\u6700\u7ec8\u8868\u793a\uff0c\u6700\u540e\u7528\u903b\u8f91\u56de\u5f52\u5206\u7c7b\u5668\u9884\u6d4b\u5173\u7cfb\u3002 3.1.3 \u57fa \u57fa \u57fa\u4e8e \u4e8e \u4e8e\u6ce8 \u6ce8 \u6ce8\u610f \u610f \u610f\u529b \u529b \u529b\u673a \u673a \u673a\u5236 \u5236 \u5236\u7684 \u7684 \u7684\u795e \u795e \u795e\u7ecf \u7ecf \u7ecf\u7f51 \u7f51 \u7f51\u7edc \u7edc \u7edc\u6a21 \u6a21 \u6a21\u578b \u578b \u578b \u901a\u8fc7\u795e\u7ecf\u7f51\u7edc\u5bf9\u4f9d\u5b58\u6811\u5efa\u6a21\u80fd\u63d0\u9ad8\u5173\u7cfb\u62bd\u53d6\u7684\u6027\u80fd\uff0c\u4f46\u8fd9\u7c7b\u65b9\u6cd5\u8fd8\u662f\u9700\u8981\u4f9d\u8d56\u8bcd\u6c47\u8d44\u6e90 \u5982WordNet\uff0c\u6216\u81ea\u7136\u8bed\u8a00\u5904\u7406\u5de5\u5177\u6765\u63d0\u53d6\u7279\u5f81\u3002\u5e76\u4e14\uff0c\u5bf9\u4e8e\u5173\u7cfb\u91cd\u8981\u7684\u4fe1\u606f\u53ef\u4ee5\u51fa\u73b0\u5728\u53e5\u5b50\u7684 \u4efb\u610f\u4f4d\u7f6e\u3002\u4e3a\u4e86\u89e3\u51b3\u8fd9\u4e2a\u95ee\u9898\uff0c\u57fa\u4e8e\u6ce8\u610f\u529b\u673a\u5236\u7684\u53cc\u5411\u957f\u77ed\u671f\u8bb0\u5fc6\u7f51\u7edc(AttBLSTM) (Zhou et al., 2016)\u7528\u6765\u6355\u83b7\u53e5\u5b50\u4e2d\u91cd\u8981\u7684\u8bed\u4e49\u4fe1\u606f\u3002\u8be5\u65b9\u6cd5\u7684\u6ce8\u610f\u529b\u673a\u5236\u8ba1\u7b97\u516c\u5f0f\u4e3a\uff1a M = tanh(H) (1) \u03b1 = sof tmax(W T M ) (2) r = H\u03b1 T (3) \u5176\u4e2d\uff0cH\u4e3a\u53cc\u5411LSTM\u8f93\u51fa\u5c42\u7ec4\u6210\u7684\u77e9\u9635\uff0cw\u662f\u5b66\u4e60\u7684\u53c2\u6570\uff0cr\u662f\u8f93\u51fa\u5411\u91cf\u7684\u52a0\u6743\u6c42\u548c\u3002\u6700 \u7ec8\u7684\u53e5\u5b50\u53ef\u4ee5\u8868\u793a\u4e3a h * = tanh(r) (4) \u6a21\u578b\u7528\u4e00\u4e2asoftmax\u5206\u7c7b\u5668\u5f97\u5230\u5173\u7cfb\u7c7b\u522b\u3002\u5b9e\u9a8c\u8868\u660e\uff0c\u8be5\u65b9\u6cd5\u4e0d\u4f7f\u7528\u4efb\u4f55\u5916\u90e8\u8d44\u6e90\uff0c\u53ef\u4ee5\u5f97 \u5230\u5f88\u597d\u7684\u6027\u80fd\u3002 \u73b0\u6709\u7684\u57fa\u4e8e\u6ce8\u610f\u529b\u673a\u5236\u7684\u5173\u7cfb\u62bd\u53d6\u65b9\u6cd5\u5e76\u6ca1\u6709\u5145\u5206\u5229\u7528\u5b9e\u4f53\u4fe1\u606f\uff0c\u800c\u5b9e\u4f53\u4fe1\u606f\u53ef\u80fd\u662f\u5173\u7cfb \u5206\u7c7b\u7684\u6700\u5173\u952e\u7279\u5f81\u3002\u56e0\u6b64\uff0c\u4e00\u79cd\u878d\u5408\u6f5c\u5728\u5b9e\u4f53\u7c7b\u578b\u7684\u5b9e\u4f53\u6ce8\u610f\u529b\u673a\u5236\u6a21\u578b (Lee et al., 2019)\u7528\u4e8e \u5173\u7cfb\u62bd\u53d6\u3002\u5728\u8be5\u65b9\u6cd5\u4e2d\uff0c\u4e3a\u4e86\u6355\u83b7\u53e5\u5b50\u4e0a\u4e0b\u6587\u4fe1\u606f\uff0c\u5229\u7528\u4e86\u81ea\u6ce8\u610f\u529b\u673a\u5236(self-attention) (Tan et al., 2018; Vaswani et al., 2017)\u83b7\u5f97\u5355\u8bcd\u8868\u793a\uff0c\u5e76\u5229\u7528\u53cc\u5411LSTM\u6784\u5efa\u4e86\u795e\u7ecf\u7f51\u7edc\u6a21\u578b\u3002\u4e3a\u4e86 \u5145\u5206\u5229\u7528\u53e5\u5b50\u4e2d\u5b9e\u4f53\u5bf9\u7684\u4fe1\u606f\uff0c\u6a21\u578b\u878d\u5408\u4e86\u5b9e\u4f53\u76f8\u5bf9\u4f4d\u7f6e\u7279\u5f81\u548c\u5b9e\u4f53\u6f5c\u5728\u79cd\u7c7b\u7279\u5f81\uff0c\u6700\u7ec8\u53e5\u5b50 \u7684\u8868\u793a\u53ef\u4ee5\u901a\u8fc7\u6ce8\u610f\u529b\u673a\u5236\u5f97\u5230\uff1a u i = tanh(W H [h i , p e 1 i , p e 2 i ] + W E [h e 1 , t 1 , h e 2 , t 2 ])",
"eq_num": "(5)"
}
],
"section": "",
"sec_num": null
},
{
"text": "\u03b1 i = exp(v T u i ) n j=1 exp(v T u j ) (6) z = n i=1 \u03b1 i h i (7) \u5176 \u4e2d \uff0ch i \u4e3a \u7b2ci\u4f4d \u7f6e \u53cc \u5411LSTM\u7684 \u8f93 \u51fa \uff0ch e 1 ;h e 2 \u5206 \u522b \u4e3a \u5b9e \u4f53e 1 ;e 2 \u4f4d \u7f6e \u53cc \u5411LSTM\u7684 \u8f93 \u51fa\uff0cp e 1 i ;\uff0cp e 2 i \u5206\u522b\u4e3a\u5bf9\u5e94\u4e8e\u7b2ci\u4e2a\u5355\u8bcd\u76f8\u5bf9\u4e8e\u53e5\u5b50\u4e2d\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f53e 1 \u548c\u7b2c\u4e8c\u4e2a\u5b9e\u4f53e 2 \u7684\u4f4d\u7f6e\u3002 \u8be5\u65b9\u6cd5\u8fd8\u4f7f\u7528\u5b9e\u4f53\u7c7b\u578b\u4fe1\u606f\u63d0\u5347\u6027\u80fd\uff0c\u7528\u4e8e\u5b9e\u4f53\u7c7b\u578b\u6ca1\u6709\u6807\u6ce8\uff0c\u4ed6\u4eec\u4f7f\u7528\u4e3b\u9898\u805a\u7c7b\u65b9\u6cd5\u5f97\u5230\u5b9e \u4f53\u7684\u6f5c\u5728\u79cd\u7c7b\uff0c\u901a\u8fc7\u6ce8\u610f\u529b\u673a\u5236\u5f97\u5230\u5b9e\u4f53\u7c7b\u578b\u8868\u793at\u3002 3.2 \u5c0f \u5c0f \u5c0f\u7ed3 \u7ed3 \u7ed3 \u672c\u7ae0\u8be6\u7ec6\u8ba8\u8bba\u4e86\u6709\u76d1\u7763\u65b9\u6cd5\u7684\u5173\u7cfb\u62bd\u53d6\uff0c\u7ed9\u51fa\u4e86\u73b0\u6709\u7684\u4e00\u4e9b\u7ecf\u5178\u65b9\u6cd5\u3002\u76ee\u524d\uff0c\u795e\u7ecf\u7f51\u7edc \u7528\u4e8e\u6709\u76d1\u7763\u7684\u5173\u7cfb\u62bd\u53d6\u6210\u4e3a\u4e3b\u6d41\u65b9\u6cd5\uff0c\u6211\u4eec\u8be6\u7ec6\u8ba8\u8bba\u4e86\uff0c\u795e\u7ecf\u7f51\u7edc\u65b9\u6cd5\u4e2d\u878d\u5408\u8bcd\u6c47\u7279\u5f81\u7684\u65b9 \u6cd5\u3001\u57fa\u4e8e\u6700\u77ed\u4f9d\u5b58\u8def\u5f84\u7684\u65b9\u6cd5\u548c\u57fa\u4e8e\u6ce8\u610f\u529b\u673a\u5236\u7684\u65b9\u6cd5\u3002\u88681\u7ed9\u51fa\u73b0\u6709\u65b9\u6cd5\u7528\u4e8e\u6709\u76d1\u7763\u5173\u7cfb\u62bd\u53d6 \u5728SemEval-2010\u6570\u636e\u96c6\u4e0a\u7684\u6027\u80fd\u5bf9\u6bd4\u3002\u4ece\u56fe\u4e2d\u53ef\u4ee5\u770b\u51fa\uff0c\u57fa\u4e8e\u6700\u77ed\u4f9d\u5b58\u8def\u5f84\u7684\u65b9\u6cd5\u603b\u4f53\u4e0a\u8fbe\u5230 \u4e86\u8f83\u597d\u7684\u6027\u80fd\uff0c\u539f\u56e0\u5728\u4e8e\u5229\u7528\u6700\u77ed\u4f9d\u5b58\u8def\u5f84\u5bf9\u53e5\u5b50\u5efa\u6a21\uff0c\u53ef\u4ee5\u4e30\u5bcc\u53e5\u5b50\u7684\u5168\u5c40\u8bed\u4e49\u4fe1\u606f\uff0c\u663e\u8457 \u5e2e\u52a9\u5173\u7cfb\u5206\u7c7b\u3002\u800c\u878d\u5408\u8bcd\u6c47\u7684\u65b9\u6cd5\uff0c\u53ea\u80fd\u5229\u7528\u53e5\u5b50\u7684\u5c40\u90e8\u7279\u5f81\uff0c\u5173\u7cfb\u5206\u7c7b\u6027\u80fd\u8f83\u4f4e\u3002\u57fa\u4e8e\u6ce8\u610f \u529b\u673a\u5236\u7684\u65b9\u6cd5\u4e0d\u91c7\u7528\u4efb\u4f55\u5916\u90e8\u7279\u5f81\u8d44\u6e90\uff0c\u5229\u7528\u6ce8\u610f\u529b\u673a\u5236\u7684\u53ef\u89e3\u91ca\u6027\u81ea\u52a8\u6316\u6398\u51fa\u53e5\u5b50\u4e2d\u7684\u91cd\u8981 \u8bed\u4e49\u4fe1\u606f\u3002 \u65b9 \u65b9 \u65b9\u6cd5 \u6cd5 \u6cd5\u5206 \u5206 \u5206\u7c7b \u7c7b \u7c7b \u6a21 \u6a21 \u6a21\u578b \u578b \u578b \u7279 \u7279 \u7279\u5f81 \u5f81 \u5f81 F1\u503c \u503c \u503c MV-RNN (",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "\u5173\u7cfb\u62bd\u53d6\u4f5c\u4e3a\u4fe1\u606f\u62bd\u53d6\u4e0d\u53ef\u6216\u7f3a\u7684\u90e8\u5206\uff0c\u662f\u77e5\u8bc6\u56fe\u8c31\u3001\u6587\u672c\u5185\u5bb9\u7406\u89e3\u7684\u91cd\u8981\u652f\u6491\u6280\u672f\u4e4b \u4e00\u3002\u6839\u636e\u9886\u57df\u7684\u5212\u5206\uff0c\u53ef\u5206\u4e3a\u9650\u5b9a\u57df\u5173\u7cfb\u62bd\u53d6\u548c\u5f00\u653e\u57df\u5173\u7cfb\u62bd\u53d6\u3002\u672c\u6587\u8be6\u7ec6\u8ba8\u8bba\u4e86\u9650\u5b9a\u57df\u5173\u7cfb \u62bd\u53d6\u7684\u4e09\u5927\u7c7b\u65b9\u6cd5\uff1a\u6709\u76d1\u7763\u65b9\u6cd5\u3001\u8fdc\u7a0b\u76d1\u7763\u65b9\u6cd5\u548c\u5b9e\u4f53\u5173\u7cfb\u8054\u5408\u62bd\u53d6\u65b9\u6cd5\u3002\u6839\u636e\u672c\u6587\u7684\u8bba\u8ff0\uff0c \u524d\u6cbf\u7684\u5173\u7cfb\u62bd\u53d6\u6280\u672f\u5728\u82f1\u6587\u6570\u636e\u96c6ACE2004\u3001ACE2005\u3001SemEval-2010\u548cNYT-10\u505a\u4e86\u8bb8\u591a\u5de5 \u4f5c\uff0c\u5728\u4e2d\u6587\u6570\u636e\u96c6\u4e0a\u76f8\u5bf9\u8f83\u5c11\u3002 \u672c\u6587\u901a\u8fc7\u5bf9\u73b0\u6709\u5173\u7cfb\u62bd\u53d6\u7814\u7a76\u65b9\u6cd5\u7684\u603b\u7ed3\uff0c\u63d0\u51fa\u4ee5\u4e0b\u5173\u7cfb\u62bd\u53d6\u672a\u6765\u7684\u7814\u7a76\u8def\u7ebf\uff1a (1)\u524d\u6cbf\u7684\u5173\u7cfb\u62bd\u53d6\u6280\u672f\u5728\u4e3b\u6d41\u82f1\u6587\u6570\u636e\u96c6ACE2004\u3001ACE2005\u3001SemEval-2010\u548cNYT- 10\u505a \u4e86 \u8bb8 \u591a \u5de5 \u4f5c \u3002NYT-10\u6570 \u636e \u96c6 \u662f \u81ea \u52a8 \u6784 \u5efa \u7684 \uff0c \u901a \u8fc7 \u5c06Freebase\u77e5 \u8bc6 \u5e93 \u4e0e \u7ebd \u7ea6 \u65f6 \u62a5 \u8bed \u6599 \u5e93(NYT)\u7684\u5173\u7cfb\u5bf9\u9f50\u800c\u5f62\u6210\uff0c\u6b64\u6570\u636e\u96c6\u6ca1\u6709\u624b\u52a8\u6ce8\u91ca\uff0c\u5b58\u5728\u7740\u6570\u636e\u566a\u58f0\u7684\u95ee\u9898\u3002SemEval- 2010\u6570\u636e\u96c6\u901a\u8fc7\u5f15\u5165\u624b\u52a8\u6ce8\u91ca\u8fbe\u5230\u4e86\u76f8\u5bf9\u8f83\u9ad8\u7684\u8d28\u91cf\uff0c\u4f46\u6570\u636e\u89c4\u6a21\u4f9d\u7136\u592a\u5c0f\u3002\u672a\u6765\u5de5\u4f5c\u53ef\u4ee5\u5f00 \u53d1\u51fa\u9ad8\u8d28\u91cf\u7684\u57fa\u4e8e\u4e2d\u6587\u7684\u5173\u7cfb\u62bd\u53d6\u6570\u636e\u96c6\uff0c\u5e76\u4e14\u4e0d\u65ad\u63d0\u5347\u5173\u7cfb\u62bd\u53d6\u6280\u672f\u5728\u4e2d\u6587\u6570\u636e\u96c6\u4e0a\u7684\u6027 \u80fd\u3002",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "NYT",
"sec_num": null
},
{
"text": "(2)\u7531\u4e8e\u5927\u91cf\u7684\u5173\u7cfb\u4e8b\u5b9e\u90fd\u662f\u901a\u8fc7\u591a\u4e2a\u53e5\u5b50\u6765\u8868\u8fbe\uff0c\u53e5\u5b50\u7ea7\u7684\u5173\u7cfb\u62bd\u53d6\u53d7\u5230\u4e86\u4e0d\u53ef\u907f\u514d\u7684\u9650 \u5236\uff0c\u56e0\u6b64\uff0c\u672a\u6765\u5173\u7cfb\u62bd\u53d6\u7684\u7814\u7a76\u65b9\u5411\u4f1a\u4ece\u53e5\u5b50\u7ea7\u63a8\u5e7f\u5230\u7bc7\u7ae0\u7ea7\uff0c\u901a\u8fc7\u8bfb\u53d6\u548c\u63a8\u7406\u4e00\u4e2a\u6587\u6863\u4e2d\u7684 \u591a\u4e2a\u53e5\u5b50\uff0c\u80fd\u591f\u6709\u6548\u63d0\u5347\u5173\u7cfb\u62bd\u53d6\u6027\u80fd\u3002",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "NYT",
"sec_num": null
},
{
"text": "(3)\u5173\u7cfb\u62bd\u53d6\u662f\u4e00\u9879\u590d\u6742\u7684\u4efb\u52a1\uff0c\u65e0\u8bba\u662f\u6709\u76d1\u7763\u7684\u6570\u636e\uff0c\u8fd8\u662f\u8fdc\u7a0b\u76d1\u7763\u6570\u636e\uff0c\u7eaf\u6570\u636e\u9a71\u52a8 \u6a21\u578b\u662f\u8fdc\u8fdc\u4e0d\u591f\u7684\u3002\u5982\u4f55\u4ece\u73b0\u6709\u6570\u636e\u4e2d\u6316\u6398\u548c\u5b66\u4e60\u6709\u7528\u4fe1\u606f\uff0c\u4ee5\u53ca\u5982\u4f55\u5c06\u7ed3\u6784\u5316\u77e5\u8bc6\u3001\u8bed\u8a00\u77e5 \u8bc6\u3001\u9886\u57df\u77e5\u8bc6\u878d\u5408\u8fdb\u5173\u7cfb\u62bd\u53d6\u6a21\u578b\u4e2d\uff0c\u8fd9\u662f\u4e24\u4e2a\u91cd\u8981\u7684\u8bfe\u9898\u5bf9\u4e8e\u8bed\u8a00\u7406\u89e3\u6709\u7740\u91cd\u8981\u610f\u4e49\u3002 (4)\u591a\u6a21\u6001\u5b66\u4e60\u5728\u5173\u7cfb\u62bd\u53d6\u4efb\u52a1\u4e2d\u7684\u5e94\u7528\u548c\u7814\u7a76\u3002\u5728\u4e92\u8054\u7f51\u4e0a\u5b58\u5728\u7740\u591a\u79cd\u5f62\u5f0f\u7684\u6570\u636e\uff0c\u5982\u81ea \u7136\u8bed\u8a00\u3001\u56fe\u7247\u3001\u7ed3\u6784\u5316\u6587\u672c\uff0c\u8fd9\u6bcf\u4e00\u79cd\u6570\u636e\u5f62\u5f0f\u53ef\u4ee5\u79f0\u4e3a\u4e00\u79cd\u6a21\u6001\u3002\u5728\u6784\u9020\u6570\u636e\u96c6\u65f6\uff0c\u53ef\u4ee5\u878d \u5165\u8fd9\u4e9b\u591a\u6a21\u6001\u6570\u636e\u3002\u901a\u8fc7\u5229\u7528\u591a\u6a21\u6001\u4e4b\u95f4\u7684\u4e92\u8865\u6027\uff0c\u5254\u9664\u6a21\u6001\u95f4\u7684\u5197\u4f59\u6027\uff0c\u4ece\u800c\u53ef\u4ee5\u5b66\u4e60\u5230\u66f4 \u597d\u7684\u7279\u5f81\u8868\u793a\u3002 \u53c2 \u53c2 \u53c2\u8003 \u8003 \u8003\u6587 \u6587 \u6587\u732e \u732e \u732e",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "NYT",
"sec_num": null
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Freebase: A collaboratively created graph database for structuring human knowledge",
"authors": [
{
"first": "Kurt",
"middle": [
"D"
],
"last": "Bollacker",
"suffix": ""
},
{
"first": "Colin",
"middle": [],
"last": "Evans",
"suffix": ""
},
{
"first": "Praveen",
"middle": [],
"last": "Paritosh",
"suffix": ""
},
{
"first": "Tim",
"middle": [],
"last": "Sturge",
"suffix": ""
},
{
"first": "Jamie",
"middle": [],
"last": "Taylor",
"suffix": ""
}
],
"year": 2008,
"venue": "International Conference on Management of Data",
"volume": "",
"issue": "",
"pages": "1247--1250",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge and Jamie Taylor. 2008. Freebase: A collaboratively created graph database for structuring human knowledge. International Conference on Management of Data, pages 1247-1250.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Bidirectional recurrent convolutional neural network for relation classification",
"authors": [
{
"first": "Rui",
"middle": [],
"last": "Cai",
"suffix": ""
},
{
"first": "Xiaodong",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Houfeng",
"middle": [],
"last": "Wang",
"suffix": ""
}
],
"year": 2016,
"venue": "The 54th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "756--765",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rui Cai, Xiaodong Zhang and Houfeng Wang. 2016. Bidirectional recurrent convolutional neural net- work for relation classification. The 54th Annual Meeting of the Association for Computational Linguistics, pages 756-765.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "language processing (almost) from scratch",
"authors": [
{
"first": "Ronan",
"middle": [],
"last": "Collobert",
"suffix": ""
},
{
"first": "Jason",
"middle": [],
"last": "Weston",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Karlen",
"suffix": ""
},
{
"first": "Koray",
"middle": [],
"last": "Kavukcuoglu",
"suffix": ""
},
{
"first": "Pavel",
"middle": [
"P"
],
"last": "Kuksa",
"suffix": ""
}
],
"year": 2011,
"venue": "Journal of Machine Learning Research",
"volume": "",
"issue": "",
"pages": "2493--2537",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ronan Collobert, Jason Weston, Michael Karlen, Koray Kavukcuoglu and Pavel P. Kuksa. 2011. language processing (almost) from scratch. Journal of Machine Learning Research, pages 2493-2537.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "A Unified Architecture for Natural Language Processing",
"authors": [
{
"first": "Ronan",
"middle": [],
"last": "Collobert",
"suffix": ""
},
{
"first": "Jason",
"middle": [],
"last": "Weston",
"suffix": ""
}
],
"year": 2008,
"venue": "The Twenty-Fifth International Conference on Machine Learning",
"volume": "",
"issue": "",
"pages": "160--167",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ronan Collobert and Jason Weston. 2008. A Unified Architecture for Natural Language Processing. The Twenty-Fifth International Conference on Machine Learning, pages 160-167.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Language to logical form with neural attention",
"authors": [
{
"first": "Li",
"middle": [],
"last": "Dong",
"suffix": ""
},
{
"first": "Mirella",
"middle": [],
"last": "Lapata",
"suffix": ""
}
],
"year": 2016,
"venue": "The 54th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "7--12",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Li Dong and Mirella Lapata. 2016. Language to logical form with neural attention. The 54th Annual Meeting of the Association for Computational Linguistics, pages 7-12.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Deep biaffine attention for neural dependency parsing",
"authors": [
{
"first": "Timothy",
"middle": [],
"last": "Dozat",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
}
],
"year": 2016,
"venue": "The 5th International Conference on Learning Representations",
"volume": "",
"issue": "",
"pages": "24--26",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Timothy Dozat and Christopher D. Manning. 2016. Deep biaffine attention for neural dependency parsing. The 5th International Conference on Learning Representations, pages 24-26.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Multi-level structured self-attentions for distantly supervised relation extraction",
"authors": [
{
"first": "Jinhua",
"middle": [],
"last": "Du",
"suffix": ""
},
{
"first": "Jingguang",
"middle": [],
"last": "Han",
"suffix": ""
}
],
"year": 2018,
"venue": "Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "2216--2225",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jinhua Du, Jingguang Han, Andy Way and Dadong Wan. 2018. Multi-level structured self-attentions for distantly supervised relation extraction. The 2018 Conference on Empirical Methods in Natural Language Processing, pages 2216-2225.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction",
"authors": [
{
"first": "Tsu-Jui",
"middle": [],
"last": "Fu",
"suffix": ""
},
{
"first": "Peng-Hsuan",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Wei-Yun",
"middle": [],
"last": "Ma",
"suffix": ""
}
],
"year": 2019,
"venue": "The 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "1409--1418",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tsu-Jui Fu, Peng-Hsuan Li and Wei-Yun Ma. 2019. GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction. The 57th Annual Meeting of the Association for Computa- tional Linguistics, pages 1409-1418.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction. the 55th Annual Meeting of the Association for Computational Linguistics",
"authors": [
{
"first": "Jiatao",
"middle": [],
"last": "Gu",
"suffix": ""
},
{
"first": "Zhengdong",
"middle": [],
"last": "Lu",
"suffix": ""
},
{
"first": "Hang",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "O",
"middle": [
"K"
],
"last": "Victor",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Li",
"suffix": ""
}
],
"year": 2016,
"venue": "",
"volume": "",
"issue": "",
"pages": "199--208",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jiatao Gu, Zhengdong Lu, Hang Li and Victor O. K. Li. 2016. GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction. the 55th Annual Meeting of the Association for Computational Linguistics, pages 199-208.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Attention Guided Graph Convolutional Networks for Relation Extraction",
"authors": [
{
"first": "Zhijiang",
"middle": [],
"last": "Guo",
"suffix": ""
},
{
"first": "Yan",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Wei",
"middle": [],
"last": "Lu",
"suffix": ""
}
],
"year": 2019,
"venue": "The 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "241--251",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhijiang Guo, Yan Zhang and Wei Lu. 2019. Attention Guided Graph Convolutional Networks for Relation Extraction. The 57th Annual Meeting of the Association for Computational Linguistics, pages 241-251.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Generating natural answers by incorporating copying and retrieving mechanisms in sequence-to-sequence learning",
"authors": [
{
"first": "Shizhu",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Cao",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Kang",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Jun",
"middle": [],
"last": "Zhao",
"suffix": ""
}
],
"year": 2017,
"venue": "The 55th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "199--208",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shizhu He, Cao Liu, Kang Liu and Jun Zhao. 2017. Generating natural answers by incorporating copying and retrieving mechanisms in sequence-to-sequence learning. The 55th Annual Meeting of the Association for Computational Linguistics, pages 199-208.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "SemEval-2010 task 8: Multi-way classification of semantic relations between pairs of nominals",
"authors": [
{
"first": "Iris",
"middle": [],
"last": "Hendrickx",
"suffix": ""
},
{
"first": "Su",
"middle": [
"Nam"
],
"last": "Kim",
"suffix": ""
},
{
"first": "Zornitsa",
"middle": [],
"last": "Kozareva",
"suffix": ""
},
{
"first": "Preslav",
"middle": [],
"last": "Nakov",
"suffix": ""
},
{
"first": "Diarmuid\u00f3",
"middle": [],
"last": "S\u00e9aghdha",
"suffix": ""
},
{
"first": "Sebastian",
"middle": [],
"last": "Pad\u00f3",
"suffix": ""
},
{
"first": "Marco",
"middle": [],
"last": "Pennacchiotti",
"suffix": ""
},
{
"first": "Lorenza",
"middle": [],
"last": "Romano",
"suffix": ""
},
{
"first": "Stan",
"middle": [],
"last": "Szpakowicz",
"suffix": ""
}
],
"year": 2009,
"venue": "The 5th International Workshop on Semantic Evaluation",
"volume": "",
"issue": "",
"pages": "15--16",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, Preslav Nakov, Diarmuid\u00d3 S\u00e9aghdha, Sebastian Pad\u00f3, Marco Pennacchiotti, Lorenza Romano, Stan Szpakowicz. 2009. SemEval-2010 task 8: Multi-way classification of semantic relations between pairs of nominals. The 5th International Workshop on Semantic Evaluation, pages 15-16.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Deep residual learning for weakly-supervised relation extraction",
"authors": [
{
"first": "Yi Yao",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "William",
"middle": [
"Yang"
],
"last": "Wang",
"suffix": ""
}
],
"year": 2017,
"venue": "Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1803--1807",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yi Yao Huang and William Yang Wang. 2017. Deep residual learning for weakly-supervised relation extraction. The 2017 Conference on Empirical Methods in Natural Language Processing, pages 1803-1807.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Distant supervision for relation extraction with sentence-level attention and entity descriptions",
"authors": [
{
"first": "Guoliang",
"middle": [],
"last": "Ji",
"suffix": ""
},
{
"first": "Kang",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2017,
"venue": "The 31th AAAI Conference on Artificial Intelligence",
"volume": "",
"issue": "",
"pages": "3060--3066",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Guoliang Ji, Kang Liu, Shizhu He and Jun Zhao. 2017. Distant supervision for relation extraction with sentence-level attention and entity descriptions. The 31th AAAI Conference on Artificial Intelligence, pages 3060-3066.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Relation extraction with multi-instance multi-label convolutional neural networks",
"authors": [
{
"first": "Xiaotian",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "Quan",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Peng",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Bin",
"middle": [],
"last": "Wang",
"suffix": ""
}
],
"year": 2016,
"venue": "The 26th International Conference on Computational Linguistics: Technical Papers",
"volume": "",
"issue": "",
"pages": "1471--1480",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xiaotian Jiang, Quan Wang, Peng Li and Bin Wang. 2016. Relation extraction with multi-instance multi-label convolutional neural networks. The 26th International Conference on Computational Linguistics: Technical Papers, pages 1471-1480.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Combining lexical, syntactic and semantic features with Maximum Entropy models for extracting relations",
"authors": [
{
"first": "N",
"middle": [],
"last": "Kambhatla",
"suffix": ""
}
],
"year": 2016,
"venue": "The Meeting on Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "22--28",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kambhatla N. 2016. Combining lexical, syntactic and semantic features with Maximum Entropy models for extracting relations. The Meeting on Association for Computational Linguistics, pages 22-28.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Going out on a limb: Joint extraction of entity mentions and relations without dependency trees",
"authors": [
{
"first": "Arzoo",
"middle": [],
"last": "Katiyar",
"suffix": ""
},
{
"first": "Claire",
"middle": [],
"last": "Cardie",
"suffix": ""
}
],
"year": 2017,
"venue": "The 55th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "917--928",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Arzoo Katiyar and Claire Cardie. 2017. Going out on a limb: Joint extraction of entity mentions and relations without dependency trees. The 55th Annual Meeting of the Association for Computational Linguistics, pages 917-928.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Convolutional neural networks for sentence classification",
"authors": [
{
"first": "Yoon",
"middle": [],
"last": "Kim",
"suffix": ""
}
],
"year": 2014,
"venue": "Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "25--29",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yoon Kim. 2014. Convolutional neural networks for sentence classification. The 2014 Conference on Empirical Methods in Natural Language Processing, pages 25-29.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Semi-supervised classification with graph convolutional networks",
"authors": [
{
"first": "N",
"middle": [],
"last": "Thomas",
"suffix": ""
},
{
"first": "Max",
"middle": [],
"last": "Kipf",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Welling",
"suffix": ""
}
],
"year": 2016,
"venue": "The 5th International Conference on Learning Representations",
"volume": "",
"issue": "",
"pages": "24--26",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Thomas N. Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional net- works. The 5th International Conference on Learning Representations, pages 24-26.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Semantic Relation Classification via Bidirectional LSTM Networks with Entity-Aware Attention Using Latent Entity Typing. Symmetry",
"authors": [
{
"first": "Joohong",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Sangwoo",
"middle": [],
"last": "Seo",
"suffix": ""
},
{
"first": "Yong",
"middle": [
"Suk"
],
"last": "Choi",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Joohong Lee, Sangwoo Seo and Yong Suk Choi. 2019. Semantic Relation Classification via Bidirectional LSTM Networks with Entity-Aware Attention Using Latent Entity Typing. Symmetry, pages 785.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Incremental joint extraction of entity mentions and relations",
"authors": [
{
"first": "Qi",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Heng",
"middle": [],
"last": "Ji",
"suffix": ""
}
],
"year": 2014,
"venue": "The 52nd Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "402--412",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Qi Li and Heng Ji. 2014. Incremental joint extraction of entity mentions and relations. The 52nd Annual Meeting of the Association for Computational Linguistics, pages 402-412.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "DuIE: A Large-Scale Chinese Dataset for Information Extraction",
"authors": [
{
"first": "Shuangjie",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Wei",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Yabing",
"middle": [],
"last": "Shi",
"suffix": ""
},
{
"first": "Wenbin",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "Haijin",
"middle": [],
"last": "Liang",
"suffix": ""
},
{
"first": "Ye",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "Yang",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Yajuan",
"middle": [],
"last": "Lyu",
"suffix": ""
},
{
"first": "Yong",
"middle": [],
"last": "Zhu",
"suffix": ""
}
],
"year": 2019,
"venue": "The CCF International Conference on Natural Language Processing and Chinese Computing",
"volume": "",
"issue": "",
"pages": "791--800",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shuangjie Li, Wei He, Yabing Shi, Wenbin Jiang, Haijin Liang, Ye Jiang, Yang Zhang, Yajuan Lyu and Yong Zhu. 2019. DuIE: A Large-Scale Chinese Dataset for Information Extraction. The CCF International Conference on Natural Language Processing and Chinese Computing, pages 791-800.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Entity-Relation Extraction as Multi-Turn Question Answering",
"authors": [
{
"first": "Xiaoya",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Fan",
"middle": [],
"last": "Yin",
"suffix": ""
},
{
"first": "Zijun",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "Xiayu",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Arianna",
"middle": [],
"last": "Yuan",
"suffix": ""
},
{
"first": "Duo",
"middle": [],
"last": "Chai",
"suffix": ""
},
{
"first": "Mingxin",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Jiwei",
"middle": [],
"last": "Li",
"suffix": ""
}
],
"year": 2019,
"venue": "The 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "1340--1350",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xiaoya Li, Fan Yin, Zijun Sun, Xiayu Li, Arianna Yuan, Duo Chai, Mingxin Zhou and Jiwei Li. 2019. Entity-Relation Extraction as Multi-Turn Question Answering. The 57th Annual Meeting of the Association for Computational Linguistics, pages 1340-1350.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "chinese Relation Extraction with Multi-Grained Information and External Linguistic Knowledge",
"authors": [
{
"first": "Ziran",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Ning",
"middle": [],
"last": "Ding",
"suffix": ""
},
{
"first": "Zhiyuan",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Haitao",
"middle": [],
"last": "Zheng",
"suffix": ""
},
{
"first": "Ying",
"middle": [],
"last": "Shen",
"suffix": ""
}
],
"year": 2019,
"venue": "The 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "4377--4386",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ziran Li, Ning Ding, Zhiyuan Liu, Haitao Zheng and Ying Shen. 2019. chinese Relation Extraction with Multi-Grained Information and External Linguistic Knowledge. The 57th Annual Meeting of the Association for Computational Linguistics, pages 4377-4386.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Neural relation extraction with selective attention over instances",
"authors": [
{
"first": "Yankai",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "Shiqi",
"middle": [],
"last": "Shen",
"suffix": ""
},
{
"first": "Zhiyuan",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Huanbo",
"middle": [],
"last": "Luan",
"suffix": ""
},
{
"first": "Maosong",
"middle": [],
"last": "Sun",
"suffix": ""
}
],
"year": 2016,
"venue": "The 54th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "2124--2133",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan and Maosong Sun. 2016. Neural relation extraction with selective attention over instances. The 54th Annual Meeting of the Association for Computa- tional Linguistics, pages 2124-2133.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "A structured self-attentive sentence embedding",
"authors": [
{
"first": "Zhouhan",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "Minwei",
"middle": [],
"last": "Feng",
"suffix": ""
},
{
"first": "C\u00edcero",
"middle": [],
"last": "Nogueira",
"suffix": ""
},
{
"first": "Mo",
"middle": [],
"last": "Santos",
"suffix": ""
},
{
"first": "Bing",
"middle": [],
"last": "Yu",
"suffix": ""
},
{
"first": "Bowen",
"middle": [],
"last": "Xiang",
"suffix": ""
},
{
"first": "Yoshua",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Bengio",
"suffix": ""
}
],
"year": 2017,
"venue": "The 5th International Conference on Learning Representations",
"volume": "",
"issue": "",
"pages": "24--26",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhouhan Lin, Minwei Feng, C\u00edcero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou and Yoshua Bengio. 2017. A structured self-attentive sentence embedding. The 5th International Conference on Learning Representations, pages 24-26.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "A Relation Proposal Network for End-to-End Information Extraction. The Natural Language Processing and Chinese Computing",
"authors": [
{
"first": "Zhenhua",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Tianyi",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Wei",
"middle": [],
"last": "Dai",
"suffix": ""
},
{
"first": "Zehui",
"middle": [],
"last": "Dai",
"suffix": ""
},
{
"first": "Guangpeng",
"middle": [],
"last": "Zhang",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "782--790",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhenhua Liu, Tianyi Wang, Wei Dai, Zehui Dai and Guangpeng Zhang. 2019. A Relation Proposal Network for End-to-End Information Extraction. The Natural Language Processing and Chinese Computing, pages 782-790.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Encoding sentences with graph convolutional networks for semantic role labeling",
"authors": [
{
"first": "Diego",
"middle": [],
"last": "Marcheggiani",
"suffix": ""
},
{
"first": "Ivan",
"middle": [],
"last": "Titov",
"suffix": ""
}
],
"year": 2017,
"venue": "Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1506--1515",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Diego Marcheggiani and Ivan Titov. 2017. Encoding sentences with graph convolutional networks for semantic role labeling. The 2017 Conference on Empirical Methods in Natural Language Processing, pages 1506-1515.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Efficient estimation of word representations in vector space",
"authors": [
{
"first": "Tomas",
"middle": [],
"last": "Mikolov",
"suffix": ""
},
{
"first": "Kai",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Greg",
"middle": [],
"last": "Corrado",
"suffix": ""
},
{
"first": "Jeffrey",
"middle": [],
"last": "Dean",
"suffix": ""
}
],
"year": null,
"venue": "The 1st International Conference on Learning Representations",
"volume": "",
"issue": "",
"pages": "2--4",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tomas Mikolov, Kai Chen, Greg Corrado and Jeffrey Dean. 2013(b). Efficient estimation of word representations in vector space. The 1st International Conference on Learning Representations, pages 2-4.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Distributed Representations of Words and Phrases and their Compositionality",
"authors": [
{
"first": "Tomas",
"middle": [],
"last": "Mikolov",
"suffix": ""
},
{
"first": "Ilya",
"middle": [],
"last": "Sutskever",
"suffix": ""
},
{
"first": "Kai",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Gregory",
"middle": [
"S"
],
"last": "Corrado",
"suffix": ""
},
{
"first": "Jeffrey",
"middle": [],
"last": "Dean",
"suffix": ""
}
],
"year": null,
"venue": "The 27th Annual Conference on Neural Information Processing Systems",
"volume": "",
"issue": "",
"pages": "3111--3119",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado and Jeffrey Dean. 2013(a). Distributed Representations of Words and Phrases and their Compositionality. The 27th Annual Conference on Neural Information Processing Systems, pages 3111-3119.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Distant supervision for relation extraction without labeled data",
"authors": [
{
"first": "Melanie",
"middle": [],
"last": "Reiplinger",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Wiegand",
"suffix": ""
},
{
"first": "Dietrich",
"middle": [],
"last": "Klakow",
"suffix": ""
}
],
"year": 2009,
"venue": "The 47th Annual Meeting of the Association for Computational Linguistics and the 4th International Joint Conference on Natural Language Processing of the AFNLP",
"volume": "",
"issue": "",
"pages": "2--7",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Melanie Reiplinger, Michael Wiegand and Dietrich Klakow. 2009. Distant supervision for relation ex- traction without labeled data. The 47th Annual Meeting of the Association for Computational Lin- guistics and the 4th International Joint Conference on Natural Language Processing of the AFNLP, pages 2-7.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "End-to-end relation extraction using lstms on sequences and tree structures",
"authors": [
{
"first": "Makoto",
"middle": [],
"last": "Miwa",
"suffix": ""
},
{
"first": "Mohit",
"middle": [],
"last": "Bansal",
"suffix": ""
}
],
"year": 2016,
"venue": "The 54th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "7--12",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Makoto Miwa and Mohit Bansal. 2016. End-to-end relation extraction using lstms on sequences and tree structures. The 54th Annual Meeting of the Association for Computational Linguistics, pages 7-12.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "Improved Word Representation Learning with Sememes",
"authors": [
{
"first": "Yilin",
"middle": [],
"last": "Niu",
"suffix": ""
},
{
"first": "Ruobing",
"middle": [],
"last": "Xie",
"suffix": ""
},
{
"first": "Zhiyuan",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Maosong",
"middle": [],
"last": "Sun",
"suffix": ""
}
],
"year": 2017,
"venue": "The 55th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "2049--2058",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yilin Niu, Ruobing Xie, Zhiyuan Liu and Maosong Sun. 2017. Improved Word Representation Learning with Sememes. The 55th Annual Meeting of the Association for Computational Linguistics, pages 2049-2058.",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "Glove: Global vectors for word representation",
"authors": [
{
"first": "Jeffrey",
"middle": [],
"last": "Pennington",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Socher",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
}
],
"year": 2014,
"venue": "The 2014 conference on empirical methods in natural language processing",
"volume": "",
"issue": "",
"pages": "1532--1534",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jeffrey Pennington, Richard Socher and Christopher D. Manning. 2014. Glove: Global vectors for word representation. The 2014 conference on empirical methods in natural language processing, pages 1532-1534.",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "Modeling Relations and Their Mentions without Labeled Text. European Conference on Machine Learning & Knowledge Discovery in Databases",
"authors": [
{
"first": "Sebastian",
"middle": [],
"last": "Riedel",
"suffix": ""
},
{
"first": "Limin",
"middle": [],
"last": "Yao",
"suffix": ""
},
{
"first": "Andrew",
"middle": [],
"last": "Mccallum",
"suffix": ""
}
],
"year": 2010,
"venue": "",
"volume": "",
"issue": "",
"pages": "20--24",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sebastian Riedel, Limin Yao and Andrew McCallum. 2010. Modeling Relations and Their Mentions with- out Labeled Text. European Conference on Machine Learning & Knowledge Discovery in Databases, pages 20-24.",
"links": null
},
"BIBREF38": {
"ref_id": "b38",
"title": "UTD: Classifying semantic relations by combining lexical and semantic resources",
"authors": [
{
"first": "Bryan",
"middle": [],
"last": "Rink",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Sanda",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Harabagiu",
"suffix": ""
}
],
"year": 2010,
"venue": "The 5th International Workshop on Semantic Evaluation",
"volume": "",
"issue": "",
"pages": "15--16",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bryan Rink and Sanda M. Harabagiu. 2010. UTD: Classifying semantic relations by combining lexical and semantic resources. The 5th International Workshop on Semantic Evaluation, pages 15-16.",
"links": null
},
"BIBREF39": {
"ref_id": "b39",
"title": "Classifying relations by ranking with convolutional neural networks",
"authors": [
{
"first": "C\u00edcero",
"middle": [],
"last": "Nogueira Dos Santos",
"suffix": ""
},
{
"first": "Bing",
"middle": [],
"last": "Xiang",
"suffix": ""
},
{
"first": "Bowen",
"middle": [],
"last": "Zhou",
"suffix": ""
}
],
"year": 2015,
"venue": "The 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing",
"volume": "",
"issue": "",
"pages": "626--634",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "C\u00edcero Nogueira dos Santos, Bing Xiang and Bowen Zhou. 2015. Classifying relations by ranking with convolutional neural networks. The 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, pages 626-634.",
"links": null
},
"BIBREF40": {
"ref_id": "b40",
"title": "Semantic compositionality through recursive matrix-vector spaces",
"authors": [
{
"first": "Richard",
"middle": [],
"last": "Socher",
"suffix": ""
},
{
"first": "Brody",
"middle": [],
"last": "Huval",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
},
{
"first": "Andrew",
"middle": [
"Y"
],
"last": "Ng",
"suffix": ""
}
],
"year": 2012,
"venue": "The 2012 joint conference on empirical methods in natural language processing and computational natural language learning",
"volume": "",
"issue": "",
"pages": "1201--1211",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Richard Socher, Brody Huval, Christopher D. Manning and Andrew Y. Ng. 2012. Semantic composi- tionality through recursive matrix-vector spaces. The 2012 joint conference on empirical methods in natural language processing and computational natural language learning, pages 1201-1211.",
"links": null
},
"BIBREF41": {
"ref_id": "b41",
"title": "Joint Type Inference on Entities and Relations via Graph Convolutional",
"authors": [
{
"first": "Changzhi",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "Yeyun",
"middle": [],
"last": "Gong",
"suffix": ""
},
{
"first": "Yuanbin",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Ming",
"middle": [],
"last": "Gong",
"suffix": ""
},
{
"first": "Daxin",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "Man",
"middle": [],
"last": "Lan",
"suffix": ""
},
{
"first": "Shiliang",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "Nan",
"middle": [],
"last": "Duan",
"suffix": ""
}
],
"year": 2019,
"venue": "The 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "1361--1370",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Changzhi Sun, Yeyun Gong, Yuanbin Wu, Ming Gong, Daxin Jiang, Man Lan, Shiliang Sun and Nan Duan. 2019. Joint Type Inference on Entities and Relations via Graph Convolutional. The 57th Annual Meeting of the Association for Computational Linguistics, pages 1361-1370.",
"links": null
},
"BIBREF42": {
"ref_id": "b42",
"title": "Extracting Entities and Relations with Joint Minimum Risk Training",
"authors": [
{
"first": "Changzhi",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "Yuanbin",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Man",
"middle": [],
"last": "Lan",
"suffix": ""
},
{
"first": "Shiliang",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "Wenting",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Kuang-Chih",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Kewen",
"middle": [],
"last": "Wu",
"suffix": ""
}
],
"year": 2018,
"venue": "Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "2256--2265",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Changzhi Sun, Yuanbin Wu, Man Lan, Shiliang Sun, Wenting Wang, Kuang-Chih Lee and Kewen Wu. 2018. Extracting Entities and Relations with Joint Minimum Risk Training. The 2018 Conference on Empirical Methods in Natural Language Processing, pages 2256-2265.",
"links": null
},
"BIBREF43": {
"ref_id": "b43",
"title": "A Hierarchical Framework for Relation Extraction with Reinforcement Learning",
"authors": [
{
"first": "Ryuichi",
"middle": [],
"last": "Takanobu",
"suffix": ""
},
{
"first": "Tianyang",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Jiexi",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Minlie",
"middle": [],
"last": "Huang",
"suffix": ""
}
],
"year": 2019,
"venue": "The Thirty-Third AAAI Conference on Artificial Intelligence",
"volume": "",
"issue": "",
"pages": "7072--7079",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ryuichi Takanobu, Tianyang Zhang, Jiexi Liu and Minlie Huang. 2019. A Hierarchical Framework for Relation Extraction with Reinforcement Learning. The Thirty-Third AAAI Conference on Artificial Intelligence, pages 7072-7079.",
"links": null
},
"BIBREF44": {
"ref_id": "b44",
"title": "Deep semantic role labeling with self-attention",
"authors": [
{
"first": "Zhixing",
"middle": [],
"last": "Tan",
"suffix": ""
},
{
"first": "Mingxuan",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Jun",
"middle": [],
"last": "Xie",
"suffix": ""
},
{
"first": "Yidong",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Xiaodong",
"middle": [],
"last": "Shi",
"suffix": ""
}
],
"year": 2018,
"venue": "The Thirty-Second AAAI Conference on Artificial Intelligence",
"volume": "",
"issue": "",
"pages": "4929--4936",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhixing Tan, Mingxuan Wang, Jun Xie, Yidong Chen and Xiaodong Shi. 2018. Deep semantic role labeling with self-attention. The Thirty-Second AAAI Conference on Artificial Intelligence, pages 4929-4936.",
"links": null
},
"BIBREF45": {
"ref_id": "b45",
"title": "Improving distantly-supervised neural relation extraction using side information",
"authors": [
{
"first": "Shikhar",
"middle": [],
"last": "Vashishth",
"suffix": ""
},
{
"first": "Rishabh",
"middle": [],
"last": "Joshi",
"suffix": ""
},
{
"first": "Chiranjib",
"middle": [],
"last": "Sai Suman Prayaga",
"suffix": ""
},
{
"first": "Partha",
"middle": [
"P"
],
"last": "Bhattacharyya",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Talukdar",
"suffix": ""
}
],
"year": 2018,
"venue": "The 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1257--1266",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shikhar Vashishth, Rishabh Joshi, Sai Suman Prayaga, Chiranjib Bhattacharyya and Partha P. Talukdar. 2018. Improving distantly-supervised neural relation extraction using side information. The 2018 Conference on Empirical Methods in Natural Language Processing, pages 1257-1266.",
"links": null
},
"BIBREF46": {
"ref_id": "b46",
"title": "Attention is all you need",
"authors": [
{
"first": "Ashish",
"middle": [],
"last": "Vaswani",
"suffix": ""
},
{
"first": "Noam",
"middle": [],
"last": "Shazeer",
"suffix": ""
},
{
"first": "Niki",
"middle": [],
"last": "Parmar",
"suffix": ""
},
{
"first": "Jakob",
"middle": [],
"last": "Uszkoreit",
"suffix": ""
},
{
"first": "Llion",
"middle": [],
"last": "Jones",
"suffix": ""
},
{
"first": "Aidan",
"middle": [
"N"
],
"last": "Gomez",
"suffix": ""
},
{
"first": "Lukasz",
"middle": [],
"last": "Kaiser",
"suffix": ""
},
{
"first": "Illia",
"middle": [],
"last": "Polosukhin",
"suffix": ""
}
],
"year": 2017,
"venue": "Advances in neural information processing systems",
"volume": "",
"issue": "",
"pages": "5998--6008",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems, pages 5998-6008.",
"links": null
},
"BIBREF47": {
"ref_id": "b47",
"title": "Pointer networks",
"authors": [
{
"first": "Oriol",
"middle": [],
"last": "Vinyals",
"suffix": ""
},
{
"first": "Meire",
"middle": [],
"last": "Fortunato",
"suffix": ""
},
{
"first": "Navdeep",
"middle": [],
"last": "Jaitly",
"suffix": ""
}
],
"year": 2015,
"venue": "Advances in Neural Information Processing Systems",
"volume": "",
"issue": "",
"pages": "2692--2700",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Oriol Vinyals, Meire Fortunato and Navdeep Jaitly. 2015. Pointer networks. Advances in Neural Infor- mation Processing Systems, pages 2692-2700.",
"links": null
},
"BIBREF48": {
"ref_id": "b48",
"title": "Label-free distant supervision for relation extraction via knowledge graph embedding",
"authors": [
{
"first": "Guanying",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Wen",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Ruoxu",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Yalin",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Xi",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Wei",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Hai",
"middle": [],
"last": "Zhu",
"suffix": ""
},
{
"first": "Huajun",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 2018,
"venue": "Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "2246--2255",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Guanying Wang, Wen Zhang, Ruoxu Wang, Yalin Zhou, Xi Chen, Wei Zhang, Hai Zhu and Huajun Chen. 2018. Label-free distant supervision for relation extraction via knowledge graph embedding. The 2018 Conference on Empirical Methods in Natural Language Processing, pages 2246-2255.",
"links": null
},
"BIBREF51": {
"ref_id": "b51",
"title": "Connecting language and knowledge bases with embedding models for relation extraction",
"authors": [
{
"first": "Jason",
"middle": [],
"last": "Weston",
"suffix": ""
},
{
"first": "Antoine",
"middle": [],
"last": "Bordes",
"suffix": ""
},
{
"first": "Oksana",
"middle": [],
"last": "Yakhnenko",
"suffix": ""
},
{
"first": "Nicolas",
"middle": [],
"last": "Usunier",
"suffix": ""
}
],
"year": 2013,
"venue": "The 2013 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1366--1371",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jason Weston, Antoine Bordes, Oksana Yakhnenko and Nicolas Usunier. 2013. Connecting language and knowledge bases with embedding models for relation extraction. The 2013 Conference on Empirical Methods in Natural Language Processing, pages 1366-1371.",
"links": null
},
"BIBREF52": {
"ref_id": "b52",
"title": "Semantic relation classification via convolutional neural networks with simple negative sampling",
"authors": [
{
"first": "Kun",
"middle": [],
"last": "Xu",
"suffix": ""
},
{
"first": "Yansong",
"middle": [],
"last": "Feng",
"suffix": ""
},
{
"first": "Songfang",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "Dongyan",
"middle": [],
"last": "Zhao",
"suffix": ""
}
],
"year": 2015,
"venue": "Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "17--21",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kun Xu, Yansong Feng, Songfang Huang and Dongyan Zhao. 2015(a). Semantic relation classification via convolutional neural networks with simple negative sampling. The 2015 Conference on Empirical Methods in Natural Language Processing, pages 17-21.",
"links": null
},
"BIBREF53": {
"ref_id": "b53",
"title": "Classifying relations via long short term memory networks along shortest dependency paths",
"authors": [
{
"first": "Yan",
"middle": [],
"last": "Xu",
"suffix": ""
},
{
"first": "Lili",
"middle": [],
"last": "Mou",
"suffix": ""
},
{
"first": "Ge",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Yunchuan",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Hao",
"middle": [],
"last": "Peng",
"suffix": ""
},
{
"first": "Zhi",
"middle": [],
"last": "Jin",
"suffix": ""
}
],
"year": 2015,
"venue": "Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1785--1794",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng and Zhi Jin. 2015(b). Classifying relations via long short term memory networks along shortest dependency paths. The 2015 Conference on Empirical Methods in Natural Language Processing, pages 1785-1794.",
"links": null
},
"BIBREF54": {
"ref_id": "b54",
"title": "Kernel Methods for Relation Extraction",
"authors": [
{
"first": "Dmitry",
"middle": [],
"last": "Zelenko",
"suffix": ""
},
{
"first": "Chinatsu",
"middle": [],
"last": "Aone",
"suffix": ""
},
{
"first": "Anthony",
"middle": [],
"last": "Richardella",
"suffix": ""
}
],
"year": 2003,
"venue": "Journal of Machine Learning Research",
"volume": "",
"issue": "",
"pages": "1083--1106",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Dmitry Zelenko, Chinatsu Aone and Anthony Richardella. 2003. Kernel Methods for Relation Extraction. Journal of Machine Learning Research, pages 1083-1106.",
"links": null
},
"BIBREF55": {
"ref_id": "b55",
"title": "Distant supervision for relation extraction via piecewise convolutional neural networks",
"authors": [
{
"first": "Daojian",
"middle": [],
"last": "Zeng",
"suffix": ""
},
{
"first": "Kang",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2015,
"venue": "The 2015 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1753--1762",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Daojian Zeng, Kang Liu, Yubo Chen and Jun Zhao. 2015. Distant supervision for relation extraction via piecewise convolutional neural networks. The 2015 Conference on Empirical Methods in Natural Language Processing, pages 1753-1762.",
"links": null
},
"BIBREF56": {
"ref_id": "b56",
"title": "Relation classification via convolutional deep neural network",
"authors": [
{
"first": "Daojian",
"middle": [],
"last": "Zeng",
"suffix": ""
},
{
"first": "Kang",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Siwei",
"middle": [],
"last": "Lai",
"suffix": ""
},
{
"first": "Guangyou",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Jun",
"middle": [],
"last": "Zhao",
"suffix": ""
}
],
"year": 2014,
"venue": "The 2015 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "23--29",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou and Jun Zhao. 2014. Relation classification via convolutional deep neural network. The 2015 Conference on Empirical Methods in Natural Language Processing, pages 23-29.",
"links": null
},
"BIBREF57": {
"ref_id": "b57",
"title": "Extracting relational facts by an end-to-end neural model with copy mechanism",
"authors": [
{
"first": "Xiangrong",
"middle": [],
"last": "Zeng",
"suffix": ""
},
{
"first": "Daojian",
"middle": [],
"last": "Zeng",
"suffix": ""
},
{
"first": "Shizhu",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Kang",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Jun",
"middle": [],
"last": "Zhao",
"suffix": ""
}
],
"year": 2018,
"venue": "The 56th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "506--514",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xiangrong Zeng, Daojian Zeng, Shizhu He, Kang Liu and Jun Zhao. 2018. Extracting relational facts by an end-to-end neural model with copy mechanism. The 56th Annual Meeting of the Association for Computational Linguistics, pages 506-514.",
"links": null
},
"BIBREF58": {
"ref_id": "b58",
"title": "End-to-end neural relation extraction with global optimization",
"authors": [
{
"first": "Meishan",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Yue",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Guohong",
"middle": [],
"last": "Fu",
"suffix": ""
}
],
"year": 2017,
"venue": "Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1730--1740",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Meishan Zhang, Yue Zhang and Guohong Fu. 2017. End-to-end neural relation extraction with global optimization. The 2017 Conference on Empirical Methods in Natural Language Processing, pages 1730-1740.",
"links": null
},
"BIBREF59": {
"ref_id": "b59",
"title": "Long-tail Relation Extraction via Knowledge Graph Embeddings and Convolution Networks",
"authors": [
{
"first": "Ningyu",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Shumin",
"middle": [],
"last": "Deng",
"suffix": ""
},
{
"first": "Zhanlin",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "Guanying",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Xi",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Wei",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Huajun",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 2019,
"venue": "The 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "",
"issue": "",
"pages": "3016--3025",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ningyu Zhang, Shumin Deng, Zhanlin Sun, Guanying Wang, Xi Chen, Wei Zhang and Huajun Chen. 2019. Long-tail Relation Extraction via Knowledge Graph Embeddings and Convolution Networks. The 2019 Conference of the North American Chapter of the Association for Computational Linguis- tics: Human Language Technologies, pages 3016-3025.",
"links": null
},
"BIBREF60": {
"ref_id": "b60",
"title": "Graph convolution over pruned dependency trees improves relation extraction",
"authors": [
{
"first": "Yuhao",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Peng",
"middle": [],
"last": "Qi",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
}
],
"year": 2018,
"venue": "The 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "2205--2215",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yuhao Zhang, Peng Qi and Christopher D. Manning. 2018. Graph convolution over pruned dependency trees improves relation extraction. The 2018 Conference on Empirical Methods in Natural Language Processing, pages 2205-2215.",
"links": null
},
"BIBREF61": {
"ref_id": "b61",
"title": "Joint extraction of entities and relations based on a novel tagging scheme",
"authors": [
{
"first": "Suncong",
"middle": [],
"last": "Zheng",
"suffix": ""
},
{
"first": "Feng",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Hongyun",
"middle": [],
"last": "Bao",
"suffix": ""
},
{
"first": "Yuexing",
"middle": [],
"last": "Hao",
"suffix": ""
},
{
"first": "Peng",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Bo",
"middle": [],
"last": "Xu",
"suffix": ""
}
],
"year": 2017,
"venue": "The 55th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "1227--1236",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Suncong Zheng, Feng Wang, Hongyun Bao, Yuexing Hao, Peng Zhou and Bo Xu. 2017. Joint extraction of entities and relations based on a novel tagging scheme. The 55th Annual Meeting of the Association for Computational Linguistics, pages 1227-1236.",
"links": null
},
"BIBREF62": {
"ref_id": "b62",
"title": "Attention-based bidirectional long short-term memory networks for relation classification",
"authors": [
{
"first": "Peng",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Wei",
"middle": [],
"last": "Shi",
"suffix": ""
},
{
"first": "Jun",
"middle": [],
"last": "Tian",
"suffix": ""
},
{
"first": "Zhenyu",
"middle": [],
"last": "Qi",
"suffix": ""
},
{
"first": "Bingchen",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Hongwei",
"middle": [],
"last": "Hao",
"suffix": ""
},
{
"first": "Bo",
"middle": [],
"last": "Xu",
"suffix": ""
}
],
"year": 2016,
"venue": "The 54th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "207--212",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li, Hongwei Hao and Bo Xu. 2016. Attention-based bidirectional long short-term memory networks for relation classification. The 54th Annual Meeting of the Association for Computational Linguistics, pages 207-212.",
"links": null
}
},
"ref_entries": {
"TABREF0": {
"type_str": "table",
"num": null,
"content": "<table><tr><td>\u4f53\uff0crelation\u8868\u793a\u5b9e\u4f53\u4e4b\u95f4\u7684\u8bed\u4e49\u5173\u7cfb\u3002\u4f8b\u5982\uff0c\u7ed9\u51fa\u5982\u4e0b\u7684\u53e5\u5b50\uff1a\u5218\u7fd4\uff0c1983\u5e747\u670813\u65e5\u51fa\u751f\u4e8e</td></tr><tr><td>\u4e0a\u6d77\uff0c\u4e2d\u56fd\u7537\u5b50\u7530\u5f84\u961f110\u7c73\u680f\u8fd0\u884c\u5458\u3002\u6211\u4eec\u53ef\u4ee5\u62bd\u53d6\u51fa\u5b9e\u4f53\u5173\u7cfb\u4e09\u5143\u7ec4\u5b9e\u4f8b(\u5218\u7fd4\uff0c\u51fa\u751f\u5730\uff0c</td></tr><tr><td>\u4e0a\u6d77)\u3002</td></tr><tr><td>\u8fd9\u91cc\u6211\u4eec\u4e3b\u8981\u7814\u7a76\u57fa\u4e8e\u6df1\u5ea6\u5b66\u4e60\u7684\u5173\u7cfb\u62bd\u53d6\u65b9\u6cd5\uff0c\u5305\u62ec\uff1a\u6709\u76d1\u7763\u5173\u7cfb\u62bd\u53d6\u3001\u8fdc\u7a0b\u76d1\u7763\u5173</td></tr><tr><td>\u7cfb\u62bd\u53d6\u548c\u5b9e\u4f53\u5173\u7cfb\u7684\u8054\u5408\u62bd\u53d6\u3002\u57fa\u4e8e\u4f20\u7edf\u65b9\u6cd5\u7684\u5173\u7cfb\u62bd\u53d6\u7814\u7a76\u7efc\u8ff0\u53ef\u53c2\u8003\u6587\u732e (Pawar et al.,</td></tr><tr><td>2017)\u3002\u6b64\u5916\u6211\u4eec\u8fd8\u63a2\u8ba8\u4e2d\u6587\u5173\u7cfb\u62bd\u53d6\u7684\u7814\u7a76\u73b0\u72b6\u3001\u65b9\u6cd5\u7b49\u3002</td></tr><tr><td>\u672c\u6587\u7684\u7ed3\u6784\u5982\u4e0b\uff1a\u7b2c1\u8282\u4ecb\u7ecd\u7528\u4e8e\u5173\u7cfb\u62bd\u53d6\u7684\u6570\u636e\u96c6\uff1b\u7b2c2,3,4\u8282\u5206\u522b\u63a2\u8ba8\u6709\u76d1\u7763\u5173\u7cfb\u62bd\u53d6\u3001</td></tr><tr><td>\u8fdc\u7a0b\u76d1\u7763\u5173\u7cfb\u62bd\u53d6\u548c\u5b9e\u4f53\u5173\u7cfb\u8054\u5408\u62bd\u53d6\u76f8\u5173\u65b9\u6cd5\u7814\u7a76\u53ca\u5176\u4f18\u7f3a\u70b9\uff1b\u7b2c5\u8282\u63a2\u8ba8\u4e2d\u6587\u5b9e\u4f53\u5173\u7cfb\u62bd\u53d6</td></tr><tr><td>\u7684\u7814\u7a76\u73b0\u72b6\u548c\u65b9\u6cd5\uff1b\u7b2c6\u8282\u5bf9\u672c\u6587\u8fdb\u884c\u603b\u7ed3\u5e76\u5c55\u671b\u5173\u7cfb\u62bd\u53d6\u672a\u6765\u7684\u7814\u7a76\u65b9\u5411\u3002</td></tr><tr><td>2 \u6570 \u6570 \u6570\u636e \u636e \u636e\u96c6 \u96c6 \u96c6</td></tr><tr><td>2.1</td></tr></table>",
"text": "\u7cfb\uff0c\u5f97\u5230(subject:\u4e3b\u8bed, relation:\u5173\u7cfb, object:\u5bbe\u8bed)\u4e09\u5143\u7ec4\uff0c\u5176\u4e2dsubject\u548cobject\u8868\u793a\u4e24\u4e2a\u5b9e \u6709 \u6709 \u6709\u76d1 \u76d1 \u76d1\u7763 \u7763 \u7763\u6570 \u6570 \u6570\u636e \u636e \u636e\u96c6 \u96c6 \u96c6 \u6709\u76d1\u7763\u7684\u6570\u636e\u96c6\u9700\u8981\u4eba\u5de5\u6807\u6ce8\uff0c\u610f\u5473\u7740\u6570\u636e\u5305\u542b\u9ad8\u8d28\u91cf\u7684\u5b9e\u4f53\u5173\u7cfb\u4e09\u5143\u7ec4\uff0c\u51e0\u4e4e\u6ca1\u6709\u566a \u97f3\u3002\u4f46\u662f\u4eba\u5de5\u6807\u6ce8\u6570\u636e\u96c6\u8017\u65f6\u8017\u529b\uff0c\u56e0\u6b64\u8fd9\u4e9b\u6570\u636e\u96c6\u901a\u5e38\u89c4\u6a21\u8f83\u5c0f\u3002\u4e0b\u9762\u4ecb\u7ecd\u7684\u4e24\u4e2a\u6570\u636e\u96c6 \u4e2d\uff0c\u6bcf\u4e2a\u53e5\u5b50\u4e2d\u7684\u547d\u540d\u5b9e\u4f53\u8fdb\u884c\u4e86\u6807\u8bb0\u5e76\u4e14\u5b9e\u4f53\u5bf9\u8868\u8fbe\u7684\u5173\u7cfb\u53ef\u4ee5\u88ab\u9884\u6d4b\u3002 ACE 2005\u6570 \u6570 \u6570\u636e \u636e \u636e\u96c6 \u96c6 \u96c6\uff1a \uff1a \uff1a \u81ea\u52a8\u5185\u5bb9\u62bd\u53d6\u6570\u636e\u96c6(ACE)\u5305\u542b599\u4e2a\u4e0e\u65b0\u95fb\u548c\u7535\u5b50\u90ae\u4ef6\u76f8\u5173\u7684\u6587\u6863\uff0c \u5e76\u5212\u5206\u4e3a7\u79cd\u4e3b\u8981\u7684\u5173\u7cfb\u7c7b\u578b\u3002\u5176\u4e2d\uff0c6\u79cd\u4e3b\u8981\u5173\u7cfb\u7c7b\u578b\u5305\u542b\u8db3\u591f\u7684\u5b9e\u4f8b\uff0c\u6bcf\u79cd\u5173\u7cfb\u7c7b\u578b\u5e73\u5747 \u6709700\u4e2a\u5b9e\u4f8b\u7528\u4e8e\u8bad\u7ec3\u548c\u6d4b\u8bd5\u3002 SemEval-2010 Task 8 \u6570 \u6570 \u6570\u636e \u636e \u636e\u96c6 \u96c6 \u96c6\uff1a \uff1a \uff1a \u8be5\u6570\u636e\u96c6",
"html": null
},
"TABREF2": {
"type_str": "table",
"num": null,
"content": "<table><tr><td>\u566a\u97f3\u95ee\u9898\u3002\u5728\u591a\u793a\u4f8b\u8bad\u7ec3\u4e2d\u628a\u76ee\u6807\u51fd\u6570\u5b9a\u4e49\u5728\u5305\u4e0a\uff0c\u9996\u5148\u5bf9\u5305\u4e2d\u7684\u6bcf\u4e2a\u793a\u4f8b\u5206\u522b\u9884\u6d4b\uff0c\u5f97\u5230\u76f8 \u7684\u77e5\u8bc6\u6765\u63d0\u9ad8\u5c3e\u90e8\u6570\u636e\u8d2b\u4e4f\u7c7b\u7684\u6027\u80fd\u3002\u9996\u5148\uff0c\u4ed6\u4eec\u63d0\u51fa\u5229\u7528\u77e5\u8bc6\u56fe\u5d4c\u5165\u7684\u7c7b\u6807\u7b7e\u95f4\u7684\u9690\u5f0f\u5173\u7cfb</td></tr><tr><td>\u5e94\u7684\u5173\u7cfb\u6982\u7387\uff0c\u7136\u540e\u9009\u53d6\u6982\u7387\u6700\u5927\u7684\u793a\u4f8b\u6807\u7b7e\u4f5c\u4e3a\u5305\u7684\u6807\u7b7e\uff0c\u5e76\u5229\u7528\u5305\u7684\u6807\u7b7e\u66f4\u65b0\u7f51\u7edc\u53c2\u6570\u3002 \u77e5\u8bc6\uff0c\u5229\u7528\u56fe\u5377\u79ef\u7f51\u7edc\u5b66\u4e60\u663e\u5f0f\u5173\u7cfb\u77e5\u8bc6\u3002\u5176\u6b21\uff0c\u901a\u8fc7\u7c97\u5230\u7ec6\u7684\u77e5\u8bc6\u611f\u77e5\u6ce8\u610f\u673a\u5236\uff0c\u5c06\u5173\u8054\u77e5</td></tr><tr><td>PCNN\u5728\u8fdc\u7a0b\u76d1\u7763\u6570\u636e\u96c6\u4e0a\u5f97\u5230\u4e86\u4e0d\u9519\u7684\u6548\u679c\uff0c\u4f46\u8fd9\u79cd\u65b9\u6cd5\u4ecd\u7136\u6709\u7f3a\u9677\u3002\u9996\u5148\uff0cPCNN\u5c06 \u8bc6\u96c6\u6210\u5230\u5173\u8054\u62bd\u53d6\u6a21\u578b\u4e2d\u3002</td></tr><tr><td>\u8fdc\u7a0b\u76d1\u7763\u5173\u7cfb\u62bd\u53d6\u770b\u4f5c\u4e00\u4e2a\u5355\u6807\u7b7e\u5b66\u4e60\u95ee\u9898\uff0c\u5e76\u4e3a\u6bcf\u4e2a\u5b9e\u4f53\u5bf9\u9009\u62e9\u4e00\u4e2a\u5173\u7cfb\u6807\u7b7e\uff0c\u800c\u5ffd\u7565\u4e86\u540c \u4e00\u4e2a\u5b9e\u4f53\u5bf9\u53ef\u80fd\u5b58\u5728\u591a\u4e2a\u5173\u7cfb\u7684\u4e8b\u5b9e\u3002\u9488\u5bf9\u8fd9\u4e2a\u95ee\u9898\uff0c\u5229\u7528\u4e24\u4e2a\u4e0d\u540c\u7684\u635f\u5931\u51fd\u6570\uff0c (Jiang et 4.4 \u5c0f \u5c0f \u5c0f\u7ed3 \u7ed3 \u7ed3</td></tr><tr><td>al., 2016)\u5904\u7406\u591a\u6807\u7b7e\u5206\u7c7b\u95ee\u9898\u3002\u6b64\u5916\uff0cPCNN\u57fa\u4e8eRiedel\u63d0\u51fa\u7684\u5047\u8bbe\u6765\u751f\u6210\u6807\u8bb0\u6570\u636e,\u6839\u636e\u8fd9\u4e00 \u5728\u672c\u8282\u4e2d\uff0c\u6211\u4eec\u8be6\u7ec6\u8ba8\u8bba\u4e86\u4e00\u4e9b\u7528\u4e8e\u8fdc\u7a0b\u76d1\u7763\u5173\u7cfb\u62bd\u53d6\u7684\u7ecf\u5178\u65b9\u6cd5\uff0c\u4e0b\u9762\u88682\u7ed9\u51fa\u8fd9\u4e9b\u65b9\u6cd5</td></tr><tr><td>\u5047\u8bbe\uff0cPCNN\u5728\u8bad\u7ec3\u548c\u9884\u6d4b\u4e2d\u53ea\u9009\u62e9\u6bcf\u4e2a\u5b9e\u4f53\u5bf9\u53ef\u80fd\u7684\u53e5\u5b50\u3002\u7136\u800c\uff0c\u9009\u62e9\u4e00\u4e2a\u53e5\u5b50\u4f1a\u4e22\u5931\u5305\u542b \u5728NYT\u6570\u636e\u96c6\u4e0a\u62bd\u53d6\u5173\u7cfb\u793a\u4f8b\u524d100(TOP-100)\u3001\u524d200(Top-200)\u3001\u524d300(TOP-300)\u524d500(Top-</td></tr><tr><td>\u5176\u4ed6\u53e5\u5b50\u4e2d\u7684\u4fe1\u606f\u3002\u5bf9\u4e8e\u8fd9\u4e2a\u95ee\u9898\uff0c\u5047\u8bbe\"\u4e24\u4e2a\u5b9e\u4f53\u95f4\u7684\u5173\u7cfb\u53ef\u4ee5\u81ea\u52a8\u4ece\u63d0\u5230\u8fd9\u4e24\u4e2a\u5b9e\u4f53\u7684\u6240 500)\u7684\u5bf9\u6bd4\u7ed3\u679c,\u8fd9\u91cc\u4f7f\u7528Precision@N(P@N)\u4e3a\u8bc4\u4f30\u6307\u6807\u3002\u8fdc\u7a0b\u76d1\u7763\u5173\u7cfb\u62bd\u53d6\u53ea\u9700\u8981\u624b\u52a8\u6807\u6ce8</td></tr><tr><td>\u6709\u53e5\u5b50\u4e2d\u663e\u793a\u8868\u8fbe\u6216\u9690\u5f0f\u63a8\u65ad\" (Jiang et al., 2016)\uff0c\u5728\u4f7f\u7528\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u81ea\u52a8\u63d0\u53d6\u6bcf\u4e2a\u53e5\u5b50\u7684 \u5c11\u91cf\u7684\u5173\u7cfb\u5b9e\u4f8b\uff0c\u9002\u7528\u4e8e\u6ca1\u6709\u6807\u6ce8\u8bed\u6599\u5e93\u7684\u5173\u7cfb\u62bd\u53d6\uff0c\u4f46\u5176\u5b9e\u73b0\u8fc7\u7a0b\u5728\u6570\u636e\u96c6\u4e2d\u5f15\u5165\u4e86\u566a\u58f0\uff0c</td></tr><tr><td>\u7279\u5f81\u540e\uff0c\u4ed6\u4eec\u4f7f\u7528\u8de8\u53e5\u6700\u5927\u6c60\u5316\u6765\u9009\u62e9\u4e0d\u540c\u53e5\u5b50\u7684\u7279\u5f81\uff0c\u7136\u540e\u5c06\u6700\u91cd\u8981\u7684\u7279\u5f81\u805a\u5408\u4e3a\u6bcf\u4e2a\u5b9e\u4f53 \u4f7f\u5f97\u8be5\u65b9\u6cd5\u7684\u6027\u80fd\u4f4e\u4e8e\u6709\u76d1\u7763\u7684\u5173\u7cfb\u62bd\u53d6\u65b9\u6cd5\u3002\u8bb8\u591a\u540e\u7eed\u7684\u5de5\u4f5c\u90fd\u8bd5\u56fe\u5229\u7528\u9009\u62e9\u6027\u6ce8\u610f\u529b\u673a</td></tr><tr><td>\u5bf9\u7684\u8868\u793a\u3002\u7531\u4e8e\u7ed3\u679c\u8868\u793a\u6709\u4e0d\u540c\u53e5\u5b50\u7684\u7279\u5f81\u7ec4\u6210\uff0c\u56e0\u6b64\u8be5\u65b9\u6cd5\u5145\u5206\u5229\u7528\u8fd9\u4e9b\u53e5\u5b50\u4e2d\u5305\u542b\u7684\u6240\u6709 \u5236\u3001\u878d\u5408\u77e5\u8bc6\u5e93\u7b49\u65b9\u6cd5\u6765\u5904\u7406\u566a\u58f0\u548c\u653e\u5bbd\u8fdc\u7a0b\u76d1\u7763\u5047\u8bbe\uff0c\u901a\u8fc7\u53bb\u566a\u8fdb\u4e00\u6b65\u63d0\u9ad8\u6027\u80fd\u3002\u8fdc\u7a0b\u76d1\u7763</td></tr><tr><td>Socher et al., 2012) \u53ef\u7528\u4fe1\u606f\u3002\u6b64\u5916\uff0c\u5229\u7528\u53e5\u5b50\u7ea7\u522b\u7684\u6ce8\u610f\u529b\u673a\u5236 (Lin et al., 2016)\u6765\u81ea\u52a8\u6355\u83b7\u4e0d\u540c\u53e5\u5b50\u7684\u91cd\u8981\u7a0b Word embeddings+POS,NER, WordNet \u5173\u7cfb\u62bd\u53d6\u65b9\u6cd5\u5229\u7528\u7684\u662f\u5f31\u6807\u6ce8\u6570\u636e\uff0c\u4e00\u822c\u7684\u795e\u7ecf\u7f51\u7edc\u65b9\u6cd5\u90fd\u662f\u4ee5\u6570\u636e\u9a71\u52a8\u6a21\u578b\uff0c\u4f46\u7eaf\u6570\u636e\u9a71\u52a8 82.4% \u5ea6\uff0c\u8fc7\u6ee4\u566a\u58f0\u53e5\u5b50\u3002 \u6a21\u578b\u5e76\u4e0d\u80fd\u5145\u5206\u6316\u6398\u6570\u636e\u4e2d\u7684\u6f5c\u5728\u4fe1\u606f\uff0c\u4ece\u8868\u4e2d\u6211\u4eec\u53ef\u4ee5\u53d1\u73b0\uff0c\u878d\u5408\u77e5\u8bc6\u5e93\u7684\u65b9\u6cd5\u76f8\u5bf9\u6709\u7740\u59e3</td></tr><tr><td>Word embeddings + \u4e0a\u8ff0\u65b9\u6cd5\u4f7f\u7528\u7684\u795e\u7ecf\u7f51\u7edc\uff0c\u6a21\u578b\u5927\u591a\u662f\u76f8\u5bf9\u8f83\u6d45\u7684\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\uff0c\u901a\u5e38\u53ea\u6d89\u53ca\u4e00\u4e2a\u5377\u79ef\u5c42 \u597d\u7684\u6027\u80fd\uff0c\u8fd9\u7c7b\u65b9\u6cd5\u80fd\u591f\u66f4\u597d\u5730\u5c06\u7ed3\u6784\u5316\u77e5\u8bc6\u878d\u5165\u795e\u7ecf\u7f51\u7edc\u6a21\u578b\u4e2d\uff0c\u7528\u77e5\u8bc6\u6307\u5bfc\u6a21\u578b\u3002\u878d\u5408\u77e5 CNN word position embeddings, 82.7% \u548c\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42\uff0c\u800c\u4e14\u4e0d\u6e05\u695a\u66f4\u6df1\u7684\u6a21\u578b\u7ed3\u6784\u662f\u5426\u80fd\u591f\u4ece\u566a\u58f0\u6570\u636e\u4e2d\u63d0\u53d6\u4fe1\u53f7\u3002\u4e00\u79cd\u57fa\u4e8e\u6b8b\u5dee \u8bc6\u5e93\u7684\u65b9\u6cd5\uff0c\u4e0d\u4ec5\u4ec5\u662f\u5173\u7cfb\u62bd\u53d6\u4efb\u52a1\uff0c\u5728\u5176\u4ed6\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u4e2d\u4e5f\u5177\u6709\u91cd\u8981\u610f\u4e49\u3002 (Zeng et al., 2014) WordNet \u878d \u878d \u878d\u5408 \u5408 \u5408\u8bcd \u8bcd \u8bcd\u6c47 \u6c47 \u6c47\u7279 \u7279 \u7279\u5f81 \u5f81 \u5f81\u65b9 \u65b9 \u65b9\u6cd5 \u6cd5 \u6cd5 CR-CNN (Santos et al., 2015) Word embeddings + word position embeddings 84.1% \u5b66\u4e60\u7684\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u3002 (Huang et al., 2017)\u7528\u4e8e\u5173\u7cfb\u62bd\u53d6\uff0c\u4ed6\u4eec\u5c06\u8bcd\u5d4c\u5165\u548c\u4f4d\u7f6e\u5d4c\u5165\u5408\u5e76\u5230\u4e00 \u65b9 \u65b9 \u65b9\u6cd5 \u6cd5 \u6cd5\u5206 \u5206 \u5206\u7c7b \u7c7b \u7c7b \u6a21 \u6a21 \u6a21\u578b \u578b \u578b Top-100 Top-200 Top-300 Top-500 \u4e2a\u6df1\u5ea6\u6b8b\u5dee\u7f51\u7edc\u4e2d\uff0c\u901a\u8fc7\u6052\u7b49\u6620\u5c04\u5230\u5377\u79ef\u5c42\u4e2d\u3002\u5b9e\u9a8c\u8868\u660e\uff0c\u8be5\u65b9\u6cd5\u5229\u75289\u5c42\u5e26\u6b8b\u5dee\u5b66\u4e60\u7684\u5377\u79ef\u795e \u7ecf\u7f51\u7edc\u53ef\u4ee5\u663e\u8457\u63d0\u5347\u8fdc\u7a0b\u76d1\u7763\u5173\u7cfb\u62bd\u53d6\u6027\u80fd\u3002 PCNN</td></tr><tr><td>depLCNN (Xu et al., 2015(a)) SDP-LSTM (Xu et al., 2015(b)) BRCNN (Cai et al., 2016) C-GCN (Zhang et al., 2018) 4.2 \u540e\uff0c\u6240\u6709\u53e5\u5b50\u7279\u5f81\u5411\u91cf\u7684\u52a0\u6743\u6c42\u548c\u5c31\u662f\u5305\u7684\u7279\u5f81\u3002\u6b64\u5916\uff0c\u4e3a\u4e86\u5c06\u66f4\u591a\u7684\u80cc\u666f\u77e5\u8bc6\u878d\u5165\u5230\u6a21\u578b WordNet, words around nominals 85.6% Word Embeddings, POS embeddings, WordNet embeddings, grammar relation embeddings 83.7% Word embeddings+POS, NER, WordNet embeddings 86.3% Word embeddings 84.8% \u4e2d\uff0c\u8be5\u65b9\u6cd5\u4f7f\u7528\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u6765\u63d0\u53d6\u5b9e\u4f53\u63cf\u8ff0\u7684\u7279\u5f81\u5411\u91cf\u3002 \u57fa \u57fa AGGCNs (Guo et al., 2019) Word embeddings \u4f7f\u7528\u6ce8\u610f\u529b\u673a\u5236\uff0c\u662f\u4e00\u79cd\u901a\u8fc7\u5b66\u4e60\u591a\u4e2a\u793a\u4f8b\u7684\u6743\u503c\u5206\u5e03\u6765\u9009\u62e9\u6709\u6548\u793a\u4f8b\u7684\u65b9\u6cd5\u3002\u4f46\u662f\uff0c\u57fa 85.7% \u4e8e\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edc\u7684\u8fdc\u7a0b\u76d1\u7763\u5b66\u4e60\u4e2d\u5b58\u5728\u4e24\u4e2a\u91cd\u8981\u7684\u8868\u793a\u5b66\u4e60\u95ee\u9898\uff1a(1)\u5728\u4e00\u4e2a\u793a\u4f8b\u4e2d\uff0c\u76ee\u6807\u5b9e\u4f53</td></tr><tr><td>AttBLSTM (Zhou et al., 2016) \u5bf9\u4e0a\u4e0b\u6587\u8868\u793a\u5b66\u4e60\u95ee\u9898\uff1b(2)\u591a\u4e2a\u793a\u4f8b\u7684\u6709\u6548\u793a\u4f8b\u9009\u62e9\u8868\u793a\u5b66\u4e60\u3002\u5728\u5148\u524d\u7684\u7814\u7a76\u5de5\u4f5c\u4e2d\uff0c\u901a\u5e38\u91c7 Word embeddings, position embeddings 84.0% \u75281-D\u5411\u91cf\u7684\u5355\u8bcd\u7ea7\u548c\u53e5\u5b50\u7ea7\u6ce8\u610f\u529b\u673a\u5236\u30021-D\u6ce8\u610f\u529b\u5411\u91cf\u7684\u7f3a\u9677\u662f\uff0c\u5b83\u53ea\u5173\u6ce8\u53e5\u5b50\u4e2d\u4e00\u4e2a\u6216\u5c11</td></tr><tr><td>\u57fa \u57fa \u57fa\u4e8e \u4e8e \u4e8e\u6ce8 \u6ce8 \u6ce8\u610f \u610f \u610f\u529b \u529b \u529b\u673a \u673a \u673a\u5236 \u5236 \u5236\u65b9 \u65b9 \u65b9\u6cd5 \u6cd5 \u6cd5 \u91cf\u7684\u65b9\u9762\uff0c\u6216\u4e00\u4e2a\u6216\u5c11\u91cf\u7684\u793a\u4f8b\u3002\u5176\u7ed3\u679c\u662f\u4e0d\u540c\u8bed\u4e49\u65b9\u9762\u7684\u53e5\u5b50\uff0c\u6216\u8005\u4e0d\u540c\u7684\u591a\u4e2a\u6709\u6548\u53e5\u5b50\u88ab BiLSTM with Entity-aware attention (Lee et al., 2019) Word emneddings, 85.2% \u5ffd\u7565\u3002\u53d7\u7ed3\u6784\u5316\u81ea\u6ce8\u610f\u529b\u53e5\u5b50\u5d4c\u5165 (Lin et al., 2017)\u7684\u542f\u53d1\uff0c\u4e00\u79cd\u65b0\u7684\u57fa\u4e8e\u53cc\u5411LSTM\u7684\u591a\u5c42\u7ed3 Latent entity Typing \u6784\u5316\u81ea\u6ce8\u610f\u529b\u673a\u5236\u6a21\u578b(MLSSA) (Du et al., 2018)\u7528\u4e8e\u7f13\u89e3\u4e0a\u8ff0\u4e24\u4e2a\u95ee\u9898\u3002\u9488\u5bf9\u7b2c\u4e00\u4e2a\u95ee\u9898\uff0c</td></tr><tr><td>\u4ed6\u4eec\u63d0\u51fa\u4e00\u4e2a\u57fa\u4e8e\u4e8c\u7ef4\u77e9\u9635\u7684\u5355\u8bcd\u7ea7\u6ce8\u610f\u529b\u673a\u5236\uff0c\u8be5\u673a\u5236\u5305\u542b\u591a\u4e2a\u5411\u91cf\uff0c\u6bcf\u4e2a\u5411\u91cf\u90fd\u805a\u7126\u4e8e\u53e5 Table 1: \u6709\u76d1\u7763\u5173\u7cfb\u62bd\u53d6\u65b9\u6cd5\u5728\u6570\u636e\u96c6SemEval-2010\u5bf9\u6bd4 \u5b50\u7684\u4e0d\u540c\u65b9\u9762\uff0c\u4ece\u800c\u66f4\u597d\u5730\u5b66\u4e60\u4e0a\u4e0b\u6587\u8868\u793a\u3002\u9488\u5bf9\u7b2c\u4e8c\u4e2a\u95ee\u9898\uff0c\u4ed6\u4eec\u63d0\u51fa\u4e00\u79cd\u7528\u4e8e\u591a\u793a\u4f8b\u5b66\u4e60</td></tr><tr><td>\u7684\u4e8c\u7ef4\u53e5\u5b50\u7ea7\u6ce8\u610f\u529b\u673a\u5236\uff0c\u5176\u4e2d\u5305\u542b\u591a\u4e2a\u5411\u91cf\uff0c\u6bcf\u4e2a\u5411\u91cf\u90fd\u96c6\u4e2d\u5728\u4e0d\u540c\u7684\u6709\u6548\u793a\u4f8b\u4e0a\uff0c\u4ee5\u66f4\u597d</td></tr><tr><td>\u5730\u9009\u62e9\u53e5\u5b50\u3002 4 \u57fa \u57fa \u6709\u76d1\u7763\u7684\u5173\u7cfb\u62bd\u53d6\u9700\u8981\u4f9d\u8d56\u4eba\u5de5\u6807\u6ce8\u7684\u6570\u636e\u96c6\uff0c\u9650\u5236\u4e86\u8be5\u65b9\u6cd5\u7684\u9002\u7528\u9886\u57df\u3002\u56e0\u6b64\uff0c\u8fdc\u7a0b\u76d1 4.3 \u878d \u878d \u878d\u5408 \u5408 \u5408\u77e5 \u77e5 \u77e5\u8bc6 \u8bc6 \u8bc6\u5e93 \u5e93 \u5e93\u7684 \u7684 \u7684\u65b9 \u65b9 \u65b9\u6cd5 \u6cd5 \u6cd5</td></tr><tr><td>\u7763\u65b9\u6cd5 (Mintz et al., 2009)\u5c06\u6587\u6863\u4e0e\u5df2\u77e5\u7684\u77e5\u8bc6\u5e93\u5bf9\u9f50\uff0c\u7528\u4e8e\u81ea\u52a8\u751f\u6210\u5927\u91cf\u8bad\u7ec3\u6570\u636e\u3002\u7136\u800c\uff0c \u4e3a\u4e86\u7f13\u89e3\u8fdc\u7a0b\u76d1\u7763\u4e2d\u9519\u8bef\u6807\u6ce8\u95ee\u9898\uff0c\u8bb8\u591a\u7814\u7a76\u5229\u7528\u73b0\u6709\u77e5\u8bc6\u5e93\u6dfb\u52a0\u4fe1\u606f\u3002\u9996\u5148\uff0c\u4e00\u79cd\u65e0\u6807</td></tr><tr><td>\u8fdc\u7a0b\u76d1\u7763\u5047\u8bbe\u662f\u4e00\u4e2a\u5f3a\u5047\u8bbe\u5e76\u4e14\u4f1a\u5bfc\u81f4\u9519\u8bef\u6807\u7b7e\u95ee\u9898\uff0c\u5373\u63d0\u5230\u4e24\u4e2a\u5b9e\u4f53\u7684\u53e5\u5b50\u4e0d\u4e00\u5b9a\u8868\u8fbe\u4ed6 \u7b7e\u7684\u8fdc\u7a0b\u76d1\u7763\u65b9\u6cd5 (Wang et al., 2018)\u5728\u8ddd\u79bb\u5047\u8bbe\u4e0d\u5145\u5206\u7684\u6761\u4ef6\u4e0b\uff0c\u4e0d\u4f7f\u7528\u5173\u7cfb\u6807\u7b7e\uff0c\u53ea\u5229\u7528</td></tr><tr><td>\u4eec\u5728\u77e5\u8bc6\u5e93\u4e2d\u7684\u5173\u7cfb\u3002\u56e0\u6b64\u53ef\u4ee5\u5c06\u8fdc\u7a0b\u76d1\u7763\u5173\u7cfb\u62bd\u53d6\u4efb\u52a1\u4f5c\u4e3a\u4e00\u4e2a\u591a\u793a\u4f8b\u5b66\u4e60\u95ee\u9898\u6765\u653e\u5bbd\u5047 \u77e5\u8bc6\u5e93(KG)\u7684\u5148\u9a8c\u77e5\u8bc6\u76f4\u63a5\u3001\u67d4\u548c\u7684\u76d1\u7763\u5206\u7c7b\u5668\u7684\u5b66\u4e60\u3002\u9664\u4e86\u5173\u7cfb\u793a\u4f8b\u5916\uff0c\u77e5\u8bc6\u5e93\u4e2d\u8fd8\u5305\u62ec\u5176</td></tr><tr><td>\u8bbe (Riedel et al., 2010)\u3002\u5728\u7528\u4e8e\u5173\u7cfb\u62bd\u53d6\u7684\u591a\u793a\u4f8b\u5b66\u4e60\u4e2d\uff0c\u77e5\u8bc6\u5e93(KB)\u4e2d\u7684\u6bcf\u4e2a\u5b9e\u4f53\u5bf9\u6807\u8bb0\u4e00 \u4ed6\u76f8\u5173\u4fe1\u606f\uff0c\u6bd4\u5982\u5173\u7cfb\u7684\u522b\u540d,\u73b0\u6709\u7684\u5173\u7cfb\u62bd\u53d6\u6a21\u578b\u901a\u5e38\u5ffd\u7565\u8fd9\u4e9b\u53ef\u7528\u7684\u4fe1\u606f\u3002\u4e00\u79cd\u8fdc\u7a0b\u76d1\u7763\u5173</td></tr><tr><td>\u4e2a\u53e5\u5b50\u5305\u3002\u5305\u4e2d\u7684\u6240\u6709\u53e5\u5b50\u90fd\u5305\u542b\u5b9e\u4f53\u5bf9\u7684\u63d0\u53ca\uff0c\u4f46\u5b83\u4eec\u4e0d\u4e00\u5b9a\u5305\u542b\u76f4\u63a5\u5173\u7cfb\u3002\u591a\u793a\u4f8b\u5b66\u4e60\u662f \u7cfb\u62bd\u53d6\u65b9\u6cd5-RESIDE (Vashishth et al., 2018)\u5229\u7528\u77e5\u8bc6\u5e93\u4e2d\u9644\u52a0\u7684\u8fb9\u4fe1\u606f\u6539\u8fdb\u5173\u7cfb\u62bd\u53d6\u3002\u5177\u4f53</td></tr><tr><td>\u5bf9\u5305\u6807\u7b7e\u9884\u6d4b\uff0c\u800c\u4e0d\u662f\u4e3a\u6bcf\u4e2a\u53e5\u5b50\u9884\u6d4b\u5173\u7cfb\u6807\u7b7e\u3002\u5b83\u5047\u5b9a\uff0c\u5982\u679c\u5b9e\u4f53\u5bf9\u5b58\u5728\u5173\u7cfb\uff0c\u5219\u5305\u4e2d\u81f3\u5c11 \u7684\uff0c\u5b83\u4f7f\u7528\u5b9e\u4f53\u7c7b\u578b\u548c\u5173\u7cfb\u522b\u540d\u4fe1\u606f\u5728\u9884\u6d4b\u5173\u7cfb\u65f6\u65bd\u52a0\u8f6f\u7ea6\u675f\uff0c\u4f7f\u7528\u56fe\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u4ece\u6587\u672c\u4e2d</td></tr><tr><td>\u6709\u4e00\u4e2a\u793a\u4f8b\u53cd\u6620\u7ed9\u5b9a\u5b9e\u4f53\u5bf9\u7684\u5173\u7cfb\u3002 \u7f16\u7801\u8bed\u6cd5\u4fe1\u606f\uff0c\u5373\u4f7f\u5728\u6709\u9650\u989d\u5916\u4fe1\u606f\u53ef\u7528\u65f6\u4e5f\u80fd\u63d0\u9ad8\u6027\u80fd\u3002</td></tr><tr><td>\u8fdc\u7a0b\u76d1\u7763\u53ef\u4ee5\u81ea\u52a8\u6807\u6ce8\u8db3\u591f\u6570\u91cf\u7684\u8bad\u7ec3\u6570\u636e;\u7136\u800c\uff0c\u8fd9\u4e9b\u6570\u636e\u901a\u5e38\u53ea\u8986\u76d6\u5173\u7cfb\u7684\u6709\u9650\u90e8\u5206\u3002</td></tr><tr><td>\u8bb8\u591a\u5173\u7cfb\u90fd\u662f\u957f\u5c3e\u5173\u7cfb\uff0c\u6570\u636e\u4ecd\u7136\u4e0d\u8db3\u3002\u76ee\u524d\u7684\u8fdc\u7a0b\u76d1\u7763\u6a21\u578b\u5ffd\u7565\u4e86\u957f\u5c3e\u5173\u7cfb\u95ee\u9898\uff0c\u96be\u4ee5\u4ece\u7eaf 4.1 Riedel\u7684\u65b9\u6cd5\u62bd\u53d6\u6587\u672c\u7279\u5f81\u65f6\uff0c\u9700\u8981\u4f9d\u8d56\u81ea\u7136\u8bed\u8a00\u5904\u7406\u5de5\u5177\uff0c\u4f1a\u9020\u6210\u9519\u8bef\u4f20\u64ad\u95ee\u9898\u3002\u56e0 \u6587\u672c\u4e2d\u63d0\u53d6\u51fa\u5168\u9762\u7684\u4fe1\u606f\u3002\u53d7\u5728\u5c3e\u90e8\u7684\u6570\u636e\u548c\u5728\u9876\u90e8\u7684\u6570\u636e\u4e4b\u95f4\u4e30\u5bcc\u7684\u8bed\u4e49\u5173\u8054\u7684\u542f\u53d1\uff0c\u4e00\u79cd</td></tr><tr><td>\u6b64\uff0c\u5206\u6bb5\u5377\u79ef\u7f51\u7edc(PCNN) (Zeng et al., 2015)\u7528\u6765\u63d0\u53d6\u7279\u5f81\uff0c\u5e76\u5229\u7528\u591a\u793a\u4f8b\u5b66\u4e60\u65b9\u6cd5\u7f13\u89e3\u6570\u636e \u7528\u4e8e\u957f\u5c3e\u4e0d\u5e73\u8861\u6570\u636e\u7684\u8fdc\u7a0b\u76d1\u7763\u5173\u7cfb\u63d0\u53d6\u65b9\u6cd5 (Zhang et al., 2019)\u5229\u7528\u5206\u5e03\u9876\u90e8\u6570\u636e\u4e30\u5bcc\u7684\u7c7b</td></tr></table>",
"text": "\u57fa\u4e8e \u4e8e \u4e8e\u6700 \u6700 \u6700\u77ed \u77ed \u77ed\u4f9d \u4f9d \u4f9d\u5b58 \u5b58 \u5b58\u8def \u8def \u8def\u5f84 \u5f84 \u5f84\u65b9 \u65b9 \u65b9\u6cd5 \u6cd5 \u6cd5 \u57fa\u4e8e \u4e8e \u4e8e\u8fdc \u8fdc \u8fdc\u7a0b \u7a0b \u7a0b\u76d1 \u76d1 \u76d1\u7763 \u7763 \u7763\u7684 \u7684 \u7684\u5173 \u5173 \u5173\u7cfb \u7cfb \u7cfb\u62bd \u62bd \u62bd\u53d6 \u53d6 \u53d6\u65b9 \u65b9 \u65b9\u6cd5 \u6cd5 \u6cd5\u7814 \u7814 \u7814\u7a76 \u7a76 \u7a76 \u57fa \u57fa \u57fa\u4e8e \u4e8e \u4e8e\u5377 \u5377 \u5377\u79ef \u79ef \u79ef\u795e \u795e \u795e\u7ecf \u7ecf \u7ecf\u7f51 \u7f51 \u7f51\u7edc \u7edc \u7edc\u7684 \u7684 \u7684\u8fdc \u8fdc \u8fdc\u7a0b \u7a0b \u7a0b\u76d1 \u76d1 \u76d1\u7763 \u7763 \u7763\u65b9 \u65b9 \u65b9\u6cd5 \u6cd5 \u6cd5 \u57fa \u57fa \u57fa\u4e8e \u4e8e \u4e8e\u6ce8 \u6ce8 \u6ce8\u610f \u610f \u610f\u529b \u529b \u529b\u673a \u673a \u673a\u5236 \u5236 \u5236\u7684 \u7684 \u7684\u8fdc \u8fdc \u8fdc\u7a0b \u7a0b \u7a0b\u76d1 \u76d1 \u76d1\u7763 \u7763 \u7763\u65b9 \u65b9 \u65b9\u6cd5 \u6cd5 \u6cd5 \u73b0\u6709\u65b9\u6cd5\u5728\u9009\u62e9\u6709\u6548\u793a\u4f8b\u548c\u7f3a\u4e4f\u5b9e\u4f53\u80cc\u666f\u77e5\u8bc6\u65b9\u9762\u5b58\u5728\u7f3a\u9677\uff0c\u4e00\u4e2a\u57fa\u4e8ePCNN\u7684\u53e5\u5b50\u7ea7\u6ce8 \u610f\u529b\u673a\u5236\u6a21\u578b(APCNNs)(Ji et al., 2017)\u7528\u6765\u9009\u62e9\u6709\u6548\u793a\u4f8b\uff0c\u8be5\u6a21\u578b\u5145\u5206\u5229\u7528\u4e86\u77e5\u8bc6\u5e93\u4e2d\u7684\u76d1 \u7763\u4fe1\u606f\u3002\u4ed6\u4eec\u4eceFreebase\u548cWikipedia\u9875\u9762\u4e2d\u63d0\u53d6\u5b9e\u4f53\u63cf\u8ff0\u6765\u8865\u5145\u80cc\u666f\u77e5\u8bc6\u3002\u5bf9\u4e8e\u4e00\u4e2a\u5305\uff0c\u6a21 \u578b\u9996\u5148\u4f7f\u7528PCNNs\u63d0\u53d6\u6bcf\u4e2a\u53e5\u5b50\u7684\u7279\u5f81\u5411\u91cfv sen \u3002\u53d7\u5230TransE\u6a21\u578b\u7684\u542f\u53d1\uff0c\u5728TransE\u6a21\u578b\u4e2d\uff0c \u7528e 1 + r \u2248 e 2 \u5bf9\u4e00\u4e2a\u4e09\u5143\u7ec4r(e 1 1, e 2 )\u5efa\u6a21\uff0c\u5728APCNNs\u4e2d\uff0c\u7528(e 1 \u2212 e 2 )\u8868\u793a\u53e5\u5b50\u4e2de 1 \u548ce 2 \u4e4b\u95f4\u7684 \u5173\u7cfb\u3002\u7136\u540e\uff0c\u6a21\u578b\u901a\u8fc7\u4e00\u4e2a\u9690\u542b\u5c42\u7528\u4e32\u8054[v sen ; e 1 \u2212 e 2 ]\u7684\u65b9\u5f0f\u8ba1\u7b97\u6bcf\u4e2a\u53e5\u5b50\u7684\u6ce8\u610f\u529b\u6743\u91cd\u3002\u6700",
"html": null
},
"TABREF3": {
"type_str": "table",
"num": null,
"content": "<table><tr><td>\u5b9e\u4f53\u548c\u5173\u7cfb\u8054\u5408\u62bd\u53d6\u5728\u4e8e\u4ece\u975e\u7ed3\u6784\u5316\u6587\u672c\u4e2d\u540c\u65f6\u8fdb\u884c\u5b9e\u4f53\u8bc6\u522b\u548c\u5173\u7cfb\u62bd\u53d6\u3002\u4f20\u7edf\u65b9\u6cd5\u4ee5\u6d41</td></tr><tr><td>\u6c34\u7ebf\u65b9\u5f0f\u5904\u7406\u62bd\u53d6\u5b9e\u4f53\u5173\u7cfb\u4e09\u5143\u7ec4\u4efb\u52a1\uff0c\u5373\u9996\u5148\u63d0\u53d6\u5b9e\u4f53\uff0c\u7136\u540e\u8bc6\u522b\u4ed6\u4eec\u4e4b\u95f4\u7684\u5173\u7cfb\u3002\u8fd9\u4e2a\u72ec</td></tr><tr><td>\u7acb\u7684\u6846\u67b6\u4f7f\u4efb\u52a1\u6613\u4e8e\u5904\u7406\uff0c\u5e76\u4e14\u6bcf\u4e2a\u7ec4\u4ef6\u90fd\u53ef\u4ee5\u66f4\u52a0\u7075\u6d3b\u3002\u4f46\u5b83\u5ffd\u7565\u4e86\u8fd9\u4e24\u4e2a\u5b50\u4efb\u52a1\u4e4b\u95f4\u7684\u76f8</td></tr><tr><td>\u5173\u6027\uff0c\u5728\u8fd9\u79cd\u65b9\u5f0f\u4e0b\uff0c\u6bcf\u4e2a\u5b50\u4efb\u52a1\u90fd\u662f\u72ec\u7acb\u7684\u6a21\u578b\u3002\u8fd9\u6837\uff0c\u5b9e\u4f53\u8bc6\u522b\u7684\u7ed3\u679c\u53ef\u80fd\u4f1a\u5f71\u54cd\u5173\u7cfb\u5206</td></tr><tr><td>\u7c7b\u7684\u6027\u80fd\uff0c\u5bfc\u81f4\u9519\u8bef\u4f20\u9012\u3002\u4e0e\u6d41\u6c34\u7ebf\u65b9\u6cd5\u4e0d\u540c\uff0c\u8054\u5408\u5b66\u4e60\u6846\u67b6\u80fd\u5229\u7528\u5355\u4e2a\u6a21\u578b\u63d0\u53d6\u5b9e\u4f53\u548c\u5173</td></tr><tr><td>\u7cfb\uff0c\u80fd\u591f\u6709\u6548\u5730\u96c6\u6210\u5b9e\u4f53\u548c\u5173\u7cfb\u7684\u4fe1\u606f\u3002</td></tr><tr><td>5.1</td></tr></table>",
"text": "\u8fdc\u7a0b\u76d1\u7763\u5173\u7cfb\u62bd\u53d6\u65b9\u6cd5\u5728\u6570\u636e\u96c6NYT\u6570\u636e\u96c6\u5bf9\u6bd4 5 \u5b9e \u5b9e \u5b9e\u4f53 \u4f53 \u4f53\u548c \u548c \u548c\u5173 \u5173 \u5173\u7cfb \u7cfb \u7cfb\u8054 \u8054 \u8054\u5408 \u5408 \u5408\u62bd \u62bd \u62bd\u53d6 \u53d6 \u53d6\u65b9 \u65b9 \u65b9\u6cd5 \u6cd5 \u6cd5\u7814 \u7814 \u7814\u7a76 \u7a76 \u7a76 \u57fa \u57fa \u57fa\u4e8e \u4e8e \u4e8e\u5171 \u5171 \u5171\u4eab \u4eab \u4eab\u53c2 \u53c2 \u53c2\u6570 \u6570 \u6570\u7684 \u7684 \u7684\u8054 \u8054 \u8054\u5408 \u5408 \u5408\u62bd \u62bd \u62bd\u53d6 \u53d6 \u53d6\u65b9 \u65b9 \u65b9\u6cd5 \u6cd5 \u6cd5 \u6700\u65e9\u7684\u8054\u5408\u6846\u67b6\u6a21\u578b (Li et al., 2014)\u5229\u7528\u7ed3\u6784\u5316\u611f\u77e5\u673a\u548c\u96c6\u675f\u641c\u7d22\u65b9\u5f0f\u540c\u65f6\u63d0\u53d6\u5b9e\u4f53\u53ca\u5176 \u5173\u7cfb\u3002\u8be5\u6846\u67b6\u91c7\u7528\u4e86\u4e00\u79cd\u57fa\u4e8e\u534a\u9a6c\u5c14\u79d1\u592b\u94fe\u601d\u60f3\u7684\u5206\u6bb5\u89e3\u7801\u5668\uff0c\u514b\u670d\u4e86\u4f20\u7edf\u7684\u57fa\u4e8e\u5b57\u7b26\u7684\u6807\u6ce8 \u65b9\u5f0f\u3002\u6b64\u5916\uff0c\u8003\u8651\u5230\u4e0d\u7cbe\u786e\u7684\u641c\u7d22\uff0c\u4ed6\u4eec\u63d0\u51fa\u4e00\u4e9b\u65b0\u7684\u6709\u6548\u7684\u5168\u5c40\u7279\u5f81\u4f5c\u4e3a\u7ea6\u675f\u6765\u6355\u6349\u5b9e\u4f53\u548c \u5173\u7cfb\u4e4b\u95f4\u7684\u76f8\u4e92\u4f9d\u8d56\u6027\u3002 \u57fa \u57fa \u57fa\u4e8e \u4e8e \u4e8e\u5168 \u5168 \u5168\u5c40 \u5c40 \u5c40\u4f18 \u4f18 \u4f18\u5316 \u5316 \u5316\u7684 \u7684 \u7684\u8054 \u8054 \u8054\u5408 \u5408 \u5408\u62bd \u62bd \u62bd\u53d6 \u53d6 \u53d6\u65b9 \u65b9 \u65b9\u6cd5 \u6cd5 \u6cd5",
"html": null
},
"TABREF4": {
"type_str": "table",
"num": null,
"content": "<table><tr><td>COAE2016\uff1a \uff1a \uff1a \u8be5\u6570\u636e\u96c6\u6765\u6e90\u4e8e\u7b2c\u516b\u5c4a\u4e2d\u6587\u503e\u5411\u6027\u5206\u6790\u8bc4\u6d4b(COAE2016)\u7684\u9762\u5411\u77e5\u8bc6\u62bd\u53d6\u7684</td></tr><tr><td>\u5173\u7cfb\u5206\u7c7b\u4efb\u52a1\u3002\u8be5\u6570\u636e\u96c6\u5305\u542b988\u53e5\u8bad\u7ec3\u96c6\u3001483\u53e5\u6d4b\u8bd5\u96c6\uff0c\u4ee5\u53ca10\u79cd\u5173\u7cfb\u7c7b\u578b(\u4eba\u7269\u7684\u51fa\u751f\u65e5</td></tr><tr><td>\u671f, \u4eba\u7269\u7684\u51fa\u751f\u5730, \u4eba\u7269\u7684\u6bd5\u4e1a\u9662\u6821, \u4eba\u7269\u7684\u914d\u5076, \u4eba\u7269\u7684\u5b50\u5973, \u7ec4\u7ec7\u673a\u6784\u7684\u9ad8\u7ba1, \u7ec4\u7ec7\u673a\u6784\u7684\u5458\u5de5</td></tr><tr><td>\u6570, \u7ec4\u7ec7\u673a\u6784\u7684\u521b\u59cb\u4eba, \u7ec4\u7ec7\u673a\u6784\u7684\u6210\u7acb\u65f6\u95f4, \u7ec4\u7ec7\u673a\u6784\u7684\u603b\u90e8\u5730\u70b9)</td></tr><tr><td>ACE2005\uff1a \uff1a \uff1a ACE 2005\u6570\u636e\u96c6\u6536\u96c6\u81ea\u65b0\u95fb\u4e13\u7ebf\u3001\u5e7f\u64ad\u548c\u7f51\u7edc\u65e5\u5fd7\u3002\u5173\u7cfb\u5206\u4e3a\uff16\u5927\u7c7b\u548c18\u4e2a\u5c0f</td></tr><tr><td>\u7c7b\uff0c\u5305\u542b8023\u4e2a\u5173\u7cfb\u4e8b\u5b9e\u548c18\u4e2a\u5173\u7cfb\u5b50\u7c7b\u578b\u3002</td></tr><tr><td>DuIE\uff1a \uff1a \uff1a 2019\u5e74\uff0c\u4e2d\u56fd\u8ba1\u7b97\u673a\u5b66\u4f1a\u3001\u4e2d\u56fd\u4e2d\u6587\u4fe1\u606f\u5b66\u4f1a\u8054\u5408\u767e\u5ea6\u516c\u53f8\u4e3e\u529e\u7684\u8bed\u8a00\u4e0e\u667a\u80fd\u6280\u672f\u7ade</td></tr><tr><td>\u8d5b\u5f00\u653e\u4e86\u57fa\u4e8e\u767e\u5ea6\u767e\u79d1\u548c\u767e\u5ea6\u4fe1\u606f\u6d41\u7684\u5927\u89c4\u6a21\u4e2d\u6587\u4fe1\u606f\u62bd\u53d6\u6570\u636e\u96c6 (Li et al., 2019)\u3002\u8be5\u6570\u636e\u96c6</td></tr></table>",
"text": "\u5b9e\u4f53\u5173\u7cfb\u8054\u5408\u62bd\u53d6\u5728\u4e0d\u540c\u636e\u96c6\u7684\u7ed3\u679c 6 \u4e2d \u4e2d \u4e2d\u6587 \u6587 \u6587\u5b9e \u5b9e \u5b9e\u4f53 \u4f53 \u4f53\u5173 \u5173 \u5173\u7cfb \u7cfb \u7cfb\u62bd \u62bd \u62bd\u53d6 \u53d6 \u53d6\u7814 \u7814 \u7814\u7a76 \u7a76 \u7a76\u73b0 \u73b0 \u73b0\u72b6 \u72b6 \u72b6 \u5728\u4e2d\u6587\u7814\u7a76\u65b9\u9762\uff0c\u7531\u4e8e\u6807\u6ce8\u8bed\u6599\u7684\u77ed\u7f3a\uff0c\u5173\u7cfb\u62bd\u53d6\u7684\u7814\u7a76\u76f8\u5bf9\u4e8e\u82f1\u6587\u6570\u636e\u96c6\u4e0a\u7684\u7814\u7a76\u8f83 \u5c11\u3002\u672c\u6587\u805a\u7126\u795e\u7ecf\u7f51\u7edc\u7684\u4e2d\u6587\u5b9e\u4f53\u5173\u7cfb\u62bd\u53d6\u7814\u7a76\uff0c\u4f20\u7edf\u65b9\u6cd5\u53ef\u53c2\u8003 (\u6b66\u6587\u96c5 et al., 2018)\u7684\u5de5 \u4f5c\uff0c\u8fdc\u7a0b\u76d1\u7763\u65b9\u6cd5\u53ef\u53c2\u8003 (\u767d\u9f99 et al., 2019)\u7684\u5de5\u4f5c\u3002 6.1 \u4e2d \u4e2d \u4e2d\u6587 \u6587 \u6587\u5b9e \u5b9e \u5b9e\u4f53 \u4f53 \u4f53\u5173 \u5173 \u5173\u7cfb \u7cfb \u7cfb\u62bd \u62bd \u62bd\u53d6 \u53d6 \u53d6\u6570 \u6570 \u6570\u636e \u636e \u636e\u96c6 \u96c6 \u96c6 \u57fa \u57fa \u57fa\u4e8e \u4e8e \u4e8e\u795e \u795e \u795e\u7ecf \u7ecf \u7ecf\u7f51 \u7f51 \u7f51\u7edc \u7edc \u7edc\u65b9 \u65b9 \u65b9\u6cd5 \u6cd5 \u6cd5\u7814 \u7814 \u7814\u7a76 \u7a76 \u7a76\u73b0 \u73b0 \u73b0\u72b6 \u72b6 \u72b6 \u4e3a\u4e86\u5728\u4e2d\u6587\u8bed\u6599\u4e2d\u83b7\u5f97\u66f4\u4e30\u5bcc\u7684\u9ad8\u7ea7\u7279\u5f81\uff0c\u9ad8\u5c42\u8bed\u4e49\u6ce8\u610f\u529b\u673a\u5236\u7684\u5206\u6bb5\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u6a21 \u578b(\u6b66\u6587\u96c5 et al., 2019)\u7528\u4e8e\u4e2d\u6587\u5173\u7cfb\u62bd\u53d6\u3002\u5728\u6a21\u578b\u7684\u5411\u91cf\u8868\u793a\u4e2d\uff0c\u6dfb\u52a0\u4e86HowNet\u4e2d\u7684\u4e0a\u4f4d\u8bcd",
"html": null
}
}
}
}