Benjamin Aw
Add updated pkl file v3
6fa4bc9
{
"paper_id": "O10-5005",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T08:06:30.430843Z"
},
"title": "Information Extraction for Academic Conference and It's Application",
"authors": [
{
"first": "",
"middle": [],
"last": "\u9673\u5149\u83ef",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Taiwan University",
"location": {}
},
"email": ""
},
{
"first": "Kuang-Hua",
"middle": [],
"last": "Chen",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Taiwan University",
"location": {}
},
"email": "[email protected]"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Internet has become a major channel for academic information dissemination in recent years. As a matter of fact, academic information, e.g., \"call for papers\", \"call for proposals\", \"advances of research\", etc., is crucial for researchers, since they have to publish research outputs and capture new research trends. This study focuses on extraction of academic conference information including topics, temporal information, spatial information, etc. Hope to reduce overhead of searching and managing conference information for researchers and improve",
"pdf_parse": {
"paper_id": "O10-5005",
"_pdf_hash": "",
"abstract": [
{
"text": "Internet has become a major channel for academic information dissemination in recent years. As a matter of fact, academic information, e.g., \"call for papers\", \"call for proposals\", \"advances of research\", etc., is crucial for researchers, since they have to publish research outputs and capture new research trends. This study focuses on extraction of academic conference information including topics, temporal information, spatial information, etc. Hope to reduce overhead of searching and managing conference information for researchers and improve",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "\u53e6 \u5916\u9084\u53ef\u4ee5\u5c07 Focused Crawling \u7a0d\u52a0\u8b8a\u5316\uff0c\u4f9d\u64da\u4e00\u7d44\u7cfb\u7d71\u5df2\u7d93\u8a18\u8f09\u7684\u7814\u8a0e\u6703\u8b70\u7db2\u7ad9\u6e05\u55ae\uff0c \u53cd \u5411\u5730 \u8490\u96c6\u76f8 \u95dc\u7db2 \u9801\u6587\u4ef6 \uff0c\u9019 \u7a2e\u7db2\u9801 \u8cc7\uf9be \u8490\u96c6\u7684 \u66ff\u4ee3 \u65b9\u6848\u88ab \u7a31\u70ba \u53cd\u5411\u5f0f \u7db2\u9801 \u64f7\u53d6 (backward crawling)\u3002 (Brennhaug, 2005) african studies agricultural economics agricultural education agricultural engineering agrology agronomy air force studies algebraic computation algebraic geometry algebraic number theory algebraic topology american history american politics american studies analytical chemistry ancient egyptian religion ancient history animal communications animal science animation anthropology of technology apiculture appalachian studies applied psychology approximation theory aquaculture architectural engineering archival science art education art history artillery arts administration asian american studies asian studies associative algebra astrobiology astronomy astrophysics atheism and humanism atomic, molecular, and optical physics australian literature automotive systems engineering beekeeping behavioral geography behavioural economics behavioural science bilingual education biochemistry bioeconomics biogeography bioinformatics biological psychology biology biomechanical engineering biomedical engineering biophysics black studies or african american studies botany business administration business english business ethics calligraphy campaigning canadian literature canadian studies canon law cardiology cardiothoracic surgery cartography category theory cell biology celtic studies chamber music chemical engineering cheminformatics chemistry education chicano studies child welfare children geographies chinese history chinese studies or sinology choreography christianity chronobiology church music civics civil procedure classical archaeology classics climatology coastal geography cognitive behavioral therapy cognitive psychology cognitive science collective behavior combat engineering communication design communication engineering ",
"cite_spans": [
{
"start": 122,
"end": 139,
"text": "(Brennhaug, 2005)",
"ref_id": "BIBREF2"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Apache Lucene -Overview",
"authors": [],
"year": 2010,
"venue": "Apache Software Foundation",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Apache Software Foundation. (2010). Apache Lucene -Overview. Retrieved Oct. 1, 2010, from http://lucene.apache.org/java/docs/index.pdf",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Academic Ranking of World Universities -2010",
"authors": [],
"year": 2010,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "ARWU (2010). Academic Ranking of World Universities -2010. Retrieved Oct. 1, 2010, from http://www.arwu.org/",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "EventSeer: Testing Different Approaches to Topical Crawling for Call for Paper Announcements",
"authors": [
{
"first": "K",
"middle": [
"E"
],
"last": "Brennhaug",
"suffix": ""
}
],
"year": 2005,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Brennhaug, K. E. (2005). EventSeer: Testing Different Approaches to Topical Crawling for Call for Paper Announcements. Unpublished Thesis. Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway. Retrieved Oct. 1, 2010, from http://ntnu.diva-portal.org/smash/get/diva2:348108/FULLTEXT01",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Focused Crawling: A New Approach to Topic-Specific Web Resource Discovery",
"authors": [
{
"first": "S",
"middle": [],
"last": "Chakrabarti",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Van Den Berg",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Dom",
"suffix": ""
}
],
"year": 1999,
"venue": "Proceedings of the 8th International World Wide Web Conference",
"volume": "31",
"issue": "",
"pages": "1623--1640",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chakrabarti, S., van den Berg, M., & Dom, B. (1999). Focused Crawling: A New Approach to Topic-Specific Web Resource Discovery. In Proceedings of the 8th International World Wide Web Conference (Vol. 31, pp. 1623-1640). Retrieved Oct. 1, 2010, from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.43.1111&rep=rep1&type=pdf",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Message Understanding Conference-6: A brief History",
"authors": [
{
"first": "R",
"middle": [],
"last": "Grishman",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Sundheim",
"suffix": ""
}
],
"year": 1996,
"venue": "Proceedings of the 16th International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "466--471",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Grishman, R., & Sundheim, B. (1996). Message Understanding Conference-6: A brief History. In Proceedings of the 16th International Conference on Computational Linguistics (pp. 466-471). Retrieved Oct. 1, 2010 from http://www.aclweb.org/anthology/C/C96/C96-1079.pdf",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "CRF++: Yet Another CRF Toolkit Version 0.54. Retrieved",
"authors": [
{
"first": "T",
"middle": [],
"last": "Kudo",
"suffix": ""
}
],
"year": 2010,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kudo, T. (2010). CRF++: Yet Another CRF Toolkit Version 0.54. Retrieved Jun. 2, 2010 from http://crfpp.sourceforge.net/",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data",
"authors": [
{
"first": "J",
"middle": [],
"last": "Lafferty",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Mccallum",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Pereira",
"suffix": ""
}
],
"year": 2001,
"venue": "Proceedings of the 18th International Conference on Machine Learning",
"volume": "",
"issue": "",
"pages": "282--289",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceedings of the 18th International Conference on Machine Learning (pp. 282-289). Retrieved Oct. 1, 2010, from http://www.cis.upenn.edu/~pereira/papers/crf.pdf",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Combining Information Retrieval with Information Extraction for Efficient Retrieval of Calls for Papers",
"authors": [
{
"first": "F",
"middle": [],
"last": "Lazarinis",
"suffix": ""
}
],
"year": 1998,
"venue": "Proceedings of IRSG98. Retrieved",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lazarinis, F. (1998). Combining Information Retrieval with Information Extraction for Efficient Retrieval of Calls for Papers. In Proceedings of IRSG98. Retrieved Oct. 1, 2010, from http://www.cs.strath.ac.uk/~mdd/research/publications/98lazarinis.pdf",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Bow: A Toolkit for Statistical Language Modeling, Text Retrieval, Classification and Clustering",
"authors": [
{
"first": "A",
"middle": [],
"last": "Mccallum",
"suffix": ""
}
],
"year": 1996,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "McCallum, A. (1996). Bow: A Toolkit for Statistical Language Modeling, Text Retrieval, Classification and Clustering. Retrieved Aug. 4, 2009, from http://www.cs.cmu.edu/~mccallum/bow.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Message Understanding Conference Evaluation",
"authors": [
{
"first": "",
"middle": [],
"last": "Muc",
"suffix": ""
}
],
"year": 2001,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "MUC (2001). Message Understanding Conference Evaluation. Retrieved Oct. 1, 2010 from http://www-nlpir.nist.gov/related_projects/muc/",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Australian and New Zealand Standard Research Classification (ANZSRC)",
"authors": [
{
"first": "B",
"middle": [],
"last": "Pink",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Bascand",
"suffix": ""
}
],
"year": 2008,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Pink, B., & Bascand, G. (2008). Australian and New Zealand Standard Research Classification (ANZSRC). Retrieved Mar. 2, 2010, from http://www.arc.gov.au/pdf/ANZSRC_FOR_codes.pdf QS (2010). World University Rankings. Retrieved Oct. 1, 2010, from http://www.thes.co.uk/worldrankings/",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "An Evaluation of Layout Features for Information Extraction from Calls for Papers",
"authors": [
{
"first": "K.-M",
"middle": [],
"last": "Schneider",
"suffix": ""
}
],
"year": 2005,
"venue": "Proceedings of Lernen, Wissensentdeckung und Adaptivitat",
"volume": "",
"issue": "",
"pages": "111--116",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Schneider, K.-M. (2005). An Evaluation of Layout Features for Information Extraction from Calls for Papers. In Proceedings of Lernen, Wissensentdeckung und Adaptivitat (pp. \u9673\u5149\u83ef 111-116). Retrieved Oct. 1, 2010, from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.118&rep=rep1&type=pdf",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Dynamic Conditional Random Fields: Factorized Probabilistic Models for Labeling and Segmenting Sequence Data",
"authors": [
{
"first": "C",
"middle": [],
"last": "Sutton",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Rohanimanesh",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Mccallum",
"suffix": ""
}
],
"year": 2004,
"venue": "Proceedings of the 21st International Conference on Machine Learning. Retrieved",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sutton, C., Rohanimanesh, K., & McCallum, A. (2004). Dynamic Conditional Random Fields: Factorized Probabilistic Models for Labeling and Segmenting Sequence Data. In Proceedings of the 21st International Conference on Machine Learning. Retrieved Oct. 1, 2010, from http://www.cs.umass.edu/~mccallum/papers/dcrf-icml04.pdf",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "ConfShare: A Unified Conference Calendar that Assists Researchers in the Tasks for Attending an Academic Conference",
"authors": [
{
"first": "T",
"middle": [],
"last": "Takada",
"suffix": ""
}
],
"year": 2008,
"venue": "",
"volume": "49",
"issue": "",
"pages": "4093--4104",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Takada, T (2008). ConfShare: A Unified Conference Calendar that Assists Researchers in the Tasks for Attending an Academic Conference. Journal of Information Processing Society of Japan, 49(12), 4093-4104.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Conditional Random Fields: An Introduction",
"authors": [
{
"first": "H",
"middle": [
"M"
],
"last": "Wallach",
"suffix": ""
}
],
"year": 2004,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wallach, H. M. (2004). Conditional Random Fields: An Introduction. Technical Report MS-CIS-04-21, University of Pennsylvania. Retrieved Oct. 1, 2010, from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.436&rep=rep1&type=pdf",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Academic Conference Homepage Understanding using Constrained Hierarchical Conditional Random Fields",
"authors": [
{
"first": "X",
"middle": [],
"last": "Xin",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Tang",
"suffix": ""
},
{
"first": "Q",
"middle": [],
"last": "Kuo",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of the 17th ACM conference on Information and knowledge management",
"volume": "",
"issue": "",
"pages": "1301--1310",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xin, X., Li, J., Tang, J., & Kuo, Q. (2008). Academic Conference Homepage Understanding using Constrained Hierarchical Conditional Random Fields. In Proceedings of the 17th ACM conference on Information and knowledge management (pp. 1301-1310).",
"links": null
}
},
"ref_entries": {
"TABREF0": {
"num": null,
"html": null,
"type_str": "table",
"text": "\u7dd2\uf941 \u5728\u5168\u7403\u5316\u7684\u8da8\u52e2\u4e4b\u4e0b\uff0c\u5927\u5b78\u7684\u5b78\u8853\u8a55\u50f9\uf901\u52a0\u53d7\u5230\u524d\u6240\u672a\u6709\u7684\u91cd\u8996\uff0c\u6709\u5404\u5f0f\u5404\u6a23\u4ee5\u5168\u7403\u5927 \u5b78\u70ba\u6a19\u7684\u4e4b\u5b78\u8853\u8a55\u9451\u5831\u544a\uf9d3\u7e8c\u516c\u544a\u5468\u77e5\uff0c\u5982\u4e0a\u6d77\u4ea4\u901a\u5927\u5b78(ARWU, 2010)\u8207\u82f1\u570b Quacquarelli Symonds (QS, 2010)\u6240\u505a\u7684\u4e16\u754c\u5927\u5b78\u6392\u540d\u3002\u6b64\u5916\uff0cThomson Reuters \u516c\u53f8\u7684 SCI\u3001SSCI\u3001A&HCI \u7b49\u8cc7\uf9be\u5eab\uff0c\u4ee5\u53ca Journal Citation Report(JCR)\uff0c\u63d0\u4f9b\u7684\u7d71\u8a08\uf969\u64da\uff0c",
"content": "<table><tr><td>\u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u4e4b\u64f7\u53d6\u53ca\u5176\u61c9\u7528</td><td>239</td></tr><tr><td>\u9801\u7684\u81ea\u52d5\u6a5f\u5236\uff0c\u662f\u91cd\u8981\u7684\u4e00\u74b0\u3002</td><td/></tr><tr><td colspan=\"2\">\u4e00\u822c\u5728\u7db2\uf937\u4e0a\u5927\uf97e\u8490\u96c6\u7db2\u9801\u7684\u65b9\u5f0f\uff0c\u901a\u5e38\uf9dd\u7528\u7db2\u9801\u64f7\u53d6\u6a5f\u5668\u4eba(web crawler)\u5230\u8655</td></tr><tr><td colspan=\"2\">\u62dc\u8a2a\u7db2\u7ad9\u4e26\u64f7\u53d6\u6240\u6709\u7db2\u9801\u5167\u5bb9\u3002\u7531\u65bc Web Crawler \u7684\u5efa\u7f6e\u56f0\u96e3\ufa01\u8f03\u9ad8\uff0c\u7dad\u8b77\u8207\u6548\u80fd\u63a7\u7ba1</td></tr><tr><td colspan=\"2\">\u4e5f\u8f03\u70ba\u8907\u96dc\uff0c\uf967\u7576\u7684\u8a2d\u8a08\u5e38\u6703\u4f54\u64da\u7db2\uf937\u983b\u5bec\u8cc7\u6e90\uff0c\u6216\u5c0e\u81f4\u88ab\u7db2\u7ad9\u5c01\u9396\u800c\u7121\u6cd5\u64f7\u53d6\u5167\u5bb9\u3002</td></tr><tr><td colspan=\"2\">\u56e0\u6b64\u53e6\u6709\u4e00\u7a2e\u65b9\u5f0f\uff0c\u4e26\uf967\u63a1\u7528\u50b3\u7d71\u7684 web crawler \u800c\u662f\u4fee\u6539\u7db2\u9801\u64f7\u53d6\u6a5f\u5236\uff0c\u4ee5\u9069\u7576\u7684\u95dc\u9375</td></tr><tr><td>\u5b57\u8207\u7db2\u9801\u641c\u5c0b\u5f15\u64ce\u7684\u6574\u5408\uf92d\u8490\u96c6\u7db2\u9801\u3002</td><td/></tr><tr><td colspan=\"2\">\u76ee\u6a19\u5f0f\u7db2\u9801\u64f7\u53d6(focused crawling)\u662f\u4e00\u7a2e\u8490\u96c6\u7814\u8a0e\u6703\u901a\u77e5\u8cc7\u8a0a\u7684\u65b9\u5f0f\u3002\u6709\u5225\u65bc\u4e00</td></tr><tr><td colspan=\"2\">\u822c Web Crawler \u6f2b\u7121\u76ee\u7684\u5730\u6293\u53d6\u6240\u6709\u7684\u7db2\u9801\uff0cFocused Crawling \u6703\u5148\u904e\uf984\u8207\u4e3b\u984c\u7121\u95dc\u7684\u5167</td></tr><tr><td colspan=\"2\">\u5bb9\uff0c\u4e5f\u5c31\u662f\u6703\u61c9\u7528\u4e00\u7d44\u7279\u5b9a\u4e3b\u984c\u7684\u95dc\u9375\u8a5e\uff0c\u7528\u4ee5\u8a13\uf996\u4e26\u5efa\uf9f7\u6587\u4ef6\u5206\uf9d0\u6a5f\u5236\uff0c\u518d\u7531\u6b64\u5206\uf9d0</td></tr><tr><td>\u6a5f\u5236\u5f15\u5c0e crawler \u64f7\u53d6\u8207\u4e3b\u984c\u76f8\u95dc\u7684\u7db2\u9801\u3002</td><td/></tr><tr><td colspan=\"2\">\u5f80\u5f80\u6210\u70ba\u5404\u570b\u8a55\u9451\u570b\u5167\u5927\u5b78\u5b78\u8853\u6210\u679c\u7684\u8a08\uf97e\u6307\u6a19\u3002\u5728\u9019\u7a2e\u6fc0\uf99f\u7684\u5b78\u8853\u7af6\u722d\u74b0\u5883\u4e4b\u4e0b\uff0c\u4e14</td></tr><tr><td colspan=\"2\">\u5b78\u8853\u7af6\u722d\uf98a\u88ab\u8996\u70ba\u570b\u5bb6\u7af6\u722d\uf98a\u7684\u4e00\u74b0\uff0c\u5927\u5b78\u6559\u6388\u83ab\uf967\u5162\u5162\u696d\u696d\u5730\u3001\u52aa\uf98a\u5730\u5f9e\u4e8b\u5b78\u8853\u7814\u7a76\u3002</td></tr><tr><td colspan=\"2\">\u5b78\u8853\u7814\u7a76\u4eba\u54e1\u638c\u63e1\u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u7684\u5373\u6642\u6027\u8207\u78ba\u5be6\u6027\uff0c\u5c0d\u65bc\u5176\u7814\u7a76\u5de5\u4f5c\u7684\u9032\u5c55\u8207\u7814\u7a76\u6210\u679c</td></tr><tr><td colspan=\"2\">\u7684\u767c\u8868\uff0c\u662f\u975e\u5e38\u91cd\u8981\u7684\u3002\u672c\u7814\u7a76\u5728\u9019\u6a23\u7684\u80cc\u666f\u4e0b\uff0c\u7814\u767c\u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u6aa2\uf96a\u8207\u64f7\u53d6\u7cfb\u7d71\uff0c</td></tr><tr><td>\u5e0c\u671b\u80fd\u5920\u6709\u6548\u5730\u7531\u5145\u65a5\u6d6e\uf922\u8cc7\u8a0a\u7684\u7db2\u969b\u7db2\uf937\uff0c\u64f7\u53d6\u76f8\u95dc\u7684\u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u3002</td><td/></tr><tr><td colspan=\"2\">\u5b78\u8853\u7814\u7a76\u4eba\u54e1\u7684\u5b78\u8853\u6d3b\u52d5\u662f\u975e\u5e38\u591a\u5143\u7684\uff0c\u5b78\u8853\u8cc7\u6e90\u670d\u52d9\u7684\uf9d0\u578b\u773e\u591a\uff0c\u672c\u7814\u7a76\u5c07\u8457\u91cd</td></tr><tr><td colspan=\"2\">\u65bc\u4ee5\u8cc7\u8a0a\u64f7\u53d6\u70ba\u57fa\u790e\u7684\u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u7684\u6aa2\uf96a\u8207\u64f7\u53d6\u3002\u7814\u7a76\u4eba\u54e1\u7684\u5b78\u8853\u6d3b\u52d5\u4e2d\u5f88\u91cd\u8981\u7684\u4e00</td></tr><tr><td colspan=\"2\">\u9805\uf965\u662f\u300c\u5b78\u8853\u7814\u7a76\u7684\u51fa\u7248\u300d\uff0c\u5b78\u8853\u7684\u51fa\u7248\u6709\uf978\u500b\u4e3b\u8981\u7684\u65b9\u5411\uff0c\u4e00\u500b\u662f\u5b78\u8853\u6703\u8b70\uff0c\u53e6\u4e00\u5247</td></tr><tr><td colspan=\"2\">\u662f\u5b78\u8853\u671f\u520a\u3002\u6703\u8b70\u7684 Call For Paper \u6709\u6642\u9593\u7684\u671f\u9650\uff0c\u800c\u671f\u520a Special Issue \u7684 Call For</td></tr><tr><td colspan=\"2\">Submission \u4e5f\u6709\u6642\u9593\u7684\u671f\u9650\uff0c\u5354\u52a9\u7814\u7a76\u4eba\u54e1\u638c\u63e1\u9019\u4e9b\u91cd\u8981\u7684\u8a0a\u606f\uff0c\u81ea\u52d5\u5730\u7531\u7db2\uf937\u64f7\u53d6\u5b78</td></tr><tr><td colspan=\"2\">\u8853\u6703\u8b70\u7684\u6642\u9593\u8a0a\u606f\u3001\u7a7a\u9593\u8a0a\u606f\u3001\u8207\u4e3b\u984c\u8a0a\u606f\uff0c\u5354\u52a9\u7814\u7a76\u4eba\u54e1\u7ba1\uf9e4\u6642\u9593\u8207\u7a7a\u9593\u8a0a\u606f\uff0c\u5c07\u6709</td></tr><tr><td colspan=\"2\">\u5f88\u5927\u7684\u52a9\u76ca\u3002\uf974\u80fd\u9032\u4e00\u6b65\u642d\u914d\u300c\ufa08\u4e8b\uf98b(calendar)\u300d\u7684\u529f\u80fd\uff0c\u5c0d\u65bc\u7814\u7a76\u4eba\u54e1\u800c\u8a00\uf901\u662f\u4e8b</td></tr><tr><td colspan=\"2\">\u534a\u529f\u500d\u7684\u3002\u63db\u8a00\u4e4b\uff0c\u4e00\u822c\ufa08\u4e8b\uf98b\u529f\u80fd\u50c5\u63d0\u4f9b\u4f7f\u7528\u8005\u65b0\u589e\u8cc7\u8a0a\u3001\uf901\u65b0\u8cc7\u8a0a\u3001\u522a\u9664\u8cc7\u8a0a\uff0c\u70ba</td></tr><tr><td colspan=\"2\">\uf9ba\u642d\u914d\u5b78\u8853\u7814\u7a76\u7684\u51fa\u7248\uff0c\ufa08\u4e8b\uf98b\u5fc5\u9808\u6709\uf901\u9032\u968e\u7684\u529f\u80fd\uff0c\u80fd\u5920\u4f9d\u64da\u4f7f\u7528\u8005\u7684 profile \u641c\u5c0b</td></tr><tr><td colspan=\"2\">Call For Paper \u8207 Call For Submission\uff0c\u586b\u5165\ufa08\u4e8b\uf98b\uff0c\u4e26\u4f9d\u64da\u4f7f\u7528\u8005\u7684\u8a2d\u5b9a\uff0c\u63d0\u4f9b\u8b66\u793a (alert)</td></tr><tr><td>\u7684\u670d\u52d9\u3002</td><td/></tr><tr><td colspan=\"2\">\u7814\u8a0e\u6703\u901a\u77e5\u6216\u6703\u8b70\uf941\u6587\u6295\u7a3f\u9808\u77e5\uff0c\u4e00\u822c\u662f\u900f\u904e\u65e2\u6709\u7684\u90f5\u5bc4\u76ee\uf93f\u767c\u9001\uff0c\u6216\u662f\u4ee5\u7db2\u9801\u6587</td></tr><tr><td colspan=\"2\">\u4ef6\u7684\u5f62\u5f0f\u767c\u4f48\uff0c\u4e5f\u56e0\u6b64\u8a0a\u606f\u50b3\u64ad\u7684\u76ee\u6a19\u901a\u5e38\u5c40\u9650\u65bc\u7279\u5b9a\u65cf\u7fa4\u53ca\u7814\u7a76\u6a5f\u69cb\u3002\u5373\u4f7f\u4f7f\u7528\u8005\u81ea</td></tr><tr><td colspan=\"2\">\ufa08\uf9dd\u7528\u7db2\u9801\u641c\u5c0b\u5de5\u5177\u5728\u7db2\u969b\u7db2\uf937\u4e0a\u67e5\u627e\uff0c\u6240\u53d6\u5f97\u7684\u8cc7\u8a0a\u53ef\u80fd\uf967\u5b8c\u6574\uff0c\u6216\u662f\u5df2\u932f\u904e\uf96b\u8207\u7684</td></tr><tr><td colspan=\"2\">\u6642\u6a5f\u3002\uf974\u8981\u63d0\u4f9b\u5373\u6642\u7684\u4e14\u6574\u5408\u7684\u7814\u8a0e\u6703\u76f8\u95dc\u8cc7\u8a0a\uff0c\u8490\u96c6\u7db2\u969b\u7db2\uf937\u4e0a\u8207\u7814\u8a0e\u6703\u901a\u77e5\u76f8\u95dc\u7db2</td></tr></table>"
},
"TABREF2": {
"num": null,
"html": null,
"type_str": "table",
"text": "Test \u610f\u6307\u6e2c\u8a66\u8cc7\uf9be\u8207\u8a13\uf996\u8cc7\uf9be\uf967\u540c\uff0cInside Test \u610f\u6307\u6e2c\u8a66 \u8cc7\uf9be\u8207\u8a13\uf996\u8cc7\uf9be\u76f8\u540c\u3002Inside Test \u7684\u7d50\u679c\u4e00\u5b9a\u6703\u6bd4 Outside Test \u7684\u7d50\u679c\u597d\uff0c\u5982\u679c Outside Test \u7684\u7d50\u679c\u5f88\u63a5\u8fd1\u65bc Inside Test\uff0c\u4ee3\u8868\u5206\uf9d0\u6a21\u578b\u7684\u9069\u61c9\u6027\u5f88\u597d\uff1b\u8a13\uf996\u8cc7\uf9be\u8d8a\u591a\uff0c\u6db5\u84cb\u9762 \u8d8a\u5ee3\uff0c\u5206\uf9d0\u7d50\u679c\u4e5f\u8d8a\u597d\u3002 \u5be6\u9a57\u7d50\u679c\u986f\u793a\uff0cSVM \u6a21\u578b\u7684\u8868\u73fe\u6700\u597d\uff0cNaive Bayes \u6b21\u4e4b\uff0c\u800c kNN \u6700\u5dee\u3002SVM \u5728 Inside Test \u8207 Outside Test \u7684\u8868\u73fe\u5dee\uf962\u6700\u5c0f\uff0c\u800c Naive Bayes \u8b8a\u52d5\u7684\u5e45\ufa01\u5f88\u5927\uff0c\u4ee3\u8868 SVM \u6a21\u578b\u5c0d\u65bc\u672a\u77e5\u8cc7\uf9be\u7684\u89e3\u91cb\u6027\u5f88\u5f37\u3002\u9664\u6b64\u4e4b\u5916\uff0c\u7121\uf941\u662f\u4f55\u7a2e\u6a21\u578b\uff0cF micro \u8207 F macro \u7684\u8868\u73fe\u76f8 \u7576\uff0c\u4ee3\u8868\u6bcf\u4e00\u6b21\u5be6\u9a57\u7d50\u679c\u7684\u8b8a\uf962\u6027\u5f88\u5c0f\u3002\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u672c\u7814\u7a76\u662f\u63a1\u7528 \u7576\u4f7f\u7528\u8005\u4f7f\u7528 ACIRES \u7cfb\u7d71\u6642\uff0c\uf974\u5df2\u7d93\u4f7f\u7528 Google \u5e33\u865f\u767b\u5165\uff0c\u5373\u53ef\u5728\u9996\u9801\u76f4\u63a5\u6aa2\u8996\u500b\u4eba \u7684\ufa08\u4e8b\uf98b\u5167\u5bb9\uff0c\u8acb\uf96b\ufa0a\u5716 18 \u8207\u5716 19\u3002 \u5716 17. \u500b\u4eba\ufa08\u4e8b\uf98b--\u52a0\u5165\ufa08\u4e8b\uf98b\u524d\u9810\u89bd \u5716 18. \u4ee5 Google \u5e33\u865f\u767b\u5165",
"content": "<table><tr><td>244 246 256 260</td><td>\u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u4e4b\u64f7\u53d6\u53ca\u5176\u61c9\u7528 \u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u4e4b\u64f7\u53d6\u53ca\u5176\u61c9\u7528 \u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u4e4b\u64f7\u53d6\u53ca\u5176\u61c9\u7528 \u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u4e4b\u64f7\u53d6\u53ca\u5176\u61c9\u7528 \u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u4e4b\u64f7\u53d6\u53ca\u5176\u61c9\u7528 \u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u4e4b\u64f7\u53d6\u53ca\u5176\u61c9\u7528 \u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u4e4b\u64f7\u53d6\u53ca\u5176\u61c9\u7528 \u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u4e4b\u64f7\u53d6\u53ca\u5176\u61c9\u7528 \u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u4e4b\u64f7\u53d6\u53ca\u5176\u61c9\u7528</td><td>243 \u9673\u5149\u83ef 245 \u9673\u5149\u83ef 247 \u9673\u5149\u83ef 249 \u9673\u5149\u83ef 251 \u9673\u5149\u83ef 253 \u9673\u5149\u83ef 255 \u9673\u5149\u83ef 257 259 \u9673\u5149\u83ef</td></tr><tr><td colspan=\"3\">4. \u8cc7\u8a0a\u64f7\u53d6\u6a21\u578b\u4e4b\u8a13\uf996\u8207\u5efa\u7f6e \u5b78\u8853\u6703\u8b70\u7684\uf941\u6587\u5fb5\u7a3f\u901a\u544a\u4e3b\u8981\u5305\u542b\u6703\u8b70\u540d\u7a31\u3001\u6703\u8b70\u5730\u9ede\u3001\u6703\u8b70\u6642\u9593\u3001\u6703\u8b70\u4e3b\u984c\u3001\u6703\u8b70\u5b98 \u65b9\u7db2\u7ad9\u3001\u4ee5\u53ca\u5404\u9805\u622a\u6b62\u65e5\u671f\u6216\u516c\u4f48\u65e5\u671f\u7b49\u3002\uf941\u6587\u5fb5\u7a3f\u901a\u544a\u8207\u4e00\u822c\u6587\u4ef6\u6700\u5927\u7684\u5dee\uf962\u5728\u65bc\u5176 \u91cd\u8981\u8cc7\u8a0a\uf967\u4e00\u5b9a\u662f\u4ee5\u5b8c\u6574\u7684\u8a9e\u610f\u6587\uf906\u7d44\u6210\uff0c\u53ef\u80fd\uf9dd\u7528\u5167\u5bb9\u914d\u7f6e\u53ca\u6392\u7248\u4ee5\u7a81\u986f\u5404\u9805\u8cc7\u8a0a\u3002 \uf9b5\u5982\uff0c\u4e00\u4efd\uf941\u6587\u5fb5\u7a3f\u901a\u544a\u7684\u6703\u8b70\u540d\u7a31\u901a\u5e38\u55ae\ufa08\u7f6e\u4e2d\u4e14\u524d\u5f8c\u5404\u6709\u7a7a\ufa08\uff0c\u7814\u8a0e\u6703\u8b70\u984c\u4ee5\u9805\u76ee \u7b26\u865f\u9010\u9805\u8868\uf99c\uff0c\u5404\u9805\u91cd\u8981\u671f\u9650\u6216\u516c\u4f48\u65e5\u671f\u901a\u5e38\uf9dd\u7528\u8868\u683c\u5448\u73fe\u3002\u9664\uf9ba\u6392\u7248\u4e0a\u7684\u7279\u8272\u4e4b\u5916\uff0c \u9084\u53ef\uf9dd\u7528\u7279\u5b9a\u8a5e\u5f59\u5224\u65b7\u662f\u5426\u70ba\u91cd\u8981\u901a\u77e5\u8cc7\u8a0a\uff0c\uf9b5\u5982\u6703\u8b70\u540d\u7a31\u901a\u5e38\u6703\u51fa\u73fe conference\u3001 international\u3001annual \u7b49\u8a5e\u5f59\uff0csubmission\u3001notification\u3001deadline \u7b49\u8a5e\u5f59\u5247\u7d93\u5e38\u4f34\u96a8\u65e5\u671f \u51fa\u73fe\uff0c\u53e6\u5916\u4e5f\u53ef\u4ee5\uf9dd\u7528\u5b8c\u6574\u7684\u5730\u540d\u8a5e\u5178\u64f7\u53d6\u6703\u8b70\u8209\ufa08\u5730\u9ede\u3002\u96d6\u7136\u53ef\uf9dd\u7528\u6392\u7248\u53ca\u8a5e\u5f59\uf978\u7a2e \u7279\u6027\u8a2d\u8a08\uf941\u6587\u5fb5\u7a3f\u901a\u544a\u7684\u8cc7\u8a0a\u81ea\u52d5\u64f7\u53d6\u6a5f\u5236\uff0c\u4f46\u662f\u7db2\uf937\u4e0a\u6216\u96fb\u5b50\u90f5\u4ef6\u63d0\u4f9b\u7684\uf941\u6587\u5fb5\u7a3f\u901a \u544a\uff0c\u4e26\u6c92\u6709\u4e00\u81f4\u7684\u6587\u4ef6\u683c\u5f0f\uff0c\u901a\u77e5\u9805\u76ee\u4e5f\u6c92\u6709\u7d71\u4e00\u7684\u540d\u7a31\uff0c\u9019\u90fd\u589e\u52a0\u8cc7\u8a0a\u5224\u65b7\u7684\u56f0\u96e3\ufa01\u3002 \u672c\u7814\u7a76\u61c9\u7528 Conditional Random Field(CRF)\u5efa\uf9f7\u81ea\u52d5\u64f7\u53d6\u6703\u8b70\u8cc7\u8a0a\u7684\u6a21\u7d44\uff0c\u5f9e\u6703 \u8b70\u901a\u544a\u7db2\u9801\u6587\u4ef6\uff0c\u64f7\u53d6\u91cd\u8981\u7684\u6703\u8b70\u8cc7\u8a0a\uf91d\u4f4d(\u5982\u6703\u8b70\u540d\u7a31\uff0c\u6703\u8b70\u65e5\u671f\uff0c\u6703\u8b70\u5730\u9ede\u7b49)\u3002 CRF \u70ba\u6a5f\u5668\u5b78\u7fd2\u5f0f(machine learning-based)\u6f14\u7b97\u6cd5\uff0c\u9700\u8a2d\u5b9a\uf969\u7a2e\u8cc7\uf9be\u7279\u5fb5\u4ee5\u8a13\uf996\u6a21\u578b\uff0c \u56e0\u6b64\u4ee5\u5b78\u8853\u6703\u8b70\u5fb5\u7a3f\u901a\u544a\u5fc5\u5099\u7684\u91cd\u8981\u8cc7\u8a0a\u9805\u76ee\uff0c\u4f5c\u70ba\u8cc7\uf9be\u7279\u5fb5\uf91d\u4f4d(\u5982\u8868 2 \u6240\u793a)\uff0c\u518d \u4f7f\u7528\u4e00\u90e8\u5206\u5b78\u8853\u7814\u8a0e\u6703\u5fb5\u7a3f\u901a\u544a\uff0c\u505a\u70ba\u8a13\uf996\u6587\u4ef6\u96c6\uff0c\u5148\u4ee5\u4eba\u5de5\u7684\u65b9\u5f0f\u6a19\u8a3b\u7279\u5fb5\uf91d\u4f4d\uff0c\u4e26 \uf9dd\u7528\u7279\u6b8a\u8a5e\u5178\u6216\u5730\u540d\u8cc7\uf9be\u5eab\u6a19\u793a\u7279\u5b9a\u8a5e\u5f59(\uf9b5\u5982\u5730\u540d\u3001\u6703\u8b70\u5c08\u6709\u540d\u8a5e\u7b49)\uff0c\u5efa\uf9f7 CRF \u5b78 \u7fd2\u6a23\u7248\uff0c\u518d\u7d93\u7531 CRF \u81ea\u52d5\u5b78\u7fd2\u8207\u6e2c\u8a66\uff0c\u8abf\u6574\u8cc7\u8a0a\u8fa8\uf9fc\u7684\u6e96\u78ba\ufa01\uff0c\u4ee5\u5efa\u7f6e\u8cc7\u8a0a\u64f7\u53d6\u7684\u81ea\u52d5 \u6a5f\u5236\u3002 CRF \u662f\u5728\u6a5f\uf961\u6f14\u7b97\u7684\u67b6\u69cb\u4e4b\u4e0b\uff0c\u91dd\u5c0d\u67d0\u7a2e\u7d50\u69cb\u7d44\u6210\u7684\u6587\u5b57\u8cc7\uf9be\u9032\ufa08\u5206\u6bb5(segment) \u6216\u662f\u6a19\u8a3b(label)\u7684\u5de5\u4f5c\uff0c\u5176\u6587\u5b57\u8cc7\uf9be\u7d50\u69cb\u5305\u542b\u5e8f\uf99c\u5f0f\u6216\u662f\u77e9\u9663\u5f0f\u7b49\u3002\u67d0\u4e9b\u6a5f\u5668\u5b78\u7fd2\u7684 \u6f14\u7b97\u6cd5\u5fc5\u9808\u5047\u8a2d\u6bcf\u4e00\u500b\u5e8f\uf99c\u8cc7\u8a0a\u90fd\u662f\u76f8\u4e92\u7368\uf9f7\uff0c\uf9b5\u5982 Hidden Markov Model(HMM)\uff0c \u4f46\u662f\u771f\u5be6\u4e16\u754c\u7684\u5e8f\uf99c\u8cc7\uf9be\u4e26\uf967\u662f\u7531\u4e00\uf99a\uf905\u7368\uf9f7\u7684\u8cc7\u8a0a\u7d44\u6210\u7684\u3002CRF \uf967\u540c\u65bc\u5176\u4ed6\u6a5f\u5668\u5b78\u7fd2 \u6f14\u7b97\u6cd5\uff0c\u6703\u8003\uf97e\u96a8\u6a5f\u5e8f\uf99c\u8cc7\u8a0a\u7684\u95dc\uf997\u6027\uff0c\u4ee5\u6c42\u6574\u9ad4\u5e8f\uf99c\u7684\uf997\u5408\u689d\u4ef6\u6a5f\uf961\uff0c\u4ee5\u907f\u514d\u8a5e\u5f59\u6a19 \u8a3b\u7684\u504f\u7f6e(bias)\u554f\u984c(Wallach, 2004)\u3002\u672c\u6587\u4e26\uf967\u8a66\u5716\u8a73\u7d30\u63cf\u8ff0 CRF \u7684\uf9e4\uf941\u8207\u6280\u8853\uff0c \u76f8\u95dc\uf96f\u660e\u8acb\uf96b\u8003(Sutton, Rohanimanesh, &amp; McCallum, 2004; Lafferty, McCallum, &amp; Pereira, 2001)\u3002 \u8868 2. \u5fb5\u7a3f\u901a\u544a\u4e4b\u7279\u5fb5\u53ca\u5c0d\u61c9\u4e4b\u6a19\u7c64 \u4e2d\u6587\u540d\u7a31 \u82f1\u6587\u540d\u7a31 HTML \u6a19\u7c64 \u6a19\u7c64\u7bc4\uf9b5 \u6703\u8b70\u5168\u540d Conference Name confname &lt;confname&gt; Multimedia in Ubiquitous Computing and Security Services&lt;/confname&gt; \u6703\u8b70\u540d\u7a31 \u7e2e\u5beb Abbreviation of Conference Name confabbr &lt;confabbr&gt; MUCASS 2008 &lt;/confabbr&gt; \u6703\u8b70\u5730\u9ede Conference Location confloc &lt;confloc&gt; Hobart, Australia &lt;/confloc&gt; \u6703\u8b70\u65e5\u671f Conference Date confdate &lt;confdate&gt; October 14-16, 2008 &lt;/confdate&gt; \u6703\u8b70\u7db2\u5740 Conference Website confwebsite &lt;confwebsite&gt; http://www.sersc.org/MUCASS2008 &lt;/confwebsite&gt; \u6703\u8b70\u4e3b\u984c Conference Topic conftopic &lt;conftopic&gt; Real-time and interactive multimedia applications &lt;/conftopic&gt; \u5831\u540d\u622a\u6b62 \u65e5\u671f Registration Deadline registdue &lt;registdue&gt; Registration -15th October, 2007 &lt;/registdue&gt; \u6458\u8981\u63d0\u4ea4 \u622a\u6b62\u65e5\u671f Abstract Submission Due abstractdue &lt;abstractdue&gt; Deadline for abstract 11 June 2008 &lt;/abstractdue&gt; \u6458\u8981\uf93f\u53d6 \u901a\u77e5\u65e5\u671f Abstract Notification abstractnotify &lt;abstractnotify&gt; Acceptance of papers -August 30, 2009 &lt;/abstractnotify&gt; \uf941\u6587\u63d0\u4ea4 \u622a\u6b62\u65e5\u671f Paper Submission Deadline submissiondue &lt;submissiondue&gt;February 15 23, 2009 -Paper submission&lt;/submissiondue&gt; \uf941\u6587\uf93f\u53d6 \u901a\u77e5\u65e5\u671f Author Notification authornotify &lt;authornotify&gt; March 23, 2009 -Author notification &lt;/authornotify&gt; \uf941\u6587\u5b9a\u7a3f \u622a\u6b62\u65e5\u671f Final Paper Due finalpaperdue &lt;finalpaperdue&gt; Camera-ready copies: April 7, 2009 &lt;/finalpaperdue&gt; \u6d77\u5831\uf941\u6587 \u622a\u6b62\u65e5\u671f Poster Paper Due posterdue &lt;posterdue&gt; Poster Paper Submission Deadline May 15, 2008 &lt;/posterdue&gt; \u5c08\u984c\u63d0\u6848 \u622a\u6b62\u65e5\u671f Workshop Proposals Due workshopdue &lt;workshopdue&gt; workshop submissions due : Sunday, 2 Mar 2008 &lt;/workshopdue&gt; \u6559\u5b78\u63d0\u6848 \u622a\u6b62\u65e5\u671f Tutorial Proposals Due tutorialdue &lt;tutorialdue&gt; Tutorial Proposals: June 30, 2003 &lt;/tutorialdue&gt; \u535a\u58eb\u751f\uf941 \u58c7\u6295\u7a3f\u622a \u6b62\u65e5\u671f Doctoral Consortium Due doctoraldue &lt;doctoraldue&gt; Doctoral consortium submissions due: 6 Apr 2008 &lt;/doctoraldue&gt; \u6574\u9ad4\u5de5\u4f5c\uf9ca\u7a0b\u5982\u5716 1 \u6240\u793a\uff0c\u5305\u542b\u6587\u4ef6\u524d\u7f6e\u8655\uf9e4\u3001\u5206\uf9d0\u6a21\u578b\u7684\u8a13\uf996\u3001CRF \u6a21\u578b\u7684\u8a13\uf996 \u4e09\u9805\u5de5\u4f5c\u3002\u6587\u4ef6\u524d\u7f6e\u8655\uf9e4\u5305\u542b\u53bb\u9664\u6587\u4ef6\u96dc\u8a0a\u3001\u6a19\u8a3b\u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u3001Tokenization \u8207\u8a5e\u5f59\u7279 \u6027\u6a19\u793a\u3002 \u5716 1. \u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u6aa2\uf96a\u8207\u64f7\u53d6\u81ea\u52d5\u6a21\u578b\u4e4b\u5efa\u7f6e\uf9ca\u7a0b 4.1 \u6587\u4ef6\u524d\u7f6e\u8655\uf9e4 4.1.1 \u53bb\u9664\u6587\u4ef6\u96dc\u8a0a \u7531\u65bc\u7531\u7db2\u969b\u7db2\uf937\u8490\u96c6\u7684\u6587\u4ef6\uff0c\u901a\u5e38\u70ba html \u7684\u7db2\u9801\uff0c\u5305\u542b\u8a31\u591a\u5404\u5f0f\u5404\u6a23\u7684\u8cc7\u8a0a\uff0c\u9664\uf9ba\u8a72\u7db2 \u9801\u7684\u4e3b\u8981\u5167\u5bb9\u4e4b\u5916\uff0c\u5c1a\u6709\u7db2\u9801\u76f8\u4e92\uf99a\u7d50\u7684\u8cc7\u8a0a\uff0c\u4ee5\u53ca\u7db2\u7ad9\u5916\u90e8\u7684\u5ef6\u4f38\u8cc7\u8a0a\u3002\u6709\u4e9b\u7db2\u9801\u7684 \u4f5c\u8005\u70ba\u8b93\u7db2\u9801\uf901\u5438\u5f15\u4f7f\u7528\u8005\u700f\u89bd\uff0c\u63a1\u7528\uf9ba\u52d5\u614b\u7db2\u9801\u6216\u662f\u591a\u5a92\u9ad4\u7684\u5448\u73fe\u6a21\u5f0f\uff0c\u589e\u52a0\u8655\uf9e4\u7db2 \u9801\u5167\u5bb9\u5de5\u4f5c\u7684\u8907\u96dc\ufa01\u3002\u7121\uf941\u5728\u8cc7\u8a0a\u64f7\u53d6\u7684\u8a13\uf996\u968e\u6bb5\u6216\u662f\u6b63\u5f0f\u7684\u61c9\u7528\u4e0a\uff0c\u904e\u591a\u8207\u6703\u8b70\u8cc7\uf9be \u7121\u95dc\u7684\u96dc\u8a0a\u5c07\u6703\u5f71\u97ff\u8cc7\u8a0a\uf91d\u4f4d\u5224\u65b7\u7684\u7cbe\u78ba\ufa01\uff0c\u56e0\u6b64\u5fc5\u9808\u5148\u53bb\u9664\u8207\u7db2\u9801\u5167\u5bb9\u4e3b\u9ad4\u7121\u95dc\u7684\u96dc \u8a0a\uff0c\u5305\u542b\u5ee3\u544a\uff0c\u5716\u7247\uff0c\u7db2\u7ad9\u76ee\uf93f\uff0c\u8996\u89ba\u7279\u6548\u76f8\u95dc\u7a0b\u5f0f\u6bb5\uf918\u7b49\u7b49\u3002 4.1.2 \u6a19\u8a3b\u5b78\u8853\u6703\u8b70\u8cc7\u8a0a \u5efa\u69cb\u81ea\u52d5\u6587\u4ef6\u5206\uf9d0\u6a5f\u5236\u4ee5\u53ca\u81ea\u52d5\u8cc7\u8a0a\u64f7\u53d6\u6a21\u578b\uff0c\u9700\u8981\u5927\uf97e\u7684\u8a13\uf996\u8cc7\uf9be\uff0c\u672c\u7814\u7a76\u53e6\u5916\u5efa\u7f6e \uf9d0\u5225\u6a19\u8a3b\u7cfb\u7d71(Genre Annotating System\uff0cGAS)\uff0c\u6574\u5408\u5167\u5bb9\u6a19\u8a3b\u8207\u6587\u4ef6\u5206\uf9d0\u4e8c\u5927\u529f\u80fd\uff0c \u4ee5\u6c42\u5167\u5bb9\u7279\u5fb5\u6a19\u8a3b\u8207\u6587\u4ef6\u5206\uf9d0\u6a19\u8a3b\u7684\u4e00\u81f4\u6027\u8207\u6548\uf961\u3002GAS \u4ee5\u700f\u89bd\u5668\u70ba\u7cfb\u7d71\u5e73\u53f0\uff0c\u70ba\u5178\u578b \u7684 Web-Based Application\uff0c\u4e3b\u8981\u529f\u80fd\u5206\u6210\u4e09\u90e8\u5206\uff1a\u5019\u9078\u6587\u4ef6\u700f\u89bd\u3001\u6587\u4ef6\u5206\uf9d0\u6a19\u8a3b\uff0c\u4ee5\u53ca \u5167\u5bb9\u7279\u5fb5\u6a19\u8a3b\u3002\u5716 2 \u70ba\u672c\u7814\u7a76\u5efa\u69cb\u4e4b\uf9d0\u5225\u6a19\u8a3b\u7cfb\u7d71\u7684\u64cd\u4f5c\u756b\u9762\u3002 \u524d\u7f6e\u8655\uf9e4 \u53bb\u9664\u96dc\u8a0a Tokenization \u4eba\u5de5\u6a19\u8a3b \u6703\u8b70\u7279\u5fb5 \u4eba\u5de5\u5206\uf9d0 \u8a5e\u5f59\u7279\u6027 \u6a19\u793a Google Search Google Alert \u6587\u4ef6\u96c6 \u539f\u59cb\u7db2\u9801 \u6587\u4ef6\u96c6 (CRF \u683c\u5f0f) CRF Training CRF Testing CRF Model \u8abf\u6574\uf96b\uf969 \u6587\u4ef6\u96c6(\u5df2 \u5206\uf9d0\u7db2\u9801) Classifier Training Classifier Testing Classifier Model \u8abf\u6574\uf96b\uf969 1. \u5019\u9078\u6587\u4ef6\u700f\u89bd\u5340 \u5716 2 \u53f3\u4e0a\u65b9\u7684\u529f\u80fd\u5340\u584a\u70ba\u5019\u9078\u6587\u4ef6\u700f\u89bd\u5340\u3002\u5982\u524d\u6587\u6240\u8ff0\uff0c\u5019\u9078\u6587\u4ef6\u662f\u4ee5\u5b78\u9580\u5206\uf9d0\u8868\u7684 \u5b78\u79d1\u540d\u7a31\u70ba\u95dc\u9375\u5b57\uff0c\u7d93\u7531 Google Search \u53ca Google Alert \u65bc\u7db2\uf937\u4e0a\u8490\u96c6\u8207\u6703\u8b70\uf941\u6587\u5fb5\u7a3f \u901a\u544a\u76f8\u95dc\u7684\u7db2\u9801\u6587\u4ef6\u96c6\u5408\uff0c\u7d93\u7531\u53bb\u9664\u96dc\u8a0a\u8655\uf9e4\u4e4b\u5f8c\uff0c\u81ea\u52d5\u8f09\u5165 GAS \u7cfb\u7d71\u3002\u6a19\u8a3b\u4eba\u54e1\u767b \u5165 GAS \u5f8c\uff0c\u7cfb\u7d71\u6703\u65bc\u5019\u9078\u6587\u4ef6\u700f\u89bd\u5340\u5c55\u793a\u7531\u8a72\u4eba\u54e1\u8ca0\u8cac\u6a19\u8a3b\u4e4b\u6587\u4ef6\u6e05\u55ae\uff0c\u6a19\u8a3b\u4eba\u54e1\u4e5f \u53ef\u4ee5\uf9dd\u7528\u5de6\u65b9\u7684\u67e5\u8a62\u529f\u80fd\u7be9\u9078\u7db2\u9801\u6587\u4ef6\uff0c\u6e05\u55ae\u4e0a\u540c\u6642\u6a19\u793a\u6bcf\u4efd\u5019\u9078\u6587\u4ef6\u7684\u6a19\u8a3b\uf9fa\u614b\u53ca \u8a18\uf93f\u3002 \u5716 2. GAS -\u529f\u80fd\u756b\u9762 2. \u6587\u4ef6\u5206\uf9d0\u6a19\u8a3b\u5340 \u6587\u4ef6\u5206\uf9d0\u6a19\u8a3b\u5340\u4f4d\u65bc\u5716 2 \u7cfb\u7d71\u529f\u80fd\u756b\u9762\u4e2d\u9593\u7684\u72f9\u9577\u77e9\u5f62\u5340\u584a\u3002\u5019\u9078\u7db2\u9801\u6587\u4ef6\u4e3b\u8981\u5206\u6210 \u76f8\u95dc\u8207\uf967\u76f8\u95dc\uf978\uf9d0\uff0c\u6240\u8b02\u7684\u76f8\u95dc\u8207\uf967\u76f8\u95dc\uff0c\u662f\u4ee5\u8a72\u7db2\u9801\u6587\u4ef6\u662f\u5426\u8207\u6703\u8b70\uf941\u6587\u5fb5\u7a3f\u901a\u544a \u76f8\u95dc\u8207\u5426\uff0c\u4f5c\u70ba\u5224\u65b7\u7684\u4f9d\u64da\u3002\u4f46\u662f\uff0c\u8003\uf97e\u6709\u4e9b\u7db2\u9801\u6587\u4ef6\u5167\u5bb9\u8cc7\u8a0a\u592a\u8907\u96dc\u800c\u7121\u6cd5\u65b7\u5b9a\uff0c \u4e5f\u53ef\u4ee5\u66ab\u6642\uf967\u5c07\u8a72\u7db2\u9801\u6b78\uf9d0\uff0c\u4e14\u53ef\u4ee5\u8a3b\u8a18\u7121\u6cd5\u6b78\uf9d0\u7684\u539f\u56e0\uff0c\u4f5c\u70ba\u5f8c\u7e8c\u6587\u4ef6\u5206\uf9d0\uf9b5\u5916\u8655 \uf9e4\u7684\uf96b\u8003\uff0c\u5982\u5716 3 \u6240\u793a\u3002\u6a19\u8a3b\u4eba\u54e1\u5f9e\u5167\u5bb9\u7279\u5fb5\u6a19\u8a3b\u5340\u53ef\u6aa2\u8996\u7db2\u9801\u6587\u4ef6\uff0c\u5224\u65b7\u8a72\u6587\u4ef6\u5167 \u5bb9\u662f\u5426\u662f\u6703\u8b70\uf941\u6587\u5fb5\u7a3f\u901a\u544a\uff0c\uf974\u78ba\u5b9a\u662f\u6703\u8b70\uf941\u6587\u5fb5\u7a3f\u901a\u544a\uff0c\u624d\u9700\u8981\u9032\u4e00\u6b65\u91dd\u5c0d\u6587\u4ef6\u5167 \u5bb9\u6a19\u8a3b\u5404\u9805\u6703\u8b70\u8cc7\u8a0a\u3002 3. \u5167\u5bb9\u7279\u5fb5\u6a19\u8a3b\u5340 \u5167\u5bb9\u7279\u5fb5\u6a19\u8a3b\u5340\u4f4d\u65bc\u5716 2 \u7684 GAS \u7cfb\u7d71\u529f\u80fd\u756b\u9762\u7684\u4e0b\u65b9\u529f\u80fd\u5340\u584a\u3002\u9078\u53d6\u5019\u9078\u6587\u4ef6\u700f\u89bd\u5340 \u7684\u4efb\u4e00\u7b46\u8cc7\uf9be\uff0c\u7cfb\u7d71\u6703\u5c07\u8a72\u7db2\u9801\u6587\u4ef6\u5168\u6587\u8f09\u5165\u5167\u5bb9\u7279\u5fb5\u6a19\u8a3b\u5340\uff0c\u5167\u5bb9\u7279\u5fb5\u6a19\u8a3b\u5340\u4fc2\u4ee5 HTML \u6a21\u5f0f\u5448\u73fe\u7db2\u9801\u6587\u4ef6\u5167\u5bb9\u3002\u5167\u5bb9\u7279\u5fb5\u6a19\u8a3b\u5340\u4e0a\u65b9\u7684\u529f\u80fd\uf99c\uff0c\u9664\uf9ba\u63d0\u4f9b \u300c\uf966\u539f\u52d5\u4f5c\u300d \u3001 \u300c\u91cd\u8986\u52d5\u4f5c\u300d \u3001 \u300c\u53bb\u9664 HTML \u6a19\u7c64\u300d \u3001\u53ca\u300c\u5b57\uf905\u67e5\u8a62\u300d\u7b49\u529f\u80fd\u6309\u9215\u4e4b\u5916\uff0c\u6700\u91cd\u8981\u7684\u529f\u80fd\u662f \u300c\u6a23\u5f0f\u300d\u7684\u4e0b\uf925\u5f0f\u9078\u55ae\uff0c\u6b64\u6a23\u5f0f\u9078\u55ae\uf99c\u51fa\u6240\u6709\u672c\u7814\u7a76\u63a1\u7528\u7684\u6703\u8b70\u8cc7\u8a0a\u7279\u5fb5\uff0c\u6a19\u8a3b\u4eba\u54e1 \u65bc\u7db2\u9801\u5167\u5bb9\u4e2d\u6846\u9078\u7279\u5fb5\u8cc7\u8a0a\u5f8c\uff0c\u518d\u9078\u53d6\u5c0d\u61c9\u7684\u6703\u8b70\u8cc7\u8a0a\u7279\u5fb5\u6a23\u5f0f\uff0c\u6a19\u8a3b\u4e4b\u5f8c\uff0c\u6240\u9078\u53d6 \u7684\u7279\u5fb5\u8cc7\u8a0a\u6703\u4ee5\u7279\u5b9a\u7684 HTML \u6a19\u7c64\u6a19\u793a\u3002\uf9b5\u5982\u6703\u8b70\u540d\u7a31\u5728 HTML \u539f\u59cb\u78bc\u4e2d\u6a19\u793a\u70ba &lt;confname&gt;\u6703\u8b70\u540d\u7a31&lt;/confname&gt;\uff0c\u672c\u7814\u7a76\u8003\uf97e\u7684\u6703\u8b70\u8cc7\u8a0a\u7279\u5fb5\u8207\u5c0d\u61c9\u7684 HTML \u6a19\u7c64\u8acb \u518d\u6b21\uf96b\ufa0a\u8868 2\u3002 \u5716 3. GAS -\u6587\u4ef6\u5206\uf9d0\u6a19\u8a3b\u5340 4. Tokenization \u8207\u8a5e\u5f59\u7279\u6027\u6a19\u793a CRF \u9700\ufa00\u5272\u5e8f\uf99c\u6027\u8cc7\uf9be\u70ba\u4e00\uf99a\uf905 Token \u5f8c\uff0c\u4e26\u8ce6\u4e88\u5404 Token \u9069\u7576\u7684\u8a5e\u6027\u6a19\u793a\uff0c\u518d\u4f9d\u6bcf \u500b Token \u7684\u7279\u5fb5\u5411\uf97e\uff0c\u8a08\u7b97\u5404 Token \u4e4b\u9593\u7684\u689d\u4ef6\u6a5f\uf961\uff0c\u4ee5\u505a\u70ba\u5efa\u69cb\u8a5e\u5f59\u8fa8\uf9fc\u6a21\u578b\u7684\u4f9d \u64da\u3002\u56e0\u6b64\u53bb\u9664\u96dc\u8a0a\u5f8c\u7684\u7db2\u9801\u5167\u5bb9\uff0c\u8981\u518d\u62bd\u53d6\u975e HTML \u6a19\u7c64\u7684\u5b57\uf905\uff0c\u5c07\u5b57\uf905\u4ee5\u55ae\u4e00\u8a5e\u5f59 \u6216\u6a19\u9ede\u7b26\u865f\u70ba\u55ae\u4f4d\uff0c\ufa00\u5272\u6210\uf901\u5c0f\u7684\u7247\u6bb5\u70ba Token\uff0c\u91dd\u5c0d\u6bcf\u4e00\u500b Token\uff0c\u9032\u4e00\u6b65\u505a\u4e00\u822c\u8a5e \u6027\u6a19\u793a\u53ca\u5c08\u9580\u8a5e\u6027\u6a19\u793a\u3002\u4e00\u822c\u8a5e\u6027\u6a19\u793a\u5305\u542b\u6a19\u9ede\u7b26\u865f\uff0c\u5927\u5c0f\u5beb\uff0c\uf969\u5b57\uff0c\u65e5\u671f\u578b\u614b\u7b49\uf9fc \u5225\u3002\u5c08\u9580\u8a5e\u6027\u5247\u5305\u62ec\u5730\u540d\uff0c\u6703\u8b70\u8cc7\u8a0a\u7d93\u5e38\u4f7f\u7528\u5c08\u9580\u8a5e\u5f59\uff0c\uf9b5\u5982 conference\u3001congress\u3001 association\u3001annual\u3001national \u7b49\uff0c\u672c\u7814\u7a76\u63a1\u7528 GeoNames \u5730\u540d\u8cc7\uf9be\u5eab\u70ba\u5730\u540d\u8fa8\u8996\u4f9d\u64da\uff0c \u4e26\u6574\uf9e4\u6703\u8b70\u8cc7\u8a0a\u7d93\u5e38\u4f7f\u7528\u7684\u5c08\u9580\u8a5e\u5f59\uff0c\u7528\u4ee5\u6bd4\u5c0d\u4e26\u6a19\u793a\u76f8\u95dc\u8a5e\u5f59\uff0c\u5982\u8868 3 \u6240\u793a\u3002 \u8868 3. \u6703\u8b70\u8cc7\u8a0a\u4f7f\u7528\u4e4b\u5c08\u9580\u8a5e\u5f59\uf99c\u8868 \u5c08\u9580\u8a5e\u5f59\uf9d0\u5225 \u8a5e\u5f59\u9805\u76ee \u6a5f\u69cb\u540d\u7a31 Center, centre, college, department, institute, school, univ., university \u7d44\u7e54\u540d\u7a31 \u8868 4. \u5206\uf9d0\u7d50\u679c\uf99c\uf997\u8868 Category i Expert Assignment TRUE FALSE System Judgment TRUE TP i FP i FALSE FN i TN i \u8868 5. \u5206\uf9d0\u7d50\u679c\u7e3e\u6548\u6bd4\u8f03 \u65b9\u6cd5 \u8a13\uf996\uff1a\u6e2c\u8a66 Inside/ Outside P micro P macro R micro R macro F1 micro F1 macro 70%\uff1a30% Outside Test 75.30 75.34 92.07 92.07 82.84 82.87 Inside Test 77.94 78.31 92.70 92.70 84.68 84.90 \u5b8c\u6210\u4eba\u5de5\u6a19\u8a3b\u7684\u7db2\u9801\u6587\u4ef6\u8f49\u63db\u6210\u6b64\u7279\u5b9a\u683c\u5f0f\u5f8c\uff0c\u5c07\u5176\u4e2d\u56db\u5206\u4e4b\u4e09\u7684\u6587\u4ef6\u505a\u70ba\u8a13\uf996\u6587 \u4ef6\u96c6\uff0c\u56db\u5206\u4e4b\u4e00\u505a\u70ba\u6e2c\u8a66\u6587\u4ef6\u96c6\u3002\u900f\u904e CRF \u4ee5\u8a13\uf996\u6587\u4ef6\u7684 Token \u7279\u6027\uff0c\u6f14\u7b97\u4e26\u5efa\u69cb\u81ea\u52d5 \u6a19\u8a3b\u6a21\u578b\uff0c\u518d\u4f7f\u7528\u6e2c\u8a66\u6587\u4ef6\u6e2c\u8a66\u81ea\u52d5\u6a19\u8a3b\u4e4b\u6548\u679c\uff0c\u4e26\u4f9d\u6e2c\u8a66\u7d50\u679c\u8abf\u6821\u904b\u7b97\uf96b\uf969\u6216\u8abf\u6574\u6703 \u8b70\u8cc7\u8a0a\u7279\u5fb5\u4eba\u5de5\u6a19\u8a3b\u898f\u5247\uff0c\u4ee5\u63d0\u5347\u81ea\u52d5\u6a19\u8a3b\u6a21\u578b\u7684\u7e3e\u6548\u3002CRF \u7684\u5be6\u9a57\u7d50\u679c\u5982\u8868 6 \u6240\u793a\uff0c \u7531\u65bc\u5e0c\u671b\u52a0\u5f37 Recall\uff0c\u4ee5\u5118\u53ef\u80fd\u5730\u64f7\u53d6\u76f8\u95dc\u7684 Entities\uff0c\u4ee5\u907f\u514d\u907a\uf94e\u6703\u8b70\u8cc7\u8a0a\uff0c\u56e0\u6b64\u8868 6 \u986f\u793a Recall \u76f8\u5c0d\u8f03\u9ad8\u3002\u5c0d\u65bc\u53ef\u80fd\u9020\u6210\u7684\u8aa4\u5224\uff0c\u518d\u61c9\u7528\u8a31\u591a Heuristic Rules \u904e\uf984\uf967\u9069\u7576\u6216 \u662f\u932f\u8aa4\u7684\u8a0a\u606f\uff0c\u9019\u4e9b Heuristic Rules \u53ef\u5206\u70ba\u4e0b\uf99c\u4e94\u7a2e\u578b\u5f0f\uff1a \u5f8c\u7aef\u7cfb\u7d71 Internet Focused Crawler \u524d\u7aef\u7cfb\u7d71 \u6703\u8b70\u8cc7\uf9be\u67e5\u8a62 ACIRES \u63a1\u7528 Lucene \u6aa2\uf96a\u7cfb\u7d71\u6574\u5408\u6240\u8490\u96c6\u8207\u6574\uf9e4\u7684\u6703\u8b70\u8cc7\uf9be\u3002(Apache Software \u6587\u4ef6\u8655\uf9e4\u6a21\u578b \u6587\u4ef6\u81ea\u52d5\u5206\uf9d0 \u8cc7\u8a0a\u81ea\u52d5\u6a19\u8a3b Command Flow Data Flow Foundation, 2010)Lucene \u70ba\u5b8c\u6574\u7684\u8cc7\u8a0a\u6aa2\uf96a\u7cfb\u7d71\uff0c\u63d0\u4f9b\u5168\u6587\u8cc7\uf9be\u53ca\uf91d\u4f4d\u8cc7\uf9be\u7684\uf96a\u5f15\u5efa\uf9f7 \u53bb\u9664\u96dc\u8a0a Google Alert \u8207\u8cc7\uf9be\u67e5\u8a62\u529f\u80fd\u3002ACIRES \u53d6\u7528\u5df2\u53bb\u9664\u96dc\u8a0a\u7684\u7db2\u9801\u5167\u5bb9\u5efa\uf9f7\u5168\u6587\uf96a\u5f15\u3002\u6bcf\u4e00\u7b46\u6703\u8b70\u8cc7\uf9be \u6587\u4ef6\u81ea\u52d5\u5206\uf9d0 \u8cc7\u8a0a\u81ea\u52d5\u6a19\u8a3b \u662f\u7531\u4e00\u4efd\u7db2\u9801\u5168\u6587\u53ca\u591a\u500b\u81ea\u52d5\u64f7\u53d6\u7684\u7279\u5fb5\u9805\u76ee\u6240\u7d44\u6210\uff0c\u9019\u4e9b\u7279\u5fb5\u9805\u76ee\u4e5f\u662f\u5efa\uf9f7\uf96a\u5f15\u8cc7\uf9be \u5eab\u6642\uff0c\u5404\u5b78\u8853\u6703\u8b70\u8cc7\uf9be\u7684\uf91d\u4f4d\uf96a\u5f15\u9805\u76ee\u3002 Tokenization \u5019\u9078 Classifier \u539f\u59cb\u7db2\u9801 Model \u8a5e\u5f59\u7279\u6027\u6a19\u793a 5.2 \u524d\u7aef\u4f7f\u7528\u8005\u7cfb\u7d71 Association, consortium, council, group, society \u4e8b\u4ef6\u540d\u7a31 Colloquium, conf., conference, congress, convention, forum, meeting, round, roundtable, seminar, summit, symposium, table, track, workshop \u6642\u9593\u5c6c\u6027\u540d\u7a31 Annual, autumn, biannual, biennial, European, fall, int., interdisciplinary, international, joint, national, special, spring, summer, winter 4.2 \u5206\uf9d0\u6a21\u578b\u7684\u8a13\uf996 \u6587\u4ef6\u5206\uf9d0\u7684\u76ee\u7684\u662f\u70ba\uf9ba\u9810\u5148\u904e\uf984\u4e26\u975e\uf941\u6587\u5fb5\u7a3f\u901a\u544a\u7684\u6587\u4ef6\uff0c\u4ee5\ufa09\u4f4e\u5167\u5bb9\u81ea\u52d5\u6a19\u8a3b\u6642\u7684\u8ca0 \u64d4\u3002\u7576\u7cfb\u7d71\u904b\u8f49\u5f8c\uff0c\u5927\uf97e\u7684\u7db2\uf937\u6587\u4ef6\u9032\u5165\u7cfb\u7d71\u6642\uff0c\u5fc5\u9808\u5148\u5224\u65b7\u662f\u5426\u70ba\uf941\u6587\u5fb5\u7a3f\u901a\u544a\u7684\u76f8 \u95dc\u6587\u4ef6\uff0c\u7136\u5f8c\u518d\u900f\u904e\u5167\u5bb9\u7279\u5fb5\u64f7\u53d6\u529f\u80fd\uff0c\u64f7\u53d6\u6240\u9700\u8981\u7684\u6703\u8b70\u8cc7\u8a0a\u3002\u7531\u65bc\u76ee\u524d\u6709\u8a31\u591a\u7684\u958b \u653e\u7a0b\u5f0f\u78bc\u53ef\u4f9b\u4f7f\u7528\uff0c\u4ee5\u958b\u767c\u6587\u4ef6\u5206\uf9d0\u7684\u529f\u80fd\u6a21\u7d44\uff0c\u672c\u7814\u7a76\u4f7f\u7528 McCallum(1996)\u7684 Bow Library\uff0c\u958b\u767c\u7d71\u8a08\u5b78\u7fd2\u70ba\u672c\u7684\u6587\u4ef6\u81ea\u52d5\u5206\uf9d0\u529f\u80fd\u6a21\u7d44\uff0c\u7528\u4ee5\u904e\uf984\u7531\u7db2\uf937\u53d6\u5f97\u7684\u6703\u8b70\u901a\u544a \u6587 \u4ef6 \uff0c Rainbow \u5247 \u662f \u57fa \u65bc Bow \u7684 \u61c9 \u7528 \u7a0b \u5f0f \uff0c \u53ef \u7531 http://www.cs.cmu.edu/~mccallum/bow/rainbow/\u53d6\u5f97\u3002\u57fa\u672c\u4e0a\uff0cRainbow \u662f\uf9dd\u7528\u5df2\u77e5\uf9d0\u5225 \u7684\u6587\u4ef6\uff0c\u7d71\u8a08\u5206\u6790\u5404\u6587\u4ef6\u7279\u5fb5\u4e26\u5efa\uf9f7\u5206\uf9d0\u6a21\u578b\uff0c\u518d\u4f9d\u6b64\u5206\uf9d0\u6a21\u578b\u5c0d\u65b0\u6587\u4ef6\u9032\ufa08\u81ea\u52d5\u5206\uf9d0\u3002 \u5728\u4eba\u5de5\u6a19\u8a3b\u8f14\u52a9\u7cfb\u7d71\u6240\u7522\u751f\u7684\u76f8\u95dc\u6587\u4ef6\u96c6\u8207\uf967\u76f8\u95dc\u6587\u4ef6\u96c6\uff0c\u662f\u6536\uf93f\u539f\u59cb\u7db2\u9801\u6587\u4ef6\uff0c\u800c\uf967 \u662f\u5df2\u88ab\u4eba\u5de5\u6a19\u8a3b\u7279\u5fb5\u9805\u76ee\u7684\u65b0\u7db2\u9801\u5167\u5bb9\uff0c\u56e0\u70ba\u672c\u7814\u7a76\u7684\u6703\u8b70\u8cc7\u8a0a\u81ea\u52d5\u64f7\u53d6\u7cfb\u7d71\uff0c\u662f\u5148\u904e \uf984\u975e\u6703\u8b70\u901a\u544a\u7db2\u9801\uff0c\u624d\u9032\ufa08\u8cc7\u8a0a\u64f7\u53d6\u7a0b\u5e8f\uff0c\u56e0\u6b64\u6587\u4ef6\u81ea\u52d5\u5206\uf9d0\u529f\u80fd\u6a21\u7d44\uff0c\u662f\u4ee5\u539f\u59cb\u7db2\u9801 \u505a\u70ba\u8a13\uf996\u6587\u4ef6\u3002\u6211\u5011\u9032\ufa08\u5927\uf97e\u7684\u8a13\uf996\u8207\u6e2c\u8a66\uff0c\u4f7f\u7528 k-Nearest Neighbor (kNN) \u3001Naive Bayes (NB)\u3001Support Vector Machine(SVM)\u4e09\u7a2e\u5206\uf9d0\u6a21\u5f0f\uff0c\u96a8\u6a5f\u62bd\u53d6\u6587\u4ef6\u9032\ufa08 20 \u6b21\u7684\u5be6 \u9a57\uff0c\u4f7f\u7528\u8a13\uf996\u6587\u4ef6\u8207\u6e2c\u8a66\u6587\u4ef6\u6bd4\uf9b5\u5206\u5225\u70ba(7:3)\u3001(5:5)\u3001(3:7)\uff0c\u89c0\u5bdf\u5206\uf9d0\u7e3e\u6548\u7684 \u8b8a\u52d5\u60c5\u5f62\uff0c\u4ee5\u6c7a\u5b9a\u7cfb\u7d71\u4f7f\u7528\u7684\u5206\uf9d0\u6a21\u578b\u3002\u5206\uf9d0\u7d50\u679c\u7684\u512a\uf99d\u662f\u4ee5 Recall (\u6c42\u5168\uf961) \u8207 Precision (\u6c42\u6e96\uf961)\u8a55\uf97e\uff0c\u53ef\u4ee5\u9032\u4e00\u6b65\u5c07\uf978\u9805\u6307\u6a19\u7d50\u5408\u70ba\u55ae\u4e00\u7684 F1 \u6307\u6a19\uff0c\u8a08\u7b97\u65b9\u5f0f\uf96f\u660e\u5982\u4e0b\u3002\u6bcf \u4e00\u7bc7\u6587\u4ef6\u7686\u5df2\u6709\u6b63\u78ba\u7684\u5206\uf9d0\u6a19\u8a18\uff0c\u5728\u6bcf\u4e00\u6b21\u7684\u5206\uf9d0\u5be6\u9a57\uff0c\u5206\uf9d0\u6a21\u578b\u6703\u70ba\u6bcf\u4e00\u7bc7\u81ea\u52d5\u8ce6\u4e88 \u5176\u5206\uf9d0\u6a19\u8a18\uff0c\u53ef\u80fd\u8207\u6b63\u78ba\u7684\u5206\uf9d0\u6a19\u8a18\u4e00\u6a23\uff0c\u6216\u662f\uf967\u4e00\u6a23\uff0c\u56e0\u6b64\u6709\u56db\u7a2e\u53ef\u80fd\u6027\uff0c\u5982\u8868 3 \u6240 \u793a\u3002 \u4f9d\u64da\u8868 4 \u53ef\u4ee5\u8a08\u7b97 Recall (R)\u3001Precision (P)\u3001\u4ee5\u53ca F1 Measure\u3002 P TP TP FP , R TP TP FN , F1 2P R P R \u56e0\u70ba\u9032\ufa08\uf9ba 20 \u6b21\u5be6\u9a57\uff0c\u53ef\u4ee5\u8a08\u7b97 Micro Recall\u3001Micro Precision\u3001Marco Recall\u3001Macro Precision\uff0c\u4ee5\u53ca\u5c0d\u61c9\u7684 Micro F1 Measure \u8207 Macro F1 Measure\uff0c\u4ee5\u89c0\u5bdf\u6bcf\u6b21\u5be6\u9a57\u7684\u8b8a\uf962\u60c5 \u5f62\uff0c\u8a08\u7b97\u65b9\u5f0f\u5982\u4e0b\u6240\u793a\uff0c\u5176\u4e2d n \u4ee3\u8868\u5be6\u9a57\u6b21\uf969\u3002 P \u2211 TP \u2211 TP FP , R \u2211 TP \u2211 TP FN P 1 n TP TP FP , R 1 n TP TP FN \u5be6\u9a57\u7d50\u679c\u5982\u8868 5 \u6240\u793a\uff0cOutside Recall-Oriented \u7684\u4f5c\u6cd5\uff0c\u8abf\u6574\u7cfb\u7d71\uf96b\uf969\uff0c\u9032\ufa08\u6587\u4ef6\u7684\u81ea\u52d5\u5206\uf9d0\uff0c\u539f\u56e0\u662f\u5e0c\u671b\u80fd\u5920\u5118\uf97e\u53d6\u5f97\u6703\u8b70\u76f8\u95dc\u7684\u6587 \u4ef6\uff0c\u56e0\u6b64\u8f03\u8457\u91cd\u65bc Recall\u3002\u4f9d\u64da\u524d\u8ff0\u5be6\u9a57\u7684\u7d50\u679c\uff0c\u672c\u7814\u7a76\u767c\u5c55\u7684\u7cfb\u7d71\u5c07\u63a1\u7528 SVM \u6a21\u578b\uff0c \u81ea\u52d5\u5206\uf9d0\u5927\uf97e\u7684\u7db2\uf937\u6587\u4ef6\uff0c\u5224\u5b9a\u662f\u5426\u70ba CFP \u6587\u4ef6\u5f8c\uff0c\u518d\u9032\u4e00\u6b65\u64f7\u53d6\u6587\u4ef6\u4e2d\u7684\u6703\u8b70\u8cc7\u8a0a\u3002 4.3 CRF\u6a21\u578b\u7684\u8a13\uf996 \u672c\u7814\u7a76\u4f7f\u7528 CRF \u6a21\u578b\u5efa\u69cb\u6703\u8b70\u8cc7\u8a0a\u64f7\u53d6\u7684\u81ea\u52d5\u7a0b\u5e8f\uff0c\u7531\u65bc\u76ee\u524d\u4e5f\u5df2\u6709\u8a31\u591a\u73fe\u6210\u7684\u958b\u653e\u7a0b \u5f0f\u78bc\u53ef\u4f9b\u4f7f\u7528\uff0c\u6c7a\u5b9a\u63a1\u7528 Kudo(2010)\u958b\u767c\u7684 CRF++\u5957\u4ef6\uff0c\u4ee5\u64f7\u53d6\u6703\u8b70\uf941\u6587\u5fb5\u7a3f\u901a\u544a \u7684\u7279\u5fb5\u8cc7\u8a0a\uff0cCRF++\u53ef\u7531 http://crfpp.sourceforge.net/\u53d6\u5f97\u3002\u543e\u4eba\u53ef\u4ee5\u4f7f\u7528 CRF++\u958b\u767c\u6587 \u4ef6\u81ea\u52d5\u5206\u8a5e(segmenting)\u6216\u5167\u5bb9\u7279\u5fb5\u6a19\u8a3b(labeling)\u7b49\u5e8f\uf99c\u6027\u8cc7\uf9be\u7684\u61c9\u7528\u7cfb\u7d71\u3002CRF++ \u5ba3\u7a31\u4f7f\u7528\u8005\u53ef\u4ee5\u81ea\u8a02\u8cc7\uf9be\u7279\u5fb5\uff0c\u800c\u4e14\u8a08\u7b97\u901f\ufa01\u5feb\uff0c\u50c5\u4f7f\u7528\u5c11\uf97e\u7684\u8a18\u61b6\u9ad4\u3002\u7531\u65bc CRF++\u4f7f \u7528\u7279\u5b9a\u6587\u4ef6\u683c\u5f0f\uff0c\u5fc5\u9808\u5c07\u6587\u4ef6\u5167\u5bb9\ufa00\u5272\u6210\u4e00\uf99a\uf905\u7684 Token\uff0c\u4ee5\u8868\u683c\u7684\u5f62\u5f0f\u9673\uf99c\u6bcf\u4e00\u500b Token \u7684\u8a5e\u5f59\u7279\u6027\u3001\u7248\u9762\u7279\u6027\u4ee5\u53ca\u6703\u8b70\u8cc7\u8a0a\u7b49\u7279\u5fb5\uff0c\u7121\uf941\u8a13\uf996\u6587\u4ef6\u6216\u662f\u6e2c\u8a66\u6587\u4ef6\uff0c\u90fd\u5fc5 \u9808\u4f9d\u5faa\u6b64\u7279\u5b9a\u683c\u5f0f\u7de8\u6392\u3002 SVM 50%\uff1a50% Outside Test 74.19 74.21 90.36 90.36 81.48 81.49 Inside Test 76.07 77.09 92.14 92.14 83.34 \u5e8f\uf99c\u898f\u5247(Sequence Rule) \uff1a\u8003\uf97e\u6642\u9593\u8cc7\u8a0a\u7684\u5e8f\uf99c\u6027\u3002 \u8a5e\u5f59\u898f\u5247(Term Rule) \uff1a\u8003\uf97e\u7279\u5b9a\u7684\u8a5e\u5f59\u3002 \u5efa\uf9f7\u6587\u4ef6\uf96a\u5f15 \u6703\u8b70\u8cc7\uf9be\u700f\u89bd \u5982\u524d\u6587\u6240\u8ff0\uff0c\u524d\u7aef\u7cfb\u7d71\u4e43\u662f\u652f\u63f4\u4f7f\u7528\u8005\u5404\u9805\u529f\u80fd\u7684\u5165\u53e3\uff0c\u5176\u67b6\u69cb\u5982\u5716 6 \u6240\u793a\uff0c\u5404\u9805\u529f\u80fd \u53ef\u5206\u70ba\uf978\u5927\u6a21\u7d44\uff1a1) \u6703\u8b70\u8cc7\uf9be\u641c\u5c0b\uff1b2) \u500b\u4eba\ufa08\u4e8b\uf98b\u3002\u6703\u8b70\u8cc7\uf9be\u641c\u5c0b\u70ba\uf9ba\u6eff\u8db3\u4f7f\u7528\u8005\u6aa2 \u6587\u4ef6\u81ea\u52d5\u5206\uf9d0 CFP \u6587\u4ef6 (CRF \u7279\u5b9a\u683c\u5f0f) \u5716 12. \u52fe\u9078\u6703\u8b70\u9805\u76ee\u81ea\u52d5\u6372\u52d5\u81f3\u5c0d\u61c9\u6642\u9593 83.94 Outside Test 72.90 72.93 89.10 89.10 80.19 80.21 \u4f4d\u7f6e\u898f\u5247(Location Rule) \uff1a\u8003\uf97e\u5177\u540d\u5be6\u9ad4\u7684\u76f8\u5c0d\u4f4d\u7f6e\u3002 \u683c\u5f0f\u898f\u5247(Format Rule) \uff1a\u8003\uf97e\u6642\u9593\u8cc7\u8a0a\u7684\u683c\u5f0f\u3002 Client \uf96a\u5f15\u8cc7\uf9be\u5eab \u500b\u4eba\ufa08\u4e8b\uf98b \u8996\u8cc7\uf9be\u7684\uf967\u540c\u9700\u6c42\uff0c\u5be6\u969b\u63d0\u4f9b\uf9ba\u5305\u62ec\u57fa\u672c\u6aa2\uf96a\u3001\u9032\u968e\u6aa2\uf96a\u3001\u5206\uf9d0\u700f\u89bd\u3001\u6642\u9593\u700f\u89bd\u3001\u5730\u9ede \u700f\u89bd\u7b49\u529f\u80fd\uff1b\u500b\u4eba\ufa08\u4e8b\uf98b\u5247\u662f\u63d0\u4f9b\ufa08\u4e8b\uf98b\u7684\u7ba1\uf9e4\u529f\u80fd\u3002\u5716 7 \u70ba\u524d\u7aef\u4f7f\u7528\u8005\u7cfb\u7d71\u7684\u5165\u53e3\u9996 \u5716 7. ACIRES \u9996\u9801 CFP \u76f8\u95dc\u7db2\u9801 \u8cc7\u8a0a\u81ea\u52d5\u6a19\u8a3b \u9801\uff0c\u5206\u70ba\u6642\u9593\u8cc7\u8a0a\u756b\u9762\u3001\u6aa2\uf96a\u529f\u80fd\u756b\u9762\u3001\u5206\uf9d0\u700f\u89bd\u756b\u9762\u3001\u6aa2\uf96a\u7d50\u679c\u756b\u9762\uff0c\u4e0b\u6587\u7c21\u8981\uf96f\u660e 30%\uff1a70% Inside Test 74.83 76.08 92.85 92.85 82.87 \u76f8\u4f3c\u898f\u5247(Similarity Rule) \uff1a\u8003\uf97e\u5177\u540d\u5be6\u9ad4\u7684\u76f8\u4f3c\u6027\u3002 \u5716 4. ACIRES \u6574\u9ad4\u7cfb\u7d71\u67b6\u69cb \u5404\u9805\u529f\u80fd\u3002 \u5716 10. \u67e5\u8a62\u7d50\u679c\u5206\uf9d0\u700f\u89bd 83.63 Naive Bayes 70%\uff1a30% Outside Test 78.00 78.07 62.63 62.63 69.48 69.50 Inside Test 75.29 75.50 95.30 95.30 84.12 84.25 50%\uff1a50% Outside Test 76.31 76.40 63.02 63.02 69.03 69.07 Inside Test 75.28 75.59 94.18 94.18 83.68 83.87 30%\uff1a70% Outside Test 69.76 69.85 95.37 95.37 80.58 80.64 Inside Test 74.84 75.51 96.33 96.33 84.23 84.66 kNN 70%\uff1a30% Outside Test 66.97 69.32 58.67 58.67 62.54 63.55 Inside Test 56.88 57.39 94.73 94.73 71.08 71.48 50%\uff1a50% Outside Test 65.74 67.77 61.82 61.82 63.72 64.66 Inside Test 56.14 56.54 95.70 95.70 70.77 71.09 30%\uff1a70% Outside Test 63.51 67.03 58.67 58.67 60.99 62.57 Inside Test 57.98 59.23 91.42 91.42 70.96 71.89 \u8868 6. \u5177\u540d\u5be6\u9ad4\u7684\u64f7\u53d6 5.1 \u5f8c\u7aef\u8cc7\u8a0a\u8655\uf9e4\u7cfb\u7d71 5.2.1 \u67e5\u8a62\u5b78\u8853\u6703\u8b70\u8cc7\u8a0a CRF Model CFP \u6587\u4ef6 (\u5df2\u6a19\u8a3b) 5.2.3 \u5206\uf9d0\u700f\u89bd\u67e5\u8a62\u7d50\u679c Documents System True Entities False Entities Positive Entities 1632 1079 Negative Entities 261 2785 Recall (R) = 1632/(1632+261)=86.21%; Precision (P) = 1632/(1632+1079)= 60.20% F1 measure (F1) = (2*P*R)/(P+R)=70.89% 5. \u7cfb\u7d71\u5be6\u4f5c\u8207\u529f\u80fd \u70ba\uf9ba\u5be6\u4f5c\u672c\u7814\u7a76\u63d0\u51fa\u7684\u5b78\u8853\u8cc7\u8a0a\u81ea\u52d5\u64f7\u53d6\u7684\u6a5f\u5236\uff0c\u4e26\u63d0\u4f9b\u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u4e4b\u61c9\u7528\u670d\u52d9\uff0c\u6211 \u5011\u5efa\u69cb\u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u6aa2\uf96a\u8207\u64f7\u53d6\u7cfb\u7d71\u5e73\u53f0(Academic Conference Information Retrieval &amp; Extraction System\uff0c\u7c21\u7a31 ACIRES)\u3002ACIRES \u7531\u5f8c\u7aef\u8cc7\u8a0a\u8655\uf9e4\u7cfb\u7d71\u8207\u524d\u7aef\u4f7f\u7528\u8005\u7cfb\u7d71\u69cb \u6210\uff0c\uf978\u8005\u7686\u70ba\u81ea\u52d5\u5316\u8207\u5373\u6642\u6027\u4e4b\u670d\u52d9\uff0c\u7cfb\u7d71\u67b6\u69cb\u5982\u5716 4 \u6240\u793a\u3002\u5f8c\u7aef\u7cfb\u7d71\u8490\u96c6\u7db2\uf937\u4e0a\u7684\u5b78 \u8853\u6703\u8b70\u8cc7\u8a0a\u7db2\u9801\u3001\u904e\uf984\u975e\u76f8\u95dc\u7db2\u9801\u3001\u64f7\u53d6\u6703\u8b70\u8cc7\u8a0a\u3001\u4e26\u9032\u800c\u5efa\uf9f7\u6587\u4ef6\uf96a\u5f15\uff0c\u524d\u7aef\u7cfb\u7d71\u662f \u8207\u4f7f\u7528\u8005\u4e92\u52d5\u7684\u5165\u53e3\uff0c\u4f7f\u7528\u5f8c\u7aef\u7cfb\u7d71\u5efa\u69cb\u4e4b\uf96a\u5f15\u8cc7\uf9be\uff0c\u63d0\u4f9b\u4f7f\u7528\u8005\u5404\u9805\u670d\u52d9\uff0c\u4e26\u8207 Google Calendar \uf997\u7e6b\uff0c\u5efa\u69cb\u500b\u4eba\ufa08\u4e8b\uf98b\u3002\u4ee5\u4e0b\u5206\u5225\u4ecb\u7d39\u5f8c\u7aef\u8cc7\u8a0a\u8655\uf9e4\u7cfb\u7d71\u4ee5\u53ca\u524d\u7aef\u4f7f\u7528\u8005\u7cfb\u7d71 \u7684\u5404\u9805\u529f\u80fd\u3002 \u5f8c\u7aef\u8cc7\u8a0a\u8655\uf9e4\u7cfb\u7d71\u4e3b\u8981\u7684\u5de5\u4f5c\u70ba\u6587\u4ef6\u81ea\u52d5\u5206\uf9d0\u3001\u8cc7\u8a0a\u81ea\u52d5\u6a19\u8a3b\u3001\u4ee5\u53ca\u5efa\uf9f7\u6587\u4ef6\uf96a\u5f15\uff0c\u8acb \uf96b\u8003\u5716 5\u3002\u5f8c\u7aef\u7cfb\u7d71\u4f7f\u7528 Google Alert \u8490\u96c6\u7db2\uf937\u4e0a\u53ef\u80fd\u7684\u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u3001\u904e\uf984\u7121\u95dc\u7684\u5167\u5bb9\u3001 \u64f7\u53d6\u6703\u8b70\u5404\u9805\u6642\u9593\u8207\u5730\u9ede\u8cc7\u8a0a\u3001\u5efa\u7f6e\u6587\u4ef6\uf96a\u5f15\u8cc7\uf9be\uff0c\u5206\u5225\uf96f\u660e\u5982\u4e0b\u3002 5.1.1 \u6587\u4ef6\u81ea\u52d5\u5206\uf9d0 ACIRES \u6301\u7e8c\u4ee5 Google Alert \u5feb\u8a0a\u670d\u52d9\uff0c\u4ee5\u672c\u7814\u7a76\u6574\uf9e4\u7684\u5b78\u79d1\u4e3b\u984c\u95dc\u9375\u5b57\uff0c\u8a02\u95b1\u5404\u4e3b\u984c\u76f8 \u95dc\u7db2\u9801\u901a\u77e5\uff0c\u53d6\u5f97\u6700\u65b0\u7684\u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\uff0c\u4fdd\u6301\u8cc7\uf9be\u7684\u5373\u6642\u6027\u8207\u6642\u6548\u6027\u3002\u7531 Google Alert \u8490\u96c6\u800c\u5f97\u7684\u7db2\u9801\uff0c\u5148\u7d93\u7531 Rainbow Classifier \u7684\u6587\u4ef6\u5206\uf9d0\u6a21\u578b\uff0c\u81ea\u52d5\u904e\uf984\u975e\u76f8\u95dc\u7db2\u9801\u3002\u518d \u7d93\u904e\u53bb\u9664\u96dc\u8a0a\u7684\u7a0b\u5e8f\uff0c\u522a\u9664\u5ee3\u544a\uff0c\u52d5\u614b\u7db2\u9801\u7a0b\u5f0f\u7b49\u8207\u6703\u8b70\u8cc7\u8a0a\u7121\u95dc\u7684\u5167\u5bb9\u3002 5.1.2 \u8cc7\u8a0a\u81ea\u52d5\u6a19\u8a3b \u5df2\u53bb\u9664\u96dc\u8a0a\u7684\u7db2\u9801\uff0c\u9032\u4e00\u6b65\u8f49\u88fd\u6210\u7279\u5b9a\u683c\u5f0f\uff0c\u4ee5\u672c\u7814\u7a76\u5efa\u7f6e\u7684 CRF \u8cc7\u8a0a\u64f7\u53d6\u6a21\u578b\uff0c\u81ea\u52d5 \u6a19\u8a3b\u7db2\u9801\u4e2d\u7684\u6703\u8b70\u8cc7\u8a0a\u7279\u5fb5\u3002\u7cfb\u7d71\u89e3\u6790\u5b8c\u6210\u6a19\u8a3b\u7684\u6587\u4ef6\uff0c\u4e00\u4e00\u64f7\u53d6\u5404\u9805\u7279\u5fb5\u9805\u76ee\uff0c\u518d\u91dd \u5c0d\uf967\u540c\u8cc7\uf9be\u683c\u5f0f\u9032\u4e00\u6b65\u8655\uf9e4\uff0c\uf9b5\u5982\u7d71\u4e00\u65e5\u671f\u683c\u5f0f\u3001\u8f49\u63db HTML \u7279\u6b8a\u5b57\u5143\u7b49\u3002\u53e6\u5916\uff0c\u6709\u4e9b \u7db2\u9801\u53ef\u80fd\u5305\u542b\u4e00\u500b\u4ee5\u4e0a\u7684\u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\uff0c\u56e0\u6b64\u540c\u4e00\u4efd\u6587\u4ef6\u6240\u64f7\u53d6\u7684\u9805\u76ee\u6703\u6709\u91cd\u8986\u51fa\u73fe\u7684 \uf9fa\u6cc1\uff0c\uf9b5\u5982\u6709\uf978\u500b\u6703\u8b70\u6642\u9593\u3001\u6709\u4e09\u500b\u6703\u8b70\u5730\u9ede\u7b49\u3002\u7cfb\u7d71\u5247\u4f9d\u6587\u4ef6\u6392\u7248\u7684\u5148\u5f8c\u9806\u5e8f\u95dc\u4fc2\uff0c \u5c07\u7279\u5fb5\u9805\u76ee\u5206\u7d44\u70ba\u591a\u7b46\u6703\u8b70\u8cc7\uf9be\u3002 5.1.3 \u5efa\uf9f7\u6587\u4ef6\uf96a\u5f15 \u900f\u904e\u81ea\u52d5\u8cc7\u8a0a\u64f7\u53d6\u6240\u53d6\u5f97\u7684\u5404\u9805\u6703\u8b70\u8cc7\u8a0a\uff0c\u4ee5\u53ca\u7814\u8a0e\u6703\u901a\u77e5\u7db2\u9801\u4e2d\u672a\u88ab\u64f7\u53d6\u7684\u5176\u4ed6\u76f8\u95dc \u8cc7\u8a0a\uff0c\u90fd\u9700\u9032\u4e00\u6b65\u6574\u5408\u70ba\u5bb9\uf9e0\u67e5\u627e\u7684\u8cc7\uf9be\u96c6\u5408\uff0c\u4ee5\u63d0\u4f9b\u5feb\u901f\u4e14\u7c21\uf965\u7684\u6aa2\uf96a\u53ca\u700f\u89bd\u670d\u52d9\u3002 \u7cfb\u7d71\u63d0\u4f9b\u57fa\u672c\u7684\u5168\u6587\u6aa2\uf96a\u529f\u80fd\uff0c\u4ee5\u53ca\u53ef\u6307\u5b9a\uf91d\u4f4d\u7684\u9032\u968e\u6aa2\uf96a\u529f\u80fd\u3002\u7576\u4f7f\u7528\u8005\u9032\ufa08\u95dc\u9375\u5b57 \u6aa2\uf96a\u6642\uff0c\u7cfb\u7d71\u67e5\u627e\u7814\u8a0e\u6703\u901a\u544a\u4e2d\u542b\u6709\u67e5\u8a62\u95dc\u9375\u5b57\u7684\u6587\u4ef6\uff0c\u4f9d\u5e8f\uf99c\u51fa\u67e5\u8a62\u7d50\u679c\u3002\u4f7f\u7528\u8005\u4ea6 \u53ef\u9032\u4e00\u6b65\uf9dd\u7528\uf967\u540c\uf91d\u4f4d\u9593\u7684\u5e03\uf9f4\uf913\u8f2f\u9032\ufa08\u9032\u968e\u6aa2\uf96a\uff0c\u67e5\u627e\uf901\u7cbe\u78ba\u7684\u6703\u8b70\u8cc7\uf9be\u3002\u4f7f\u7528\u8005\u9ede \u9078\u9032\u968e\u6aa2\uf96a\u7684\u93c8\u7d50\uff0c\u7cfb\u7d71\u5c55\u73fe\u9032\u968e\u6aa2\uf96a\u7684\u529f\u80fd\u756b\u9762\uff0c\u4f7f\u7528\u8005\u53ef\u4f7f\u7528\"AND\"\u3001\"OR\"\u3001\"NOT\" \u7d44\u5408\uf967\u540c\uf91d\u4f4d\uff0c\u9032\u968e\u6aa2\uf96a\u63d0\u4f9b\u7684\u6aa2\uf96a\uf91d\u4f4d\uff0c\u5305\u542b\u6240\u6709\u6703\u8b70\u8cc7\u8a0a\u7279\u5fb5\u9805\u76ee\uff0c\u8acb\uf96b\ufa0a\u5716 8\u3002 5.2.2 \u6aa2\u8996\u8a73\u7d30\u6703\u8b70\u8cc7\u8a0a \u67e5\u8a62\u7d50\u679c\u6e05\u55ae\u7684\u6bcf\u7b46\u6703\u8b70\u8cc7\u8a0a\u5305\u542b\u6703\u8b70\u540d\u7a31\u3001\u6703\u8b70\u65e5\u671f\u3001\u6703\u8b70\u5730\u9ede\u4ee5\u53ca\u67e5\u8a62\u95dc\u9375\u5b57\u5728\u6587 \u4ef6\u4e2d\u51fa\u73fe\u7684\u7247\u6bb5\u3002\u4f7f\u7528\u8005\u53ef\u9ede\u9078\u6bcf\u7b46\u6703\u8b70\u8cc7\u8a0a\u7684[Detail]\u6309\u9215\uff0c\u6aa2\u8996\uf901\u8a73\u7d30\u7684\u8cc7\uf9be\u3002[Detail] \u8996\u7a97\u5206\u70ba\u4e8c\u90e8\u5206\uff0c\u4e0a\u65b9\u662f\u672c\u7cfb\u7d71\u6458\uf93f\u7684\u6703\u8b70\u57fa\u672c\u8a0a\u606f\uff0c\u4e0b\u65b9\u5f0f\u7cfb\u7d71\u5132\u5b58\u7684\u6703\u8b70\u901a\u544a\u6587\u4ef6\uff0c \u4f7f\u7528\u8005\u4e5f\u53ef\u4ee5\u9032\u4e00\u6b65\u5728\u8a73\u7d30\u8cc7\uf9be\u8996\u7a97\u9ede\u9078\u539f\u59cb\u7db2\u9801\u4f4d\u5740\uff0c\u9032\u5165\u8a72\u5b78\u8853\u6703\u8b70\u5b98\u65b9\u7db2\u7ad9\u53d6\u5f97 \u9032\u4e00\u6b65\u8cc7\u8a0a\uff0c\u8acb\uf96b\ufa0a\u5716 9\u3002 \u5716 5. ACIRES \u7cfb\u7d71\u67b6\u69cb\uff1a\u5f8c\u7aef\u8cc7\u8a0a\u8655\uf9e4\u7cfb\u7d71 \u5716 6. ACIRES \u7cfb\u7d71\u67b6\u69cb\uff1a\u524d\u7aef\u4f7f\u7528\u8005\u7cfb\u7d71 \u5f8c\u7aef\u8cc7\uf9be\u5eab \u524d\u7aef\u4f7f\u7528\u8005\u7cfb\u7d71 \u6703\u8b70\u8cc7\uf9be\u641c\u5c0b \u6703\u8b70\u8cc7\uf9be Client \uf96a\u5f15\u8cc7\uf9be\u5eab \u96fb\u5b50\u5730\u5716 \u6642\u9593\u8ef8 \u6703\u8b70 \u8a73\u7d30\u8cc7\uf9be \u6aa2\uf96a\u7d50\u679c \u5206\uf9d0 \u500b\u4eba\ufa08\u4e8b\uf98b \u52a0\u5165\ufa08\u4e8b \u5efa\uf9f7\u6587\u4ef6\uf96a\u5f15 \u904e\u53bb\u7684\u6aa2\uf96a\u7cfb\u7d71\u901a\u5e38\u50c5\u50c5\u986f\u793a\u6aa2\uf96a\u7684\u7d50\u679c\uff0c\u672c\u7cfb\u7d71\u5247\u662f\u9032\u4e00\u6b65\u5141\u8a31\u4f7f\u7528\u8005\u4f9d\u64da\u6703\u8b70\u8209\ufa08 \uf98e\u4efd\u3001\u6703\u8b70\u8209\ufa08\u5730\u9ede\u3001\u53ca\u6703\u8b70\u76f8\u95dc\u8b70\u984c\u7b49\uf967\u540c\u89c0\u9ede\uff0c\uf901\u6709\u610f\u7fa9\u5730\u700f\u89bd\u7d50\u679c\u3002\u56e0\u6b64\uff0c\u672c\u7cfb \u5716 19. \u500b\u4eba\ufa08\u4e8b\uf98b--\u7e3d\u89bd \u5716 13. \u65bc\u6642\u9593\u8ef8\u4e0a\u6aa2\u8996\u6703\u8b70\u8cc7\u8a0a \u89e3\u6790\u6a19\u8a3b\u6587\u4ef6 \u64f7\u53d6\u6703\u8b70\u8cc7\u8a0a \u5168\u6587\uf96a\u5f15 \uf91d\u4f4d\uf96a\u5f15 \uf96a\u5f15\u8cc7\uf9be\u5eab \u5716 8. \u9032\u968e\u6aa2\uf96a \u7d71\u6703\u70ba\u6bcf\u4e00\u6b21\u7684\u67e5\u8a62\u7d50\u679c\uff0c\u9032\ufa08\u81ea\u52d5\u5206\u7fa4\u7684\u5de5\u4f5c\uff0c\u8b93\u4f7f\u7528\u8005\u53ef\u9032\u4e00\u6b65\u7e2e\u5c0f\u6aa2\uf96a\u7bc4\u570d\uff0c\u5206 \uf9d0\u700f\u89bd\u67e5\u8a62\u7d50\u679c\uff0c\u8acb\uf96b\ufa0a\u5716 10\u3002 5.2.4 \u6aa2\u8996\u6703\u8b70\u6642\u9593\u8cc7\u8a0a \u4ee5\u6642\u5e8f\u65b9\u5f0f\u5c55\u793a\u7814\u8a0e\u6703\u4e8b\u4ef6\uff0c\u53ef\u4ee5\u8b93\u4f7f\u7528\u8005\uf901\u5bb9\uf9e0\u5b89\u6392\u5b78\u8853\u6d3b\u52d5\uff0c\u672c\u7cfb\u7d71\u7528\u6642\u9593\u8ef8\u79fb\u52d5 \u7684\u6982\uf9a3\uff0c\u8868\u793a\u6bcf\u500b\u7814\u8a0e\u6703\u4e8b\u4ef6\u7684\u5148\u5f8c\u9806\u5e8f\uff0c\u8b93\u4f7f\u7528\u8005\u53ef\u4ee5\u6e05\u695a\u5730\uf9ba\u89e3\uf967\u540c\u6642\u9593\u4e2d\u7684\u6703\u8b70 \u8209\ufa08\uf9fa\u614b\u3002\u4f7f\u7528\u8005\u53ef\u76f4\u63a5\u6372\u52d5\u6642\u9593\u8ef8\u6539\u8b8a\u5448\u73fe\u7684\u6642\u9593\u9ede\uff0c\u6216\u662f\uf9dd\u7528\u5de6\u4e0a\u89d2\u7684\u65e5\uf98b\u8a2d\u5b9a\u65e5 \u671f\uff0c\u6642\u9593\u8ef8\u6703\u5373\u6642\uf99a\u52d5\u81f3\u5c0d\u61c9\u7684\u6642\u9593\u9ede\u3002\u7576\u4f7f\u7528\u8005\u52fe\u9078\u67e5\u8a62\u7d50\u679c\u6e05\u55ae\u4e0a\u4efb\u4e00\u7b46\u6703\u8b70\u8cc7\u8a0a\uff0c \u6642\u9593\u8ef8\u4e5f\u6703\u81ea\u52d5\u6372\u81f3\u8a72\u6703\u8b70\u8209\ufa08\u7684\u6642\u9593\u9ede\uff0c\u8b93\u4f7f\u7528\u8005\u53ef\u65bc\u6642\u9593\u8ef8\u4e0a\u6aa2\u8996\u5728\u540c\u4e00\u6642\u9593\u8209\ufa08 \u7684\u5176\u4ed6\u6703\u8b70\u3002\u9ede\u9078\u6642\u9593\u8ef8\u4e0a\u7684\u4e8b\u4ef6\u7bc0\u9ede\uff0c\u5247\u53ef\u6aa2\u8996\u8a72\u6703\u8b70\u8a73\u7d30\u8cc7\u8a0a\uff0c\u8acb\uf96b\ufa0a\u5716 11\u300112\u3001 13\u3002 \u5716 11. \u9ede\u9078\u65e5\uf98b\u6372\u52d5\u6642\u9593\u8ef8 5.2.5 \u700f\u89bd\u6703\u8b70\u5730\u9ede\u8cc7\u8a0a \u672c\u7cfb\u7d71\u6574\u5408 Google Map \u670d\u52d9\uff0c\u5c07\u67e5\u8a62\u7d50\u679c\u6240\u5f97\u4e4b\u6703\u8b70\u8209\ufa08\u5730\u9ede\u4e00\u4e00\u6a19\u793a\u5728\u5730\u5716\u4e0a\uff0c\u8acb\uf96b \ufa0a\u5716 14\u3002\u76f4\u63a5\u9ede\u9078\u4efb\u4e00\u5730\u9ede\u6a19\u793a\uff0c\u5373\u53ef\u6aa2\u8996\u5c0d\u61c9\u6703\u8b70\u7684\u76f8\u95dc\u8cc7\u8a0a\u3002\u7576\u4f7f\u7528\u8005\u52fe\u9078\u4efb\u4e00\u9805 \u6703\u8b70\u8cc7\uf9be\uff0c\u6216\u9ede\u9078\u6aa2\uf96a\u7d50\u679c\u6e05\u55ae\u7684[MAP]\u6309\u9215\uff0c\u5730\u5716\u5373\u81ea\u52d5\u5c07\u8a72\u5730\u9ede\u653e\u5927\u7279\u5beb\uff0c\u8acb\uf96b\ufa0a \u5716 15\u3002 \u4f7f\u7528\u8005\u773e\u591a\uff0c\u4e5f\u5df2\u7d93\u6709\u8a31\u591a\u61c9\u7528\u7a0b\u5f0f\u53ef\u57f7\ufa08\u65bc\u591a\u7a2e\uf967\u540c\u7684\u667a\u6167\u578b\u8cc7\u8a0a\u88dd\u7f6e\uff0c\u4f7f\u7528\u8005\u53ef\u4ee5 \u5f88\u65b9\uf965\u5730\u4f7f\u7528\u5404\u7a2e\u88dd\u7f6e\u67e5\u8a62\ufa08\u4e8b\uf98b\u3002\u56e0\u6b64\u672c\u7814\u7a76\u6574\u5408 Google Calendar \u500b\u4eba\ufa08\u4e8b\uf98b\u670d\u52d9\uff0c \u8b93\u4f7f\u7528\u8005\u5c07\u5b78\u8853\u6703\u8b70\u52a0\u5165\ufa08\u4e8b\uf98b\uff0c\u4e26\u53ef\u76f4\u63a5\u5728 ACIRES \u6aa2\u8996\u500b\u4eba\u7684\ufa08\u4e8b\uf98b\u5167\u5bb9\u3002\u4f7f\u7528\u8005 \u65bc\u6aa2\uf96a\u7d50\u679c\u6e05\u55ae\u4e2d\u52fe\u9078\u611f\u8208\u8da3\u7684\u6703\u8b70\u9805\u76ee\u5f8c\uff0c\u6240\u52fe\u9078\u9805\u76ee\u5373\u52a0\u5165\u5de6\u65b9\u7684\u66f8\u7c64\u6e05\u55ae\uff0c\u4ea6\u53ef \u9ede\u9078[x]\u6309\u9215\u522a\u9664\u5c0d\u61c9\u7684\u6703\u8b70\u9805\u76ee\uff0c\u66f8\u7c64\u6e05\u55ae\u53ef\u8a18\uf93f\u591a\u6b21\u6aa2\uf96a\u7d50\u679c\u6240\u52fe\u9078\u7684\u9805\u76ee\uff0c\u4f7f\u7528\u8005 \u53ef\u96a8\u6642\u65b0\u589e\u6216\u522a\u9664\u9078\u53d6\u7684\u9805\u76ee\uff0c\u8acb\uf96b\ufa0a\u5716 16\u3002 \u5716 16. \u500b\u4eba\ufa08\u4e8b\uf98b--\u52a0\u5165\u66f8\u7c64 \u6703\u8b70\u8cc7\u8a0a\u5728\u653e\u5728\u300c\u6211\u7684\u66f8\u7c64\u300d\u7684\u6e05\u55ae\u5f8c\uff0c\u5c1a\u672a\u771f\u6b63\u9032\u5165 Google Calendar\uff0c\u6b64\u6642\u4f7f\u7528 \u7576\u4e00\ufa00\u5c31\u7dd2\u5f8c\uff0c\u53ef\u4ee5\u9ede\u9078 \u300c\u52a0\u5165\u6211\u7684\u65e5\uf98b\u300d \uff0c\u76f8\u95dc\u6703\u8b70\u8cc7\u8a0a\u624d\u662f\u771f\u6b63\u5730\u5beb\u5165 Google Calendar\u3002 6. \u7d50\uf941 \u672c\u6587\u63d0\u51fa\u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u6aa2\uf96a\u7684\u81ea\u52d5\u8655\uf9e4\u7a0b\u5e8f\uff0c\u4ee5\u56e0\u61c9\u5ee3\u6cdb\u7684\u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u6aa2\uf96a\u9700\u6c42\u3002\u70ba \uf9ba\u78ba\u8a8d\u8655\uf9e4\u7a0b\u5e8f\u7684\u53ef\ufa08\u6027\uff0c\u672c\u7814\u7a76\u9996\u5148\u9032\ufa08\uf9ba\u4e00\u7cfb\uf99c\u5206\uf9d0\u7e3e\u6548\u8207\u64f7\u53d6\u7e3e\u6548\u7684\u5be6\u9a57\uff0c\u5be6\u9a57 \u986f\u793a\u5206\uf9d0\u7e3e\u6548 F1 measure \u8d85\u904e 80%\uff1b\u64f7\u53d6\u7e3e\u6548 Recall \u8d85\u904e 86%\uff0cF1 measure \u8d85\u904e 70%\u3002 \u7b2c\u4e8c\u6b65\u5247\u662f\u5be6\u4f5c\u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u6aa2\uf96a\u8207\u64f7\u53d6\u7cfb\u7d71\u5e73\u53f0\u3002\u672c\u7814\u7a76\uf967\u50c5\u63d0\u4f9b\u50b3\u7d71\u7684\u4e3b\u984c\u6aa2\uf96a\u529f \u80fd\uff0c\u8003\u616e\u4f7f\u7528\u8005\u7684\u6642\u9593\u8003\uf97e\u8207\u7a7a\u9593\u8003\uf97e\uff0c\u5141\u8a31\u4f7f\u7528\u8005\u7531\u6642\u9593\u8ef8\u7dda\u8207\u7a7a\u9593\u5730\u5716\u700f\u89bd\u5b78\u8853\u6703 \u8b70\u8cc7\u8a0a\uff0c\u4e26\u61c9\u7528\u6aa2\uf96a\u5f8c\u5206\uf9d0\u7684\u7b56\uf976\uff0c\u8b93\u4f7f\u7528\u8005\u53ef\u4ee5\u5206\uf9d0\u700f\u89bd\u6aa2\uf96a\u7d50\u679c\uff0c\uf901\u6709\u610f\u7fa9\u5730\u770b\u5f85 \u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u3002\u672c\u7814\u7a76\u540c\u6642\u6574\u5408\uf9ba\u500b\u4eba\ufa08\u4e8b\uf98b\u529f\u80fd\uff0c\u8b93\u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u6aa2\uf96a\u878d\u5165\u7814\u7a76\u4eba\u54e1 \u7684\u6d3b\u52d5\ufa08\u7a0b\uff0c\u4f7f\u5f97\u524d\u8ff0\u7684\u7cfb\u7d71\u5e73\u53f0\uf901\u5177\u5be6\u7528\u6027\u3002 \u4e00\u500b\u76f8\u5c0d\u5b8c\u6574\u7684\u8cc7\u8a0a\u7cfb\u7d71\uff0c\u9664\uf9ba\u63d0\u4f9b\u6aa2\uf96a\u529f\u80fd\u5916\uff0c\u9084\u61c9\u8a72\u63d0\u4f9b\u7cfb\u7d71\u5167\u7684\u77e5\uf9fc\u6846\u67b6\uff0c \u5141\u8a31\u4f7f\u7528\u8005\u61c9\u7528\u700f\u89bd\u7684\u65b9\u5f0f\uff0c\u6aa2\u8996\u7cfb\u7d71\u63d0\u4f9b\u7684\u5404\u9805\u8cc7\u8a0a\uff0c\u672a\uf92d\u672c\u7814\u7a76\u63d0\u51fa\u7684\u5b78\u8853\u6703\u8b70\u8cc7 \u8a0a\u6aa2\uf96a\u8207\u64f7\u53d6\u7cfb\u7d71\u5e73\u53f0\u5c07\u52a0\u5165\u9019\u6a23\u7684\u77e5\uf9fc\u6846\u67b6\uff0c\u4ee5\u53ca\u4f7f\u7528\u8005\u500b\u4eba\u5316\u7684\u529f\u80fd\uff0c\uf9b5\u5982\u500b\u4eba\u5c08 \u984c\u8cc7\u8a0a\u9078\u8403(\u8cc7\u8a0a\u904e\uf984)\u3002 \u8a8c\u8b1d \u672c\u7814\u7a76\u90e8\u5206\u7814\u7a76\u6210\u679c\u7372\u5f97\u570b\u79d1\u6703\u5c08\u984c\u7814\u7a76\u8a08\u756b\u300c\u500b\u4eba\u5316\u8cc7\u8a0a\u670d\u52d9\uff1a\u5b78\u8853\u8cc7\u8a0a\u4e4b\u64f7\u53d6\u300d\u7684 \u88dc\u52a9\uff0c\u8a08\u756b\u7de8\u865f\u70ba NSC 96-2413-H-002-018\u3002\u611f\u8b1d\u7814\u7a76\u52a9\uf9e4\u838a\u96c5\u84c1\u5c0f\u59d0\u3001\u9673\u65b0\u744b\u5148\u751f\u3001\u8207 \u5716 \u672c\u7cfb\u7d71\u9032\u4e00\u6b65\u8b93\u4f7f\u7528\u8005\u5132\u5b58\u4e26\u8a18\uf93f\u60f3\u7e7c\u7e8c\u8ffd\u8e64\u7684\u5b78\u8853\u6703\u8b70\u8cc7\u8a0a\u3002\u7531\u65bc Google Calendar \u7684 \u8005\u53ef\u4ee5\u9810\u89bd\u6bcf\u7b46\u6703\u8b70\u9805\u76ee\u8cc7\uf9be\uff0c\u4e26\u53ef\u4ee5\u7de8\u8f2f\u4fee\u6539\u5beb\u5165\ufa08\u4e8b\uf98b\u7684\u76f8\u95dc\uf96f\u660e\uff0c\u8acb\uf96b\ufa0a\u5716 17\uff0c \u9673\u745e\u5448\u5148\u751f\u7684\u5354\u52a9\u3002</td></tr><tr><td/><td>\u5716 9. \u67e5\u8a62\u7d50\u679c\u6e05\u55ae\u53ca\u6703\u8b70\u8a73\u7d30\u8cc7\uf9be</td><td/></tr></table>"
}
}
}
}