|
{ |
|
"paper_id": "2021", |
|
"header": { |
|
"generated_with": "S2ORC 1.0.0", |
|
"date_generated": "2023-01-19T03:15:13.261078Z" |
|
}, |
|
"title": "Keynote Talk I Models and Tasks for Human-Centered Machine Translation", |
|
"authors": [ |
|
{ |
|
"first": "Marine", |
|
"middle": [], |
|
"last": "Carpuat", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "University of Maryland", |
|
"location": { |
|
"country": "USA" |
|
} |
|
}, |
|
"email": "" |
|
} |
|
], |
|
"year": "", |
|
"venue": null, |
|
"identifiers": {}, |
|
"abstract": "In this talk, I will describe current research directions in my group that aim to make machine translation (MT) more human-centered. Instead of viewing MT solely as a task that aims to transduce a source sentence into a wellformed target language equivalent, we revisit all steps of the MT research and development lifecycle with the goal of designing MT systems that are able to help people communicate across language barriers. I will present methods to better characterize the parallel training data that powers MT systems, and how the degree of equivalence impacts translation quality. I will introduce models that enable flexible conditional language generation, and will discuss recent work on framing machine translation tasks and evaluation to center human factors.", |
|
"pdf_parse": { |
|
"paper_id": "2021", |
|
"_pdf_hash": "", |
|
"abstract": [ |
|
{ |
|
"text": "In this talk, I will describe current research directions in my group that aim to make machine translation (MT) more human-centered. Instead of viewing MT solely as a task that aims to transduce a source sentence into a wellformed target language equivalent, we revisit all steps of the MT research and development lifecycle with the goal of designing MT systems that are able to help people communicate across language barriers. I will present methods to better characterize the parallel training data that powers MT systems, and how the degree of equivalence impacts translation quality. I will introduce models that enable flexible conditional language generation, and will discuss recent work on framing machine translation tasks and evaluation to center human factors.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Abstract", |
|
"sec_num": null |
|
} |
|
], |
|
"body_text": [], |
|
"back_matter": [], |
|
"bib_entries": {}, |
|
"ref_entries": {} |
|
} |
|
} |