Benjamin Aw
Add updated pkl file v3
6fa4bc9
{
"paper_id": "O11-1010",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T08:05:30.880149Z"
},
"title": "Predicting the Semantic Orientation of Terms in E-HowNet",
"authors": [
{
"first": "Cheng-Ru",
"middle": [],
"last": "\u674e\u653f\u5112",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Taiwan University",
"location": {
"addrLine": "#1, Sec.4, Roosevelt Road",
"postCode": "10617",
"settlement": "Taipei",
"country": "Taiwan"
}
},
"email": ""
},
{
"first": "Chi-Hsin",
"middle": [],
"last": "Li",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Taiwan University",
"location": {
"addrLine": "#1, Sec.4, Roosevelt Road",
"postCode": "10617",
"settlement": "Taipei",
"country": "Taiwan"
}
},
"email": ""
},
{
"first": "Hsin-Hsi",
"middle": [],
"last": "Yu",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Taiwan University",
"location": {
"addrLine": "#1, Sec.4, Roosevelt Road",
"postCode": "10617",
"settlement": "Taipei",
"country": "Taiwan"
}
},
"email": ""
},
{
"first": "\u570b\u7acb\u53f0\u7063\u5927\u5b78\u8cc7\u8a0a\u5de5\u7a0b\u7cfb",
"middle": [],
"last": "Chen",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Taiwan University",
"location": {
"addrLine": "#1, Sec.4, Roosevelt Road",
"postCode": "10617",
"settlement": "Taipei",
"country": "Taiwan"
}
},
"email": "[email protected]"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "The semantic orientation of terms is fundamental for sentiment analysis in sentence and document levels. Although some Chinese sentiment dictionaries are available, how to predict the orientation of terms automatically is still important. In this paper, we predict the semantic orientation of terms of E-HowNet. We extract many useful features from different sources to represent a Chinese term in E-HowNet, and use a supervised machine learning algorithm to predict its orientation. Our experimental result showed that the proposed approach can achieve 92.33% accuracy, which is comparable to the accuracy of human taggers.",
"pdf_parse": {
"paper_id": "O11-1010",
"_pdf_hash": "",
"abstract": [
{
"text": "The semantic orientation of terms is fundamental for sentiment analysis in sentence and document levels. Although some Chinese sentiment dictionaries are available, how to predict the orientation of terms automatically is still important. In this paper, we predict the semantic orientation of terms of E-HowNet. We extract many useful features from different sources to represent a Chinese term in E-HowNet, and use a supervised machine learning algorithm to predict its orientation. Our experimental result showed that the proposed approach can achieve 92.33% accuracy, which is comparable to the accuracy of human taggers.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "(\u4e00) \u3001\u57fa\u790e\u7fa9\u539f\u7279\u5fb5 \u5f9e E-HowNet \u62bd\u53d6\u7684\u7279\u5fb5\u7a31\u4e4b\u70ba\u57fa\u790e\u7fa9\u539f\u7279\u5fb5\uff0c\u4e5f\u5c31\u662f\u5c0d\u6bcf\u4e00\u500b E-HowNet \u7684\u8a5e\u5f59 i\uff0c \u7528\u4e00\u5411\u91cf V i = (w i,j ) = (w i,1 , w i,2 , \u2026, w i,n ) \u8868\u793a\uff0c\u5176\u4e2d n \u70ba\u5411\u91cf\u7684\u7dad\u5ea6\u3002 \u7531\u65bc\u6bcf\u4e00\u8a5e\u5f59\u7684\u6bcf\u4e00\u500b\u8a9e\u610f(sense)\u90fd\u6709\u4e00\u500b\u7d50\u69cb\u5316\u7684\u5b9a\u7fa9\u5f0f\uff0c\u800c\u4e14\u5b9a\u7fa9\u5f0f\u4e2d\u90fd\u7528\u7fa9 \u539f\u4f86\u9032\u884c\u5b9a\u7fa9\uff0c\u516c\u5f0f (1) \u5b9a\u7fa9 V i \u4e2d\u6bcf\u500b\u7279\u5fb5\u7684\u6b0a\u91cd\uff1a j \u7fa9\u539f , 0 j \u7fa9\u539f \u4e2d i \u5b9a\u7fa9\u5f0f , 1 , \u4e0d\u51fa\u73fe \u51fa\u73fe \u5982\u679c j i w",
"eq_num": "(1)"
}
],
"section": "",
"sec_num": null
},
{
"text": "j \u7fa9\u539f , 0 j \u7fa9\u539f \u4e2d i \u5b9a\u7fa9\u5f0f , 1 1 , , \u4e0d\u51fa\u73fe \u51fa\u73fe \u5982\u679c j i j i d w (2) \u516c\u5f0f (2) \u4e2d\uff0c \u662f\u53ef\u8abf\u7684\u53c3\u6578\uff0c j i d , \u662f\u8a5e\u5f59 i \u8ddf\u7fa9\u539f j \u7684\u8ddd\u96e2\uff0c\u9019\u53ef\u7528\u7fa9\u539f j \u7684\u6df1\u5ea6\u8868 \u793a\u3002\u8abf\u6574\u516c\u5f0f (2) \u4e2d\u7684 \uff0c\u8b93\u6211\u5011\u53ef\u4ee5\u5be6\u9a57\u90a3\u4e00\u7a2e\u65b9\u5f0f\uff0c\u624d\u61c9\u7d66\u8f03\u9ad8\u7684\u6b0a\u91cd\uff1a (\u53ef\u80fd\u4e00) < 0 : \u6df1\u5ea6\u8d8a\u6df1\uff0c\u8868\u793a\u8a72\u7fa9\u539f\u6709\u8f03\u591a\u8cc7\u8a0a\uff0c\u61c9\u7d66\u8f03\u9ad8\u6b0a\u91cd\u3002 (\u53ef\u80fd\u4e8c) > 0 : \u6df1\u5ea6\u8d8a\u6df1\uff0c\u8868\u793a\u8a72\u7fa9\u539f\u6709\u8f03\u5c11\u8cc7\u8a0a\uff0c\u61c9\u7d66\u8f03\u5c11\u6b0a\u91cd\u3002 \u7531\u65bc < 0 \u6642\uff0cw i,j \u53ef\u80fd\u8b8a\u70ba\u8ca0\u503c\uff0c\u6240\u4ee5\u6700\u5c0f\u7684 \u8a2d\u70ba \u22120.05\u3002\u53e6\u5916\uff0c\u7576 \u03b1 = 0\uff0c\u516c\u5f0f (2) \u6703\u7b49\u65bc\u516c\u5f0f (1)\uff0c\u6240\u4ee5\u6211\u5011\u5728\u505a\u5be6\u9a57\u6642\uff0c\u53ea\u8981\u4f7f\u7528\u516c\u5f0f (2) \u5373\u53ef\u3002 2\u3001\u52a0\u5165\u5426\u5b9a\u95dc\u4fc2\u8abf\u6574\u7279\u5fb5\u7684\u52a0\u6b0a\u503c \u5728\u8a08\u7b97\u7fa9\u539f\u6df1\u5ea6\u6642\uff0c\u53ef\u80fd\u6703\u7d93\u904e\u5e36\u6709\u5426\u5b9a\u610f\u7fa9\u7684\u95dc\u4fc2\uff0c\u4f8b\u5982\u300c\u4e00\u4e8b\u7121\u6210\u300d\u5b9a\u7fa9\u5f0f\u4e2d\u6709 \u300c{not({succeed|\u6210\u529f})}\u300d \uff0c\u53ef\u4ee5\u767c\u73fe succeed \u88ab not \u6240\u4fee\u98fe\u3002\u9019\u6642\uff0c\u7fa9\u539f succeed \u7684\u6b0a\u91cd \u7528\u8ca0\u503c\u4f86\u8868\u793a\u53ef\u80fd\u6703\u66f4\u597d\uff0c\u56e0\u6b64\u6211\u5011\u5c07\u5426\u5b9a\u7684\u6982\u5ff5\u5f15\u5165\u516c\u5f0f (3) \u5982\u4e0b\uff1a j \u7fa9\u539f , 0 j \u7fa9\u539f \u4e2d i \u5b9a\u7fa9\u5f0f , 1 , , , \u4e0d\u51fa\u73fe \u51fa\u73fe \u5982\u679c j i j i j i d Neg w (3) \u5176\u4e2d\uff0c j i Neg , \u8868\u793a\u7fa9\u539f j \u662f\u5426\u6709\u88ab\u5426\u5b9a\u610f\u7fa9\u7684\u95dc\u4fc2\u6240\u4fee\u98fe\uff0c\u82e5\u6709\u5247 j i Neg , \u70ba 1\uff0c\u82e5\u7121 \u5247 j i Neg , \u70ba",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "V i = (c i,j ) = (c i,1 , c i,2 ,\u2026, c i,m )\u3002\u5176\u4e2d\uff0cm \u662f\u7279\u5fb5\u96c6\u5408\u7684\u5927 \u5c0f\uff0cc i,j \u662f\u300c\u8a5e\u5f59",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "\u7528 V i = (c i,1 , c i,2 ,\u2026, c i,m ) \u7684\u65b9\u5f0f\u4f86\u8868\u793a\u7684\u7f3a\u9ede\uff0c\u662f c i,j \u7684\u503c\u8b8a\u5316\u7684\u7bc4\u570d\u6703\u975e\u5e38\u5927\uff0c\u6700\u5c0f\u70ba 40\uff0c\u6700\u5927\u6703\u5230\u4e0a\u5343\u842c\u3002\u9019\u5728\u6a5f\u5668\u5b78\u7fd2\u4e2d\uff0c\u901a\u5e38\u9700\u8981\u505a\u9032\u4e00\u6b65\u7684\u8655\u7406\u624d\u6703\u6709\u6bd4\u8f03\u597d\u7684\u7d50\u679c\u3002 \u6211 \u5011 \u5be6 \u9a57 \u4e86 \u5169 \u500b \u4e0d \u540c \u7684 \u65b9 \u6cd5 \u4f86 \u8655 \u7406 \u9019 \u4e00 \u554f \u984c \uff1a \u7b2c \u4e00 \u7a2e \u662f \u4e00 \u822c \u7684 \u9918 \u5f26 \u6a19 \u6e96 \u5316 (cosine-normalization) \uff0c\u5c07\u539f\u672c\u7684\u5411\u91cf V i \u7528\u516c\u5f0f (4) \u8655\u7406\uff1b\u7b2c\u4e8c\u7a2e\u662f Esuli & Sebastiani[1] \u6240\u63d0\u7684\u9918\u5f26\u6a19\u6e96\u5316 TFIDF (cosine-normalized TF-IDF) \uff0c\u4ed6\u5011\u7528\u8a72\u65b9\u6cd5\u4f86\u8655\u7406 WordNet \u4e2d\u7684\u8a5e\u5f59\u7684\u6b0a\u91cd\uff0c\u5982\u516c\u5f0f (5) \u6240\u8ff0\u3002 m m k k i i i c V V CosNorm 1 2 , ) ( (4) m m k k i i i tfidf TFIDF TFIDF CosNorm 1 2 , ) ( ) ,..., , ( , 2 , 1 , m i i i i tfidf tfidf tfidf TFIDF j j i j i idf tf tfidf * , ,",
"eq_num": "(5)"
}
],
"section": "",
"sec_num": null
},
{
"text": "D k j k j i j i j i c c j c tf , , , , \u7e3d\u51fa\u73fe\u6b21\u6578 \u7279\u5fb5 } , 0 : { log ) log( , 1 D i c i D df idf j i j j \u516c\u5f0f (5)\u4e2d D \u8868\u793a\u6587\u4ef6\u7684\u96c6\u5408\uff0c\u6b64\u8655\u628a\u8a5e\u5f59 i \u7576\u6210\u6587\u4ef6\uff0c\u7279\u5fb5 j \u7576\u6210 term\u3002 \u516c\u5f0f (4) \u7684\u6a19\u6e96\u5316\u53ef\u4ee5\u8b93\u6240\u6709\u8a5e\u5f59\u7684\u5411\u91cf\u7b49\u9577\uff0c\u6d88\u6389\u6b21\u6578\u8b8a\u5316\u904e\u5927\u7684\u7f3a\u9ede\u3002\u516c\u5f0f (5) \u7684 \u60f3\u6cd5\u5247\u8a8d\u70ba\u7279\u5fb5 j \u7684\u6b0a\u91cd\uff0c\u61c9\u8a72\u5148\u8de8\u8a5e\u5f59\u9032\u884c\u6a19\u6e96\u5316(normalization) \uff0c\u6240\u4ee5 tf i , j \u6703\u9664 \u4ee5\u7279\u5fb5 j \u7684\u7e3d\u51fa\u73fe\u6b21\u6578\uff0c\u53e6\u5916\u518d\u8003\u616e\u7279\u5fb5 j \u7684\u7a00\u6709\u5ea6\uff0c\u6240\u4ee5\u4e58\u4e0a idf j \uff0c\u6700\u5f8c\u518d\u8b93\u6240\u6709 \u8a5e\u5f59\u7684\u5411\u91cf\u7b49\u9577\u3002\u6211\u5011\u6703\u5728\u5f8c\u9762\u7684\u5be6\u9a57\u4e2d\uff0c\u6bd4\u8f03\u9019\u5169\u7a2e\u4e0d\u540c\u6b0a\u91cd\u8655\u7406\u65b9\u5f0f\u7684\u6548\u80fd\u3002 (\u4e09) \u3001\u4e0d\u540c\u7279\u5fb5\u7684\u7d44\u5408 \u6211\u5011\u7528\u4e86\u57fa\u790e\u7fa9\u539f\u7279\u5fb5 (w i,1 , w i,2 ,\u2026, w i,n ) = (w i,j ) \uff0c\u53ca\u8a9e\u7bc7\u7279\u5fb5 (c i,1 , c i,2 ,\u2026, c i,m ) = (c i,j ) \u4f86 \u8868\u793a\u8a5e\u5f59 i\u3002\u5982\u679c\u60f3\u540c\u6642\u4f7f\u7528\u9019\u5169\u7a2e\u7279\u5fb5\u4e2d\u7684\u8cc7\u8a0a\uff0c\u4e00\u7a2e\u76f4\u89c0\u7684\u65b9\u5f0f\uff0c\u662f\u5c07\u5169\u7a2e\u7279\u5fb5\u8868 \u793a\u65b9\u5f0f\u6df7\u5408\uff0c\u7528 V i = (w i,1 , w i,2 ,\u2026, w i,n ,c i,1 , c i,2 ,\u2026, c i,m ) \u4f86\u8868\u793a\u3002\u7531\u65bc\u57fa\u790e\u7fa9\u539f\u7279\u5fb5\u53ca\u8a9e\u7bc7 \u7279\u5fb5\u90fd\u6709\u8a31\u591a\u4e0d\u540c\u7684\u8b8a\u5f62\uff0c\u6211\u5011\u7121\u6cd5\u4e00\u4e00\u5617\u8a74\u6240\u6709\u53ef\u80fd\u7684\u7d44\u5408\uff0c\u6240\u4ee5\u6703\u5148\u5206\u5225\u7528\u5be6\u9a57\u627e \u51fa\u6700\u597d\u7684\u57fa\u790e\u7fa9\u539f\u7279\u5fb5 (w i,j ) \u53ca\u8a9e\u7bc7\u7279\u5fb5 (c i,j )\uff0c\u518d\u628a\u5169\u7a2e\u7279\u5fb5\u6df7\u5408\u4f86\u9032\u884c\u5be6\u9a57\u3002\u6211\u5011\u6c92 \u6709\u5c0d\u6df7\u5408\u5f8c\u7684\u5411\u91cf\u505a\u5176\u5b83\u7684\u8655\u7406\uff0c\u53ea\u662f\u76f4\u63a5\u4e32\u63a5\u6210\u70ba n+m \u7dad\u5411\u91cf\u3002 (\u56db) \u3001\u7d44\u5408\u5f0f\u7684\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5(",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Determining the semantic orientation of terms through gloss classification",
"authors": [
{
"first": "A",
"middle": [],
"last": "Esuli",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Sebastiani",
"suffix": ""
}
],
"year": 2005,
"venue": "Proceedings of CIKM-05",
"volume": "",
"issue": "",
"pages": "617--624",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A. Esuli and F. Sebastiani, \"Determining the semantic orientation of terms through gloss classification,\" In Proceedings of CIKM-05, pp. 617-624, 2005..",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Mining opinions from the Web: Beyond relevance retrieval",
"authors": [
{
"first": "L.-W",
"middle": [],
"last": "Ku",
"suffix": ""
},
{
"first": "H.-H",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 2007,
"venue": "Journal of the American Society for Information Science and Technology",
"volume": "58",
"issue": "12",
"pages": "1838--1850",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "L.-W. Ku and H.-H. Chen, \"Mining opinions from the Web: Beyond relevance retrieval,\" Journal of the American Society for Information Science and Technology, vol. 58, no. 12, pp. 1838-1850, 2007.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "SentiWordNet: A publicly available lexical resource for opinion mining",
"authors": [
{
"first": "A",
"middle": [],
"last": "Esuli",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Sebastiani",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceedings of the 5th Conference on Language Resources and Evaluation (LREC 06)",
"volume": "",
"issue": "",
"pages": "417--422",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A. Esuli and F. Sebastiani, \"SentiWordNet: A publicly available lexical resource for opinion mining,\" In Proceedings of the 5th Conference on Language Resources and Evaluation (LREC 06), pp. 417-422, 2006.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "HowNet and the Computation of Meaning",
"authors": [
{
"first": "Z",
"middle": [],
"last": "Dong",
"suffix": ""
},
{
"first": "Q",
"middle": [],
"last": "Dong",
"suffix": ""
}
],
"year": 2006,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Z. Dong and Q. Dong, HowNet and the Computation of Meaning. World Scientific, 2006.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Predicting the semantic orientation of adjectives",
"authors": [
{
"first": "V",
"middle": [],
"last": "Hatzivassiloglou",
"suffix": ""
},
{
"first": "K",
"middle": [
"R"
],
"last": "Mckeown",
"suffix": ""
}
],
"year": 1997,
"venue": "Proceedings of ACL-97, 35th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "174--181",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "V. Hatzivassiloglou and K. R. McKeown, \"Predicting the semantic orientation of adjectives,\" In Proceedings of ACL-97, 35th Annual Meeting of the Association for Computational Linguistics, pages 174-181, Madrid, ES, 1997. Association for Computational Linguistics.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Measuring praise and criticism: Inference of semantic orientation from association",
"authors": [
{
"first": "P",
"middle": [
"D"
],
"last": "Turney",
"suffix": ""
},
{
"first": "M",
"middle": [
"L"
],
"last": "Littman",
"suffix": ""
}
],
"year": 2003,
"venue": "ACM Transactions on Information Systems",
"volume": "21",
"issue": "4",
"pages": "315--346",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "P. D. Turney and M. L. Littman, \"Measuring praise and criticism: Inference of semantic orientation from association,\" ACM Transactions on Information Systems, 21(4):pp. 315-346, 2003.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Using WordNet to measure semantic orientation of adjectives",
"authors": [
{
"first": "J",
"middle": [],
"last": "Kamps",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Marx",
"suffix": ""
},
{
"first": "R",
"middle": [
"J"
],
"last": "Mokken",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "De Rijke",
"suffix": ""
}
],
"year": 2004,
"venue": "Proceedings of LREC-04, 4th International Conference on Language Resources and Evaluation",
"volume": "4",
"issue": "",
"pages": "1115--1118",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. Kamps, M. Marx, R. J. Mokken, and M. De Rijke, \"Using WordNet to measure semantic orientation of adjectives,\" In Proceedings of LREC-04, 4th International Conference on Language Resources and Evaluation, vol. 4, pp. 1115-1118, Lisbon, PT,2004.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Determining term subjectivity and term orientation for opinion mining",
"authors": [
{
"first": "A",
"middle": [],
"last": "Esuli",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Sebastiani",
"suffix": ""
}
],
"year": 2006,
"venue": "",
"volume": "",
"issue": "",
"pages": "193--200",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A. Esuli and F. Sebastiani, \"Determining term subjectivity and term orientation for opinion mining,\" 2006, pp. 193-200.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Morpheme-based derivation of bipolar semantic orientation of Chinese words",
"authors": [
{
"first": "R",
"middle": [
"W M"
],
"last": "Yuen",
"suffix": ""
},
{
"first": "T",
"middle": [
"Y W"
],
"last": "Chan",
"suffix": ""
},
{
"first": "T",
"middle": [
"B Y"
],
"last": "Lai",
"suffix": ""
},
{
"first": "O",
"middle": [
"Y"
],
"last": "Kwong",
"suffix": ""
},
{
"first": "B",
"middle": [
"K Y"
],
"last": "",
"suffix": ""
}
],
"year": 2004,
"venue": "",
"volume": "",
"issue": "",
"pages": "1008--1014",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. W. M. Yuen, T. Y. W. Chan, T. B. Y. Lai, O. Y. Kwong, and B. K. Y. T'sou, \"Morpheme-based derivation of bipolar semantic orientation of Chinese words,\" 2004, pp. 1008-1014.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Using bilingual lexicon to judge sentiment orientation of Chinese words",
"authors": [
{
"first": "J",
"middle": [],
"last": "Yao",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Zheng",
"suffix": ""
}
],
"year": 2006,
"venue": "",
"volume": "",
"issue": "",
"pages": "38--43",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. Yao, G. Wu, J. Liu, and Y. Zheng, \"Using bilingual lexicon to judge sentiment orientation of Chinese words,\" 2006, pp. 38-43.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Words semantic orientation classification based on HowNet",
"authors": [
{
"first": "D",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Y.-Tao",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "J.-Li",
"middle": [],
"last": "Guo",
"suffix": ""
}
],
"year": 2009,
"venue": "The Journal of China Universities of Posts and Telecommunications",
"volume": "16",
"issue": "1",
"pages": "106--110",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. Li, Y.-tao Ma, and J.-li Guo, \"Words semantic orientation classification based on HowNet,\" The Journal of China Universities of Posts and Telecommunications, vol. 16, no. 1, pp. 106-110, 2009.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Efficiently identifying semantic orientation algorithm for Chinese words",
"authors": [
{
"first": "Z",
"middle": [],
"last": "Han",
"suffix": ""
},
{
"first": "Q",
"middle": [],
"last": "Mo",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Zuo",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Duan",
"suffix": ""
}
],
"year": 2010,
"venue": "presented at the International Conference on Computer Application and System Modeling",
"volume": "2",
"issue": "",
"pages": "260--264",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Z. Han, Q. Mo, M. Zuo, and D. Duan, \"Efficiently identifying semantic orientation algorithm for Chinese words,\" presented at the International Conference on Computer Application and System Modeling, 2010, vol. 2, pp. 260-264.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Learning Chinese polarity lexicons by integration of graph models and morphological features",
"authors": [
{
"first": "B",
"middle": [],
"last": "Lu",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Song",
"suffix": ""
},
{
"first": "X",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Tsou",
"suffix": ""
}
],
"year": 2010,
"venue": "Information retrieval technology",
"volume": "",
"issue": "",
"pages": "466--477",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "B. Lu, Y. Song, X. Zhang, and B. Tsou, \"Learning Chinese polarity lexicons by integration of graph models and morphological features,\" Information retrieval technology, pp. 466-477, 2010.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Chinese Web 5-gram Version 1",
"authors": [
{
"first": "F",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Lin",
"suffix": ""
}
],
"year": 2010,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "F. Liu, M. Yang, and D. Lin, \"Chinese Web 5-gram Version 1.\" Linguistic Data Consortium, Philadelphia, 2010.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "LIBSVM: a library for support vector machines",
"authors": [
{
"first": "C",
"middle": [
"C"
],
"last": "Chang",
"suffix": ""
},
{
"first": "C",
"middle": [
"J"
],
"last": "Lin",
"suffix": ""
}
],
"year": 2001,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "C. C. Chang and C. J. Lin, LIBSVM: a library for support vector machines. 2001.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Approximate statistical tests for comparing supervised classification learning algorithms",
"authors": [
{
"first": "T",
"middle": [
"G"
],
"last": "Dietterich",
"suffix": ""
}
],
"year": 1998,
"venue": "Neural computation",
"volume": "10",
"issue": "7",
"pages": "1895--1923",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "T. G. Dietterich, \"Approximate statistical tests for comparing supervised classification learning algorithms,\" Neural computation, vol. 10, no. 7, pp. 1895-1923, 1998.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Creating robust supervised classifiers via web-scale N-gram data",
"authors": [
{
"first": "S",
"middle": [],
"last": "Bergsma",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Pitler",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Lin",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "865--874",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Bergsma, E. Pitler, and D. Lin, \"Creating robust supervised classifiers via web-scale N-gram data,\" in Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, Uppsala, Sweden, 2010, pp. 865-874.",
"links": null
}
},
"ref_entries": {
"TABREF0": {
"text": "Google Chinese Web 5-gram \u62bd\u53d6\u7279\u5fb5\u7684\u65b9\u6cd5\uff0c\u7b2c\u56db\u7bc0\u5448\u73fe\u5404\u7a2e\u5be6\u9a57\u7684\u7d50\u679c\u53ca\u5206\u6790\uff0c \u5305\u62ec\u8ddf NTUSD \u4eba\u5de5\u6a19\u8a18\u7684\u6bd4\u8f03\uff0c\u6700\u5f8c\u7e3d\u7d50\u8ad6\u6587\u7684\u6210\u679c\u3002 \u4e8c\u3001\u76f8\u95dc\u7814\u7a76 \u8463\u632f\u6771\u5148\u751f\u65bc 1998 \u5e74\u5275\u5efa\u77e5\u7db2(HowNet) \uff0c\u4e26\u5728 2003 \u5e74\uff0c\u8ddf\u4e2d\u592e\u7814\u7a76\u9662\u8cc7\u8a0a\u6240\u8a5e\u5eab\u5c0f \u7d44\u5728 2003 \u5e74\uff0c\u5c07\u4e2d\u7814\u9662\u8a5e\u5eab\u5c0f\u7d44\u8a5e\u5178(CKIP Chinese Lexical Knowledge Base)\u7684\u8a5e\u689d",
"type_str": "table",
"content": "<table><tr><td>\u4e00\u3001\u7dd2\u8ad6 \u6e96\u78ba\u7387(Accuracy)\u7531 82% \u5230 90%\u3002\u4e4b\u5f8c\u9678\u7e8c\u6709\u4e0d\u540c\u7684\u7814\u7a76\uff0c\u6240\u7528\u591a\u70ba\u534a\u76e3\u7763\u5f0f\u6a5f\u5668</td></tr><tr><td>\u5b78\u7fd2\u7684\u6f14\u7b97\u6cd5[7-9]\uff0c\u6548\u80fd\u5f9e 67%\u5230 88%\u4e0d\u7b49\uff0c\u4f46\u56e0\u70ba\u9019\u4e9b\u6f14\u7b97\u6cd5\u6240\u7528\u7684\u8cc7\u6599\u96c6\u4e26\u4e0d\u76f8</td></tr><tr><td>\u540c\uff0c\u5be6\u9a57\u904e\u7a0b\u53ca\u8a55\u4f30\u6a19\u6e96\u4e5f\u4e0d\u4e00\u6a23\uff0c (\u6709\u7528 Accuracy\u3001Precision\u3001\u6216 F-Measure) \uff0c\u6240\u4ee5 \u60c5\u7dd2\u5206\u6790(Sentiment Analysis)\u5728\u73fe\u4eca\u7684\u7db2\u8def\u4e16\u754c\u4e2d\uff0c\u6709\u8a31\u591a\u5be6\u969b\u4e14\u91cd\u8981\u7684\u904b\u7528\uff0c\u4f8b\u5982 \u5f9e\u7db2\u8def\u7684\u8a55\u8ad6\u6587\u7ae0\u4e2d\u5206\u6790\u6d88\u8cbb\u8005\u5c0d\u7522\u54c1\u7684\u8a55\u50f9\uff0c\u6216\u5206\u6790\u6d88\u8cbb\u8005\u5c0d\u7522\u54c1\u6027\u80fd\u7684\u95dc\u6ce8\u7126\u9ede\u7b49 \u6548\u80fd\u6c92\u6709\u8fa6\u6cd5\u76f4\u63a5\u6bd4\u8f03\u3002</td></tr><tr><td>\u7b49\u3002\u4e0d\u7ba1\u5c0d\u53e5\u5b50\u6216\u6587\u4ef6\u5c64\u6b21\u7684\u60c5\u7dd2\u5206\u6790\uff0c\u610f\u898b\u8a5e\u8a5e\u5178\u90fd\u662f\u4e00\u500b\u91cd\u8981\u7684\u8cc7\u6e90\u3002\u901a\u5e38\u610f\u898b\u8a5e</td></tr><tr><td>\u8a5e\u5178\u662f\u7528\u4eba\u5de5\u4f86\u6536\u96c6\u8a5e\u5f59\uff0c\u4e26\u7528\u4eba\u5de5\u6a19\u8a18\u8a5e\u5f59\u7684\u5404\u7a2e\u60c5\u7dd2\u5c6c\u6027\uff0c\u5305\u62ec\u4e3b\u5ba2\u89c0(subjective</td></tr><tr><td>or objective) \u3001\u6975\u6027(orientation/polarity)\u3001)\u53ca\u6975\u6027\u7684\u5f37\u5ea6(strength)[1]\u3002\u9019\u4e9b\u60c5\u7dd2\u5c6c</td></tr><tr><td>\u6027\u5c0d\u4e0d\u540c\u7684\u61c9\u7528\u6709\u4e0d\u540c\u7684\u91cd\u8981\u6027\uff0c\u6a19\u8a18\u96e3\u5ea6\u4e5f\u5404\u4e0d\u76f8\u540c\uff0c\u901a\u5e38\u8a5e\u5f59\u7684\u6975\u6027\u662f\u6700\u5bb9\u6613\u9032\u884c</td></tr><tr><td>\u6a19\u8a18\u7684\u5c6c\u6027\u3002</td></tr><tr><td>\u6a19\u8a18\u60c5\u7dd2\u5c6c\u6027\u6642\uff0c\u7814\u7a76\u8005\u53ef\u4ee5\u5f9e\u96f6\u958b\u59cb\u6536\u96c6\u8a5e\u5f59\u4ee5\u5efa\u7acb\u610f\u898b\u8a5e\u8a5e\u5178\uff0c\u5982\u53f0\u5927\u610f\u898b\u8a5e\u8a5e\u5178</td></tr><tr><td>NTUSD[2]\u3002\u5728\u53e6\u4e00\u65b9\u9762\uff0c\u4e5f\u6709\u7814\u7a76\u8005\u5617\u8a74\u70ba\u81ea\u7136\u8a9e\u8a00\u8655\u7406\u4e2d\u7684\u8a31\u591a\u73fe\u5b58\u7684\u8cc7\u6e90\uff0c\u6dfb\u52a0</td></tr><tr><td>\u60c5\u7dd2\u5c6c\u6027\uff0c\u5982 SentiWordNet[3]\u3002\u4f46\u73fe\u6709\u8cc7\u6e90\u7684\u8a9e\u5f59\u91cf\u901a\u5e38\u5f88\u5927\uff0c\u5982 WordNet 3.0 \u5c31\u5305</td></tr><tr><td>\u62ec 206,941 \u500b\u4e0d\u540c\u7684\u82f1\u6587\u5b57\u7fa9(word-sense pair) \uff0c\u8981\u5168\u90e8\u7528\u4eba\u5de5\u9032\u884c\u6a19\u8a18\u4e4b\u6210\u672c\u592a\u9ad8\u3002 \u5716\u4e00\u3001 \u300c\u6c7d\u6cb9\u300d\u7684\u5ee3\u7fa9\u77e5\u7db2\u5b9a\u7fa9\u5f0f</td></tr><tr><td>\u56e0\u6b64\uff0c\u901a\u5e38\u7684\u4f5c\u6cd5\u662f\u5c11\u91cf\u6a19\u8a18\u4e00\u4e9b\u8a5e\u5f59\uff0c\u518d\u7528\u6a5f\u5668\u5b78\u7fd2\u65b9\u6cd5\uff0c\u70ba\u5269\u4e0b\u7684\u8a5e\u5f59\u9032\u884c\u81ea\u52d5\u6a19</td></tr><tr><td>\u8a18\uff0c\u96d6\u7136\u81ea\u52d5\u6a19\u8a18\u7684\u6e96\u78ba\u7387\u4e0d\u5982\u4eba\u5de5\u6a19\u8a18\uff0c\u4f46\u5c0d\u4e00\u822c\u61c9\u7528\u6709\u67d0\u7a2e\u7a0b\u5ea6\u7684\u5e6b\u52a9\u3002</td></tr><tr><td>\u5728\u4e2d\u6587\u7684\u60c5\u7dd2\u5c6c\u6027\u6a19\u8a18\u76f8\u95dc\u7814\u7a76\uff0cYuen et al.[10]2004 \u5e74\u5229\u7528 Turney &amp; Littman[7] \u7684\u534a \u5728\u4e2d\u6587\u81ea\u7136\u8a9e\u8a00\u8655\u7406\uff0cNTUSD \u662f\u4e00\u90e8\u91cd\u8981\u7684\u610f\u898b\u8a5e\u8a5e\u5178\uff0c\u4f46\u6b64\u8a5e\u5178\u53ea\u5305\u62ec\u8a5e\u5f59\u53ca\u6975\u6027 \u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5\uff0c\u5728\u6b63\u9762\u8a5e 604 \u500b\u53ca\u8ca0\u9762\u8a5e 645 \u500b\u7684\u8cc7\u6599\u96c6\u4e0a\u505a\u5be6\u9a57\uff0c\u5f97\u5230\u6700\u9ad8 \u7684\u8cc7\u8a0a\u3002\u53e6\u4e00\u65b9\u9762\uff0c\u8463\u632f\u6771\u5148\u751f\u548c\u9673\u514b\u5065\u6559\u6388\u6240\u5efa\u7acb\u7684\u77e5\u7db2[4]\u548c\u5ee3\u7fa9\u77e5\u7db2[5]\uff0c\u662f\u91cd\u8981 \u7684\u6210\u7e3e\u662f 80.23%\u7684\u7cbe\u78ba\u5ea6\u53ca 85.03%\u7684\u53ec\u56de\u7387\u3002\u4e4b\u5f8c\u5f9e 2006 \u5230 2010 \u5e74\uff0c\u9678\u7e8c\u7684\u7814\u7a76\u4f7f \u7684\u8a9e\u610f\u8cc7\u6e90\u3002\u5c0d\u65bc\u6bcf\u500b\u8a5e\u5f59\uff0c\u90fd\u7528\u6709\u9650\u7684\u7fa9\u539f\u7d66\u4e88\u7cbe\u78ba\u7684\u5b9a\u7fa9\uff0c\u4f46\u9019\u4e9b\u5b9a\u7fa9\u537b\u7f3a\u4e4f\u60c5\u7dd2 \u7528\u4e0d\u540c\u7684\u8cc7\u6599\u96c6\uff0c\u7528\u4e0d\u540c\u985e\u578b\u7684\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5\u4f86\u8655\u7406\u9019\u500b\u554f\u984c[11-14]\uff0c\u6240\u5f97\u5230\u7684\u6548\u80fd \u7684\u8a9e\u610f\u6a19\u8a18\u3002\u56e0\u6b64\uff0c\u5982\u4f55\u81ea\u52d5\u70ba\u5ee3\u7fa9\u77e5\u7db2\u52a0\u4e0a\u60c5\u7dd2\u6a19\u8a18\uff0c\u6210\u70ba\u4e00\u500b\u91cd\u8981\u7684\u8ab2\u984c\uff0c\u4e5f\u662f\u672c \u5728\u4e0d\u540c\u7684\u6307\u6a19(Accuracy\u3001Precision\u3001\u6216 F-Measure)\u4e0b\uff0c\u5f9e 89%\u5230 96%\u4e0d\u7b49\u3002\u56e0\u70ba\u57fa \u7814\u7a76\u7684\u76ee\u7684\u3002 \u6e96\u4e0d\u540c\uff0c\u9019\u4e9b\u6548\u80fd\u4e00\u6a23\u6c92\u6709\u8fa6\u6cd5\u76f4\u63a5\u6bd4\u8f03\uff0c\u4f46\u76f8\u8f03\u65bc\u82f1\u6587\uff0c\u6210\u7e3e\u5247\u660e\u986f\u63d0\u9ad8\u3002</td></tr><tr><td>\u672c\u7814\u7a76\u63d0\u51fa\u70ba\u5ee3\u7fa9\u77e5\u7db2\u52a0\u4e0a\u60c5\u7dd2\u6a19\u8a18\u7684\u65b9\u6cd5\uff0c\u9996\u5148\u5229\u7528 NTUSD \u8ddf\u5ee3\u7fa9\u77e5\u7db2\u8a5e\u5f59\u7684\u4ea4\u96c6</td></tr><tr><td>\u5efa\u7acb\u6a19\u6e96\u7b54\u6848\u96c6\uff0c\u518d\u7531\u6a19\u6e96\u7b54\u6848\u96c6\u8a13\u7df4\u51fa\u5206\u985e\u5668\uff0c\u70ba\u5176\u4ed6\u5ee3\u7fa9\u77e5\u7db2\u8a5e\u5f59\u9032\u884c\u6a19\u8a18\u3002\u5982\u4f55</td></tr><tr><td>\u6709\u6548\u7684\u904b\u7528\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5\uff0c\u5982\u4f55\u70ba\u8a5e\u5f59\u62bd\u53d6\u51fa\u6709\u7528\u7684\u7279\u5fb5\uff0c\u662f\u4e3b\u8981\u7684\u6311\u6230\u8b70 \u4e09\u3001\u7279\u5fb5\u62bd\u53d6\u53ca\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5</td></tr><tr><td>\u984c\u3002\u5728\u6b64\u7814\u7a76\u4e2d\uff0c\u6211\u5011\u6709\u7cfb\u7d71\u7684\u5617\u8a74\u62bd\u53d6\u5404\u7a2e\u4e0d\u540c\u7684\u8a5e\u5f59\u7279\u5fb5\uff0c\u6700\u5f8c\u5f97\u5230\u8ddf\u4eba\u5de5\u6a19\u8a18\u6e96</td></tr><tr><td>\u78ba\u7387\u4e0d\u76f8\u4e0a\u4e0b\u7684\u5206\u985e\u5668\u3002 \u7531\u65bc\u6211\u5011\u904b\u7528\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5\u4f86\u8a13\u7df4\u5206\u985e\u5668\uff0c\u6700\u91cd\u8981\u7684\u554f\u984c\u662f\u70ba\u8a5e\u5f59\u62bd\u53d6\u51fa\u6709\u7528</td></tr><tr><td>\u7b2c\u4e8c\u7bc0\u4ecb\u7d39\u5ee3\u7fa9\u77e5\u7db2\u3001\u53ca\u82f1\u6587\u548c\u4e2d\u6587\u76f8\u95dc\u7684\u60c5\u7dd2\u5c6c\u6027\u6a19\u8a18\u7814\u7a76\uff0c\u7b2c\u4e09\u7bc0\u4ecb\u7d39\u5f9e E-HowNet \u7684\u7279\u5fb5\u3002\u5728\u6b64\u8ad6\u6587\u4e2d\uff0c\u6211\u5011\u5206\u5225\u5f9e E-HowNet \u53ca Google Chinese Web 5-gram \u9019\u5169\u500b\u4f86</td></tr><tr><td>\u6e90\u62bd\u53d6\u5169\u5927\u985e\u7684\u7279\u5fb5\uff0c\u63a5\u8457\u5c07\u9019\u5169\u500b\u4f86\u6e90\u7684\u7279\u5fb5\u7d44\u5408\u8a13\u7df4\u5206\u985e\u5668\u3002\u6b64\u5916\uff0c\u6211\u5011\u4e5f\u5617\u8a74\u4f7f \u7528\u7d44\u5408\u5f0f\u7684\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5(ensemble approach) \uff0c\u4f86\u66f4\u9032\u4e00\u6b65\u5f97\u5230\u66f4\u9ad8\u7684\u6548\u80fd\uff0c \u53ca \u8ddf\u77e5\u7db2\u9023\u7d50\uff0c\u4e26\u4f5c\u4e86\u4e00\u4e9b\u4fee\u6539\uff0c\u6700\u5f8c\u5f62\u6210\u5ee3\u7fa9\u77e5\u7db2(Extended-HowNet, E-HowNet) \u3002\u8a5e \u4ee5\u4e0b\u6211\u5011\u5206\u5225\u8a73\u7d30\u4ecb\u7d39\u3002</td></tr><tr><td>\u5eab\u5c0f\u7d44\u4fee\u6539\u4e26\u64f4\u5c55\u77e5\u7db2\u539f\u5148\u7684\u8a9e\u7fa9\u7fa9\u539f\u89d2\u8272\u77e5\u8b58\u672c\u9ad4\uff0c\u5efa\u69cb\u51fa\u5ee3\u7fa9\u77e5\u7db2\u77e5\u8b58\u672c\u9ad4</td></tr><tr><td>(Extended-HowNet Ontology) \uff0c\u4e26\u7528\u9019\u4e9b\u65b0\u7684\u8a9e\u7fa9\u7fa9\u539f\uff0c\u4ee5\u7d50\u69cb\u5316\u7684\u5f62\u5f0f\u4f86\u5b9a\u7fa9\u8a5e\u689d\uff0c</td></tr><tr><td>\u8a5e\u689d\u5b9a\u7fa9\u5f0f\u7684\u4f8b\u5b50\u5982\u5716\u4e00\u3002</td></tr><tr><td>\u6709\u95dc\u60c5\u7dd2\u5c6c\u6027\u6a19\u8a18\u7684\u7814\u7a76\uff0c\u6211\u5011\u5206\u70ba\u82f1\u6587\u53ca\u4e2d\u6587\u4f86\u8a0e\u8ad6\u3002\u5728\u82f1\u6587\u65b9\u9762\uff0c\u6700\u65e9\u662f\u7531</td></tr><tr><td>Hatzivassiloglou &amp; McKeown[6]\u5728 1997 \u5e74\u91dd\u5c0d\u5f62\u5bb9\u8a5e\u6240\u505a\u7684\u7814\u7a76\uff0c\u4ed6\u5011\u6240\u7528\u7684\u5f62\u5bb9\u8a5e</td></tr><tr><td>\u5206\u5225\u6709\u6b63\u9762\u8a5e 657 \u500b\u53ca\u8ca0\u9762\u8a5e 679 \u500b\uff0c\u8a72\u8ad6\u6587\u4f9d\u64da\u4e0d\u540c\u7684\u5be6\u9a57\u8a2d\u5b9a\uff0c\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u7684</td></tr></table>",
"num": null,
"html": null
},
"TABREF1": {
"text": "\u4ee5\u5716\u4e00 \u300c\u6c7d\u6cb9\u300d \u9019\u500b\u8a5e\u5f59\u70ba\u4f8b\uff0c\u5176\u5b9a\u7fa9\u5f0f\u4e2d\u51fa\u73fe\u4e86\u7fa9\u539f material\uff0c\u6240\u4ee5\u5b83\u7684\u503c w \u6c7d\u6cb9 , material",
"type_str": "table",
"content": "<table><tr><td>\u5c31\u6703\u662f 1\uff0c\u5176\u4ed6\u6c92\u51fa\u73fe\u7684\u7fa9\u539f\uff0c\u503c\u5c31\u6703\u662f 0\u3002\u6211\u5011\u5171\u4f7f\u7528\u4e86 2567 \u500b\u7fa9\u539f\u4f86\u7576\u7279\u5fb5\u3002</td></tr><tr><td>\u5ee3\u7fa9\u77e5\u7db2\u7684\u8a5e\u5f59\u6709\u6b67\u7570\u6027\uff0c\u4e5f\u5c31\u662f\u6bcf\u500b\u8a5e\u5f59\u53ef\u80fd\u6709\u8a31\u591a\u8a9e\u610f\u3002\u800c\u8a5e\u5f59\u7684\u7b2c\u4e00\u500b\u8a9e\u610f\uff0c\u662f</td></tr><tr><td>\u51fa\u73fe\u983b\u7387\u6700\u9ad8\u7684\u8a9e\u610f (\u9664\u4e86\u56db\u500b\u8a5e\u5f59\u4f8b\u5916) \uff0c\u6240\u4ee5\u6211\u5011\u7528\u8a5e\u5f59\u7684\u7b2c\u4e00\u500b\u8a9e\u610f\u4f86\u62bd\u53d6\u7279\u5fb5\u3002</td></tr><tr><td>\u53ea\u5f9e\u8a5e\u5f59\u7684\u4e00\u500b\u8a9e\u610f\u62bd\u53d6\u7279\u5fb5\uff0c\u800c\u4e0d\u628a\u8a72\u8a5e\u5f59\u6240\u6709\u7684\u8a9e\u610f\u653e\u5728\u4e00\u8d77\uff0c\u4ee3\u8868\u9019\u7a2e\u65b9\u6cd5\u53ef\u70ba</td></tr><tr><td>\u4e0d\u540c\u7684\u8a9e\u610f\u7d66\u51fa\u4e0d\u540c\u7684\u6975\u6027\u9810\u6e2c\u3002\u53ea\u662f\u7531\u65bc\u76ee\u524d NTUSD \u6975\u6027\u6a19\u8a18\u53ea\u5230\u8a5e\u5f59\u7684\u5c64\u7d1a\uff0c\u6240</td></tr><tr><td>\u4ee5\u7121\u6cd5\u5c0d\u8a9e\u610f\u7684\u5c64\u7d1a\u9032\u884c\u6975\u6027\u9810\u6e2c\u3002\u4f46\u53ea\u8981\u6709\u8a9e\u610f\u5c64\u7d1a\u7684\u6975\u6027\u6a19\u8a18\uff0c\u6211\u5011\u9019\u7a2e\u505a\u6cd5\u53ef\u99ac</td></tr><tr><td>\u4e0a\u5957\u7528\u3002</td></tr><tr><td>1\u3001\u57fa\u790e\u7fa9\u539f\u7279\u5fb5\u52a0\u6b0a\u503c</td></tr><tr><td>\u9664\u4e86\u516c\u5f0f (1) \u7684\u65b9\u5f0f\u5916\uff0c\u6211\u5011\u53ef\u4ee5\u5229\u7528\u66f4\u591a E-HowNet \u7684\u7279\u6027\uff0c\u4f86\u62bd\u53d6\u51fa\u6709\u7528\u7684\u8cc7\u8a0a\u3002</td></tr><tr><td>\u4e00\u500b\u53ef\u80fd\u7684\u65b9\u5f0f\u662f\u5b9a\u7fa9\u5f0f\u4e2d\u7684\u7d50\u69cb\uff0c\u5982\u679c\u628a\u5b9a\u7fa9\u5f0f\u5c55\u958b\uff0c\u6703\u5f97\u5230\u5982\u5716\u4e8c\u7684\u6a39\u72c0\u7d50\u69cb\u3002\u5728</td></tr><tr><td>\u9019\u6a39\u72c0\u7d50\u69cb\u4e2d\uff0c\u7fa9\u539f\u6240\u5728\u7684\u6df1\u5ea6\u662f\u4e00\u500b\u6709\u7528\u7684\u8cc7\u8a0a\uff0c\u56e0\u6b64\u6211\u5011\u4eff\u7167\u5289\u7fa4&amp;\u674e\u7d20\u5efa[15]\u7684</td></tr><tr><td>\u516c\u5f0f\uff0c\u5c07\u6df1\u5ea6\u7684\u8cc7\u8a0a\u7576\u4f5c\u6b0a\u91cd\u5f15\u5165\u516c\u5f0f (1)\uff0c\u5f97\u5230\u516c\u5f0f (2)\u3002</td></tr><tr><td>\u5716\u4e8c\u3001 \u300c\u5929\u502b\u4e4b\u6a02\u300d\u5b9a\u7fa9\u5f0f\u7684\u6a39\u72c0\u8868\u793a</td></tr></table>",
"num": null,
"html": null
},
"TABREF2": {
"text": "Liu et al.[16] \u6240\u5efa\u7acb\u7684 Google Web 5-gram Version 1\uff0c\u4f86\u62bd\u53d6 \u8a9e\u7bc7\u7279\u5fb5\u3002Google Web 5-gram \u662f Google \u5f9e\u7db2\u8def\u4e2d\u6536\u96c6\u5927\u91cf\u7684\u7c21\u9ad4\u4e2d\u6587\u7db2\u9801\uff0c\u4e26\u7d93\u904e\u8655 \u7406\u6240\u5efa\u7acb\u7684\u8cc7\u6e90\u3002\u4ed6\u5011\u6536\u96c6\u4e86 882,996,532,572 \u500b\u5b57\u7b26(token) \uff0c\u5171 102,048,435,515 \u500b \u53e5\u5b50\uff0c\u7d93\u904e\u65b7\u8a5e\u5f8c\u5efa\u6210 n-gram\u3002n-gram \u7684 n \u5f9e 1 \u5230 5\uff0c\u4e26\u4e14\u53ea\u4fdd\u7559\u983b\u7387\u5927\u65bc 40 \u7684 n-gram\u3002Google Web 5-gram \u7684\u4f8b\u5b50\u5982\u5716\u4e09\u6240\u793a\u3002 \u5716\u4e09\u3001Google Web 5-gram \u8cc7\u6599\u7bc4\u4f8b \u4e0a\u5716\u4e2d\uff0c\u8868\u793a\u300c\u6050\u5413 \u6216 \u975e\u6cd5 \u9a9a\u6270 \u7684\u300d\u9019\u4e00 5-gram \u5171\u51fa\u73fe\u4e86 4463 \u6b21\u3002\u5f9e\u5716\u4e2d\u6211\u5011\u4e5f \u53ef\u770b\u5230\uff0cGoogle Web 5-gram \u662f\u7c21\u9ad4\u4e2d\u6587\uff0c\u4f46\u5ee3\u7fa9\u77e5\u7db2\u70ba\u7e41\u9ad4\u4e2d\u6587\uff0c\u6240\u4ee5\u6211\u5011\u5148\u5c07\u5ee3\u7fa9 \u77e5\u7db2\u7528 Microsoft Word \u7ffb\u8b6f\u70ba\u7c21\u9ad4\u4e2d\u6587\uff0c\u4e4b\u5f8c\u624d\u4f7f\u7528 Google Web 5-gram \u9019\u4e00\u8a9e\u6599\u5eab\u3002 \u8a9e\u6599\u5eab\u5728\u4f7f\u7528\u6642\uff0c\u53ea\u7528 5-gram \u7684\u90e8\u5206\u4f86\u62bd\u53d6\u7279\u5fb5\u3002",
"type_str": "table",
"content": "<table><tr><td>+1\u3002\u53e6\u5916\uff0c\u5982\u679c\u6a39\u72c0\u7d50\u69cb\u4e0a\u9762\u7684\u7fa9\u539f\u88ab\u5426\u5b9a\u610f\u7fa9\u7684\u95dc\u4fc2\u6240\u4fee\u98fe\uff0c\u9019\u5426\u5b9a\u610f \u7fa9\u6703\u50b3\u905e\u5230\u4e0b\u9762\u7684\u7fa9\u539f\u3002 (\u4e8c) \u3001\u8a9e\u7bc7(context)\u7279\u5fb5 \u5ee3\u7fa9\u77e5\u7db2\u96d6\u7136\u6709\u56b4\u8b39\u7684\u5b9a\u7fa9\u5f0f\u53ef\u7528\u4ee5\u8868\u793a\u8a5e\u5f59\uff0c\u4f46\u662f\u6709\u56db\u500b\u7f3a\u9ede\uff0c\u9020\u6210\u53ea\u7528\u7fa9\u539f\u7576\u7279\u5fb5 \u7121\u6cd5\u6b63\u78ba\u7372\u5f97\u8a5e\u5f59\u7684\u6975\u6027\u3002 \u7b2c\u4e00\u500b\u7f3a\u9ede\u662f\u8a5e\u5f59\u6240\u6a19\u7684\u7fa9\u539f\u91cf\u592a\u5c11\uff0c\u56e0\u70ba\u8a5e\u5f59\u662f\u7528\u4eba\u5de5\u6a19\u793a\u7fa9\u539f\uff0c\u6240\u4ee5\u7121\u6cd5\u7d66\u4e88\u5f88\u591a \u6a19\u793a\u3002\u9019\u8868\u793a\u8a5e\u5f59\u64c1\u6709\u7684\u8cc7\u8a0a\u91cf\u6709\u9650\uff0c\u6703\u9020\u6210\u5206\u985e\u5668\u7121\u6cd5\u6709\u6548\u5b78\u7fd2\u3002\u7b2c\u4e8c\u500b\u7f3a\u9ede\u662f\u7fa9\u539f \u6578\u91cf\u592a\u5c11\uff0c\u9019\u6703\u9020\u6210\u8a9e\u7fa9\u7684\u5283\u5206\u4e0d\u5920\u7cbe\u78ba\uff0c\u7121\u6cd5\u986f\u793a\u51fa\u771f\u5be6\u7684\u8a9e\u7fa9\u5dee\u5225\uff0c\u4f8b\u5982\u300c\u660e\u54f2\u4fdd \u8eab\u300d\u8ddf\u300c\u898b\u98a8\u8f49\u8235\u300d\u7684\u5b9a\u7fa9\u5f0f\u90fd\u662f\u300c{sly|\u72e1}\u300d \uff0c\u4f46\u300c\u660e\u54f2\u4fdd\u8eab\u300d\u662f\u6b63\u9762\u610f\u898b\uff0c \u300c\u898b\u98a8\u8f49 \u8235\u300d\u537b\u662f\u8ca0\u9762\u610f\u898b\u3002\u7b2c\u4e09\u500b\u7f3a\u9ede\u662f\u5ee3\u7fa9\u77e5\u7db2\u5b9a\u7fa9\u6a19\u6e96\u7684\u5dee\u7570\uff0c\u4f8b\u5982\uff0c\u5c08\u6709\u540d\u8a5e\u5728\u5ee3\u7fa9\u77e5 \u7db2\u4e2d\u6703\u7528\u5ba2\u89c0\u7684\u7fa9\u539f\u4f86\u5b9a\u7fa9\uff0c\u4f46\u8a72\u5c08\u6709\u540d\u8a5e\u7d93\u904e\u4f7f\u7528\uff0c\u537b\u53ef\u80fd\u6703\u5f15\u8d77\u4eba\u7684\u6b63\u53cd\u60c5\u7dd2\uff0c\u9019 \u7a2e\u5dee\u7570\u6703\u5f15\u5165\u7a0b\u5ea6\u4e0d\u7b49\u7684\u96dc\u8a0a\u5230\u5206\u985e\u5668\u4e2d\u3002\u7b2c\u56db\u500b\u7f3a\u9ede\u662f\u5ee3\u7fa9\u77e5\u7db2\u5c1a\u672a\u5c0d\u6240\u6709\u8a5e\u5f59\u6a19\u4e0a \u5b9a\u7fa9\u5f0f\uff0c\u4f8b\u5982\u300c\u4e7e\u6de8\u4fd0\u843d\u300d\u5728\u5ee3\u7fa9\u77e5\u7db2\u53ca NTUSD \u4e2d\u90fd\u51fa\u73fe\uff0c\u4f46\u5ee3\u7fa9\u77e5\u7db2\u537b\u6c92\u6709\u6a19\u4e0a\u5b9a \u7fa9\u5f0f\u3002 \u56e0\u6b64\u6211\u5011\u5f15\u5165\u8a9e\u7bc7\u7684\u7279\u6027\uff0c\u5f9e\u8a72\u8a5e\u5f59\u5728\u8a9e\u8a00\u4e2d\u7684\u5be6\u969b\u4f7f\u7528\u60c5\u6cc1\uff0c\u62bd\u53d6\u51fa\u8a5e\u5f59\u7684\u7279\u5fb5\uff0c\u4f86 \u6211\u5011\u4f7f\u7528\u7279\u5fb5\u8ddf\u8a5e\u5f59\u7684\u540c\u51fa\u73fe(co-occurrence)\u6b21\u6578\u505a\u70ba\u7279\u5fb5\u503c\uff0c\u4ee5\u5716\u4e09\u70ba\u4f8b\uff0c\u5982\u679c\u8a5e \u5f59\u662f\u300c\u6050\u5413\u300d \uff0c\u4ee5\u300c\u975e\u6cd5\u300d\u7576\u7279\u5fb5\u503c\uff0c\u5247\u540c\u51fa\u73fe\u6b21\u6578\u6703\u5c07\u6240\u6709\u300c\u6050\u5413\u300d\u53ca\u300c\u975e\u6cd5\u300d\u4e00\u540c \u51fa\u73fe\u7684 5-gram \u6b21\u6578\u76f8\u52a0\u3002\u5728\u4e0a\u9762\u7684\u4f8b\u5b50\u4e2d\uff0c \u300c\u6050\u5413\u300d\u53ca\u300c\u975e\u6cd5\u300d\u7684\u540c\u51fa\u73fe\u6b21\u6578\u70ba 574+200+4463 + 705=5942 \u6b21\u3002 \u53e6\u5916\uff0c\u7531\u65bc\u5ee3\u7fa9\u77e5\u7db2\u8ddf Google Web 5-gram \u7684\u65b7\u8a5e\u6a19\u6e96\u4e26\u4e0d\u4e00\u81f4\uff0c\u6240\u4ee5\u5728\u8655\u7406\u6642\u628a Google Web 5-gram \u7684\u7a7a\u767d\u53bb\u6389\uff0c\u76f4\u63a5\u627e\u51fa\u300c\u8a5e\u5f59\u300d\u8ddf\u300c\u7279\u5fb5\u300d\u9019\u5169\u5b57\u4e32\u662f\u5426\u540c\u6642\u51fa\u73fe\uff0c\u4f86\u8a08 \u7b97\u6b21\u6578\uff0c\u9019\u6a23\u53ef\u4ee5\u907f\u514d\u65b7\u8a5e\u6a19\u6e96\u4e0d\u4e00\u6240\u7522\u751f\u7684\u554f\u984c\u3002\u4f8b\u5982\u300c\u4e00\u4e8b\u7121\u6210\u300d\u5728 Google Web 5-gram \u4e2d\u88ab\u65b7\u6210\u56db\u500b\u7368\u7acb\u7684\u8a5e\uff0c\u5c07\u7a7a\u767d\u53bb\u6389\u5c31\u53ef\u4ee5\u6b63\u78ba\u6bd4\u5c0d\u5230\u3002 \u56e0\u70ba\u9019\u88e1\u7684\u8a5e\u5f59\u96c6\u5408\u5c31\u662f\u7b49\u5f85\u6a19\u793a\u6975\u6027\u7684\u8a5e\uff0c\u6240\u4ee5\u6211\u5011\u53ea\u8981\u6307\u5b9a\u7279\u5fb5\u7684\u96c6\u5408\u5305\u62ec\u90a3\u4e9b \u88dc\u511f\u9019\u4e9b\u7f3a\u9ede\u3002\u6211\u5011\u4f7f\u7528 1\u3001Google Web 5-gram \u7279\u5fb5\u62bd\u53d6 \u8a5e\uff0c\u5c31\u53ef\u7b97\u51fa\u8868\u793a\u8a5e\u5f59 i \u7684\u5411\u91cf</td></tr></table>",
"num": null,
"html": null
},
"TABREF3": {
"text": "i\u300d\u8ddf\u300c\u7279\u5fb5 j\u300d\u9019\u5169\u5b57\u4e32\u540c\u51fa\u73fe\u7684\u6b21\u6578\u3002\u5728\u6211\u5011\u7684\u5be6\u9a57\u4e2d\uff0c\u5171\u5617\u8a74\u4e86 \u5341\u7a2e\u4e0d\u540c\u7684\u7279\u5fb5\u96c6\u5408\uff0c\u5206\u5225\u662f\u5ee3\u7fa9\u77e5\u7db2\u7684\u540d\u8a5e\u3001\u5ee3\u7fa9\u77e5\u7db2\u7684\u52d5\u8a5e\u3001\u5ee3\u7fa9\u77e5\u7db2\u7684\u526f\u8a5e\u3001\u5ee3 \u7fa9\u77e5\u7db2\u7684\u5f62\u5bb9\u8a5e\u3001\u5ee3\u7fa9\u77e5\u7db2\u6240\u6709\u8a5e\u5f59\u3001Google Web 5-gram \u6700\u5e38\u51fa\u73fe\u7684 5000 \u8a5e\u3001Google Web 5-gram \u6700\u5e38\u51fa\u73fe\u7684 5000 \u8a5e(\u4f46\u8a5e\u5f59\u9577\u5ea6\u6700\u5c11\u70ba 2) \u3001Google Web 5-gram \u6700\u5e38\u51fa\u73fe \u7684 10000 \u8a5e\u3001Google Web 5-gram \u6700\u5e38\u51fa\u73fe\u7684 10000 \u8a5e(\u4f46\u8a5e\u5f59\u9577\u5ea6\u6700\u5c11\u70ba 2) \u3001\u4ee5\u53ca NTUSD \u5b8c\u6574\u7248\u3002",
"type_str": "table",
"content": "<table><tr><td>2\u3001Google Web 5-gram \u7279\u5fb5\u503c\u8655\u7406</td></tr></table>",
"num": null,
"html": null
},
"TABREF4": {
"text": "ensemble approach) Based Feature)\u90a3\u689d\u6298\u7dda\uff0c\u6700\u4f73\u7684 \u03b1 \u503c\u70ba \u22120.02\uff0c\u6e96\u78ba\u7387\u70ba 89.4397%\u3002\u7576 PBF \u4e2d \u03b1 = 0\uff0c\u8a72\u7d50\u679c\u5373\u70ba\u516c\u5f0f (1) \u7684\u7d50\u679c\u3002\u516c\u5f0f (3) \u7684\u7d50\u679c\u662f PBFN(Prime-Based Feature with Negation)\u90a3\u689d\u6298\u7dda\uff0c\u6700\u4f73\u7684 \u03b1 \u503c\u70ba \u22120.02 \u53ca \u22120.03\uff0c\u6e96\u78ba\u7387\u70ba 89.6121%\u3002 \u5716\u56db\u3001\u5ee3\u7fa9\u77e5\u7db2\u7279\u5fb5\u65bc\u4e0d\u540c \u03b1 \u503c\u7684\u6548\u80fd\u6bd4\u8f03 \u6211\u5011\u5f9e\u5716\u56db\u53ef\u4ee5\u770b\u51fa\uff0c\u63cf\u8ff0 PBFN \u7684\u6298\u7dda\u5728\u6240\u6709\u7684 \u03b1 \u503c\u4e0b\uff0c\u6e96\u78ba\u7387\u7686\u7565\u9ad8\u65bc PBF\uff0c\u4f46\u662f \u22120.03 \u7684\u9810\u6e2c\u7d50\u679c\u70ba (True Positive, False Positive, True Negative, False Negative) = (TP, FP, TN, FN) = (968, 77, 1174, 101)\uff0c\u5176\u4e2d Positive \u8868\u6b63\u9762\u6975\u6027\u3002\u6211\u5011\u5206\u5225\u5c0d\u6b63\u8ca0\u9762\u6975\u6027\u8a08\u7b97 Recall\u3001Precision \u53ca F-Measure (R + \u3001P + \u3001F + \u3001R \u2212 \u3001P \u2212 \u3001F \u2212 )\uff0c\u5176\u4e2d\uff0cP + =TP/(TP+FP)\u3001 R + =TP/(TP+FN)\u3001F + = 2P + R + /(P + +R + )\u3001P \u2212 =TN/(TN+FN)\u3001R \u2212 =TN/(TN+FP)\u3001F \u2212 = 2P \u2212 R \u2212 /(P \u2212 +R \u2212 )\uff0c\u6700\u5f8c\u7cfb\u7d71\u7684 Recall=(R + +R \u2212 )/2\u3001Precision=(P + +P \u2212 )/2 \u53ca F-Measure = (F + +F \u2212 )/2 = (91.58% + 92.95%)/2 = 92.27%\u3002\u7531\u8a08\u7b97\u4e2d\u6211\u5011\u53ef\u4ee5\u770b\u5230\uff0c\u6211\u5011\u7684\u7cfb\u7d71\u5c0d\u8ca0\u9762 \u6975\u6027\u505a\u5f97\u8f03\u597d\uff0c\u800c\u4e14\u56e0\u8cc7\u6599\u96c6\u6709\u8f03\u591a\u7684\u8ca0\u9762\u8a5e\u5f59\uff0c\u6240\u4ee5\u6700\u5f8c\u7684\u6e96\u78ba\u7387 92.33% \u6bd4 F + \u9ad8\u3002 \u4e94\u3001\u7d50\u8ad6 Research of this paper was partially supported by National Science Council (Taiwan) under the contract NSC 98-2221-E-002-175-MY3.",
"type_str": "table",
"content": "<table><tr><td>\u8868\u4e00\u3001\u5ee3\u7fa9\u77e5\u7db2\u3001NTUSD\u3001\u4ee5\u53ca\u4ea4\u96c6\u7684\u8cc7\u6599\u7b46\u6578 n 1,1 \uff1a \u5206\u985e\u5668 A \u8207\u5206\u985e\u5668 B \u7686\u6b63\u78ba n 0,1 \uff1a \u5206\u985e\u5668 A \u6a19\u8a18\u932f\u8aa4\uff0c\u4f46\u5206\u985e \u96c6\u4ee3\u865f\u4f86\u4ee3\u8868\u8a72\u7279\u5fb5\u96c6\u3002\u5341\u7d44\u7279\u5fb5\u96c6\u4e2d\uff0c\u6700\u5c11\u7684\u662f Adj \u7684\u7279\u5fb5\u96c6\uff0c\u53ea\u6709 948 \u500b\u8a5e\uff0c\u6700 \u5716\u4e94\u4e2d\u7279\u5fb5\u96c6\u7684\u500b\u6578\uff0c\u4e26\u6c92\u6709\u7d55\u5c0d\u7684\u5f71\u97ff\uff0c\u4f46\u82e5\u500b\u6578\u592a\u5c11\uff0c\u5982\u7279\u5fb5\u500b\u6578\u5c0f\u65bc 2364 \u500b\uff0c \u6a19\u8a18\u6548\u80fd\u4ee5\u7c97\u9ad4\u5b57\u8868\u793a\u3002 \u8868\u4e94\u4e2d\uff0c\u6211\u5011\u4e5f\u5217\u51fa\u6bcf\u7a2e\u8a5e\u6027\u505a\u932f\u8207\u505a\u5c0d\u7684\u500b\u6578\uff0c\u4e26\u4ee5 F10000-2+PBFN \u03b1 = \u22120.03 \u5206\u985e\u5668\u70ba</td></tr><tr><td>\u8cc7\u6599\u96c6 \u6a19\u8a18\u7684\u6a23\u672c\u6578 \u591a\u7684\u662f All \u7684\u7279\u5fb5\u96c6\uff0c\u6709 86,712 \u500b\u8a5e\u3002 \u5247\u6548\u80fd\u6703\u660e\u986f\u8b8a\u5dee\u3002\u5716\u56db\u4e2d\u7684\u6700\u4f73\u503c PBFN(\u03b1 = \u22120.02)\u70ba 89.61%\uff0c\u7279\u5fb5\u500b\u6578\u70ba 2,567 \u6b63\u9762 \u8ca0\u9762 \u7e3d\u6578 \u5668 B \u6a19\u8a18\u6b63\u78ba\u7684\u6a23\u672c\u6578 \u57fa\u6e96\uff0c\u770b\u7d44\u5408\u5f8c\u7684\u5206\u985e\u5668\uff0c\u5728\u5404\u8a5e\u6027\u4e2d\u505a\u5c0d\u505a\u932f\u7684\u6b21\u6578\u7684\u589e\u6e1b\uff0c\u7528\u62ec\u865f\u4f86\u6a19\u51fa\u589e\u6e1b\u7684\u6578</td></tr><tr><td>\u7531\u65bc\u5ee3\u7fa9\u77e5\u7db2\u8a5e\u5f59\u7684\u6bcf\u4e00\u500b\u610f\u7fa9(sense)\u90fd\u6a19\u6709\u8a5e\u6027\uff0c\u800c\u4e14\u6211\u5011\u7528\u4e86\u5f88\u591a\u4e0d\u540c\u7684\u7279\u5fb5 \u96c6\u5408\uff0c\u9019\u8868\u793a\u6211\u5011\u6703\u6709\u5f88\u591a\u4e0d\u540c\u7684\u5206\u985e\u5668\u3002\u5982\u679c\u4f9d\u4e0d\u540c\u8a5e\u6027\u9078\u64c7\u505a\u5f97\u6700\u597d\u7684\u5206\u985e\u5668\uff0c\u5247 \u53ef\u4ee5\u6709\u66f4\u597d\u7684\u6548\u80fd\u3002\u4f8b\u5982\uff0c\u5982\u679c\u5206\u985e\u5668 A \u7684\u7e3d\u9ad4\u6548\u80fd\u4e0d\u662f\u6700\u597d\uff0c\u4f46\u5982\u679c\u5b83\u5c0d\u540d\u8a5e\u505a\u7684 \u6548\u80fd\u662f\u6700\u597d\u7684\uff0c\u4e5f\u8a31\u62ff\u5b83\u4f86\u9810\u6e2c\u540d\u8a5e\u7684\u6975\u6027\u6703\u66f4\u6e96\u78ba\uff0c\u4f9d\u6b64\u985e\u63a8\u3002\u6211\u5011\u628a\u5ee3\u7fa9\u77e5\u7db2\u7684\u8a5e \u6027\uff0c\u5206\u70ba\u540d\u8a5e\u3001\u52d5\u8a5e\u3001\u526f\u8a5e\u3001\u5f62\u5bb9\u8a5e\u53ca\u5176\u4ed6\u5171\u4e94\u985e\uff0c\u5206\u5225\u9078\u5728\u8a72\u985e\u5225\u9810\u6e2c\u6700\u597d\u7684\u5206\u985e\u5668 \u4f86\u9810\u6e2c\u3002\u9019\u4f5c\u6cd5\u662f\u4e00\u7a2e\u5e38\u898b\u7684\u7d44\u5408\u4e0d\u540c\u5206\u985e\u5668\u7684\u7b56\u7565(ensemble approach) \uff0c\u6211\u5011\u4e5f\u6703 \u5c0d\u6b64\u9032\u884c\u5be6\u9a57\uff0c\u4f86\u89c0\u5bdf\u6548\u80fd\u3002 \u56db\u3001\u5be6\u9a57\u8207\u5206\u6790 (\u4e00) \u3001\u5be6\u9a57\u8cc7\u6599\u8207\u5be6\u9a57\u8a2d\u5b9a \u672c\u7814\u7a76\u4f7f\u7528\u570b\u7acb\u53f0\u7063\u5927\u5b78\u610f\u898b\u8a5e\u8a5e\u5178\u5b8c\u6574\u7248(NTUSD) \u3001\u8207\u5ee3\u7fa9\u77e5\u7db2\u7684\u4ea4\u96c6\uff0c\u4f5c\u70ba\u5be6\u9a57 \u8cc7\u6599\uff0c\u9019\u5169\u500b\u8cc7\u6599\u96c6\u7684\u8a5e\u5f59\u6578\u5982\u8868\u4e00\u3002\u8cc7\u6599\u96c6 E-HowNet\u2229NTUSD \u6703\u4f5c\u70ba\u6a19\u6e96\u7b54\u6848\u96c6\uff0c \u5728\u6211\u5011\u6240\u770b\u7684\u76f8\u95dc\u8ad6\u6587\u4e2d\uff0c\u9019\u500b\u7b54\u6848\u96c6\u7684\u5927\u5c0f\u662f\u6700\u5927\u7684\u4e00\u500b\u3002\u5be6\u9a57\u4f7f\u7528\u6a19\u6e96\u7b54\u6848\u96c6\u5176\u4e2d \u7684 80% \u70ba\u8a13\u7df4\u8cc7\u6599\u96c6\uff0c\u5176\u9918 20%\u70ba\u6e2c\u8a74\u8cc7\u6599\u96c6\uff0c\u4e26\u4f9d\u7167\u5be6\u9a57\u8cc7\u6599\u7684\u8a5e\u6027\u5206\u5e03\u4ee5\u53ca\u8a9e\u610f \u6975\u6027\u5206\u5e03\u4f5c\u5206\u5c64\u62bd\u6a23(stratified sampling) \u3002 E-HowNet N/A N/A 88,127 NTUSD 21,056 22,750 43,806 E-HowNet\u2229NTUSD 5,346 6,256 11,602 \u5206\u5c64\u62bd\u6a23\u8a73\u7d30\u7684\u4f5c\u6cd5\u5982\u4e0b\uff1a\u5148\u5c07\u8cc7\u6599\u4f9d\u7167\u4e94\u7a2e\u8a5e\u6027\u4ee5\u53ca\u5169\u7a2e\u6975\u6027\u5206\u6210\u5341\u500b\u5b50\u96c6\u5408\uff0c\u518d\u91dd \u5c0d\u6bcf\u500b\u5b50\u96c6\u5408\u53d6\u5176\u4e2d 80%\u4f5c\u70ba\u8a13\u7df4\u8cc7\u6599\uff0c\u53e6\u5916 20%\u4f5c\u70ba\u6e2c\u8a74\u8cc7\u6599\u3002\u7531\u65bc\u6211\u5011\u7684\u8cc7\u6599\u91cf \u5920\u591a\uff0c\u6240\u4ee5\u53ef\u4ee5\u4f7f\u7528\u9019\u7a2e\u62bd\u6a23\u3002\u9019\u7a2e\u62bd\u6a23\u4e3b\u8981\u7684\u597d\u8655\u5728\u65bc\u6211\u5011\u66f4\u5bb9\u6613\u5c0d\u6e2c\u8a74\u7d50\u679c\u9032\u884c\u66f4 \u591a\u7684\u5206\u6790\uff0c\u6211\u5011\u628a\u5206\u5c64\u62bd\u6a23\u7684\u7d50\u679c\u5217\u65bc\u8868\u4e8c\u3002 \u8868\u4e8c\u3001\u8a13\u7df4\u8cc7\u6599\u7684\u8a5e\u6027\u4ee5\u53ca\u50be\u5411\u5206\u5e03 \u8a5e\u6027 \u5168\u90e8\u8cc7\u6599\u96c6 \u6b63\u9762\u50be\u5411 \u767e\u5206\u6bd4 \u8a13\u7df4\u8cc7\u6599\u96c6 \u6e2c\u8a74\u8cc7\u6599\u96c6 \u6b63\u9762 \u8ca0\u9762 \u6b63\u9762 \u8ca0\u9762 \u6b63\u9762 n 1,0 \uff1a \u5206\u985e\u5668 B \u6a19\u8a18\u932f\u8aa4\uff0c\u4f46\u5206\u985e \u5668 A \u6a19\u8a18\u6b63\u78ba\u7684\u6a23\u672c\u6578 n 0,0 \uff1a \u5206\u985e\u5668 A \u8207\u5206\u985e\u5668 B \u7686\u932f\u8aa4 \u6a19\u8a18\u7684\u6a23\u672c\u6578 McNemar \u6aa2\u5b9a\u5efa\u69cb\u5728\u5361\u65b9\u9069\u5408\u5ea6\u6aa2\u5b9a (\u03c72 test goodness of fit)\u4e0a\uff0c\u6574\u7406\u800c\u5f97\u7684\u6aa2\u5b9a\u503c \u70ba 0 , 1 1 , 0 2 0 , 1 1 , 0 ) 1 ( n n n \u500b\uff0c\u9019\u500b\u503c\u6bd4\u5716\u4e94\u4e2d\u7684\u6700\u4f73\u503c 88.23%\u9084\u8981\u5927\uff0c\u9019\u8868\u793a\u5ee3\u7fa9\u77e5\u7db2\u4e2d\u7684\u7279\u5fb5\u6bd4\u8f03\u6e96\u78ba\uff0c\u4f46 \u91cf\u3002 \u8868\u4e09\u3001\u8a9e\u7bc7\u7279\u5fb5\u6240\u4f7f\u7528\u7684\u7279\u5fb5\u96c6\u8207\u5176\u7279\u5fb5\u6578 \u7279\u5fb5\u96c6 \u7279\u5fb5\u96c6\u4ee3\u865f \u8868\u56db\u3001\u8a13\u7df4\u8cc7\u6599\u96c6\u4e2d\uff0c\u7d44\u5408\u7279\u5fb5\u5c0d\u4e0d\u540c\u8a5e\u6027\u7684\u6a19\u8a18\u6e96\u78ba\u7387 \u9019\u5dee\u8ddd\u70ba\u4e0d\u986f\u8457\uff0c\u6aa2\u5b9a\u7d50\u679c (2.49, 0.11)\u3002 EnsembleClassifier \u6240\u5f97\u6210\u7e3e\u8ddf F10000-2+PBFN \u03b1 = \u22120.03 \u76f8\u540c\uff0c\u9019\u8868\u793a\u76ee\u524d\u7684\u5206\u985e\u5668\u7d44\u5408\u65b9 \u7279\u5fb5\u6578 \u5ee3\u7fa9\u77e5\u7db2\u540d\u8a5e Noun 46,807 (\u56db) \u3001\u7d44\u5408\u4e0d\u540c\u7279\u5fb5\u7684\u6548\u80fd \u8a13\u7df4\u8cc7\u6599\u96c6\u4e2d\uff0c\u4f9d\u8a5e\u6027\u5206\u5225\u8a08\u7b97\u7684\u6e96\u78ba\u7387 \u5f0f\uff0c\u7121\u6cd5\u63d0\u5347\u6548\u80fd\u3002 \u7279\u5fb5\u96c6\u4ee3\u865f \u7e3d\u9ad4\u6548\u80fd \u540d\u8a5e \u52d5\u8a5e \u526f\u8a5e \u5f62\u5bb9\u8a5e \u5176\u4ed6 n \uff0c\u6b64\u6aa2\u5b9a\u503c\u5728 n 0,1 +n 1,0 \u5920\u5927\u7684\u6642\u5019\u6703\u8da8\u8fd1\u65bc\u81ea\u7531\u5ea6\u70ba 1 \u7684\u5361\u65b9\u5206\u914d\uff0c\u56e0 \u6b64\u5728\u986f\u8457\u6c34\u6e96(significant level)\u70ba 0.95 \u6642\uff0c\u6b64\u503c\u82e5\u5927\u65bc 8415 . 3 2 95 . 0 , 1 \uff0c\u5247\u62d2\u7d55\u865b\u7121\u5047 \u8a2d\u3002\u6211\u5011\u7528 (McNemar \u6aa2\u5b9a\u7d50\u679c, p-value) \u4f86\u986f\u793a\u6211\u5011\u7684\u6aa2\u5b9a\u7d50\u679c\uff0c\u4f8b\u5982\u6aa2\u5b9a\u7d50\u679c (1.50, 0.22) \u8868\u793a\uff0cMcNemar \u6aa2\u5b9a\u7d50\u679c\u70ba 1.50 &lt; 3.84\uff0c\u6240\u4ee5\u6c92\u6709\u901a\u904e McNemar \u6aa2\u5b9a\uff0cp-value \u70ba 0.22\u3002 (\u4e8c) \u3001\u57fa\u790e\u7fa9\u539f\u7279\u5fb5\u7684\u6548\u80fd \u5716\u56db\u70ba\u57fa\u790e\u7fa9\u539f\u65b9\u6cd5\u5728\u4e0d\u540c \u03b1 \u503c\u6240\u5f97\u5230\u7684\u9810\u6e2c\u6e96\u78ba\u7387\uff0c\u5176\u4e2d\u516c\u5f0f (2) \u7684\u7d50\u679c\u662f PBF \u5ee3\u7fa9\u77e5\u7db2\u52d5\u8a5e Verb 37,109 \u5ee3\u7fa9\u77e5\u7db2\u526f\u8a5e Adv. Adj. 94.3223% 95.9559% 94.2167% 89.9023% 93.2203% 82.0513% (\u516d) \u3001\u76f8\u95dc\u7814\u7a76\u6548\u80fd\u6bd4\u8f03 \u7d44\u5408\u7279\u5fb5\u6642\uff0c\u56e0\u70ba\u9918\u5f26\u6a19\u6e96\u5316\u6709\u6700\u597d\u7684\u6548\u80fd\uff0c\u6240\u4ee5\u8a9e\u7bc7\u7279\u5fb5\u9078\u64c7\u9918\u5f26\u6a19\u6e96\u5316\u5f8c\u7684\u5341\u7d44\u7279 2,364 \u5ee3\u7fa9\u77e5\u7db2\u5f62\u5bb9\u8a5e Adj. 948 \u5ee3\u7fa9\u77e5\u7db2\u6240\u6709\u8a5e\u5f59 All 86,712 \u6700\u5e38\u51fa\u73fe 5000 \u8a5e F5000-1 5,000 \u6700\u5e38\u51fa\u73fe 5000 \u8a5e(\u9577\u5ea6\u22672) F5000-2 5,000 \u6700\u5e38\u51fa\u73fe 10000 \u8a5e F10000-1 10,000 \u6700\u5e38\u51fa\u73fe 10000 \u8a5e(\u9577\u5ea6\u22672) F10000-2 10,000 NTUSD(\u5b8c\u6574\u7248) NTUSD Adv. 95.3243% 96.5074% 95.2795% 92.1824% 91.5254% 84.6154% \u5fb5\u96c6\uff0c\u5206\u5225\u8207\u5ee3\u7fa9\u77e5\u7db2\u7279\u5fb5\u6548\u80fd\u6700\u597d\u7684 PBFN \u03b1 = \u22120.03 \u7d44\u5408\uff0c\u4f86\u8a13\u7df4\u5206\u985e\u5668\uff0c\u5206\u985e\u5668\u9810\u6e2c F5000-1 96.1000% 97.3039% 96.0110% 92.8339% 94.9153% 89.7436% \u6211\u5011\u7e3d\u7d50\u524d\u9762\u5404\u7a2e\u4e0d\u540c\u7684\u5be6\u9a57\u7d50\u679c\uff0c\u756b\u6210\u5716\u4e03\uff0c\u4f86\u65b9\u4fbf\u6211\u5011\u6bd4\u8f03\u6548\u80fd\u3002\u5176\u4e2d\uff0cgloss \u8868 \u6e96\u78ba\u7387\u5982\u5716\u516d\u3002\u5176\u4e2d\u5ee3\u7fa9\u77e5\u7db2\u7279\u5fb5\u7684\u7279\u5fb5\u96c6\u6548\u80fd\u70ba\u56fa\u5b9a\uff0c\u56e0\u6b64\u4ee5\u6c34\u5e73\u76f4\u7dda\u8868\u793a(gloss F5000-2 97.2635% 98.0392% 97.1705% 96.0912% 94.9153% 94.8718% \u57fa\u790e\u7fa9\u539f\u7279\u5fb5 PBFN \u03b1 = \u22120.03 \uff0c\u6700\u597d\u7684\u6548\u80fd\u5230 92.3276%\u3002 \u90a3\u689d\u6298\u7dda)\u3002\u7d44\u5408\u800c\u6210\u7684\u7279\u5fb5\u96c6\uff0c\u4ee5\u300c\u8a9e\u7bc7\u7279\u5fb5\u96c6\u4ee3\u78bc+PBFN \u03b1 = \u22120.03 \u300d\u52a0\u4ee5\u547d\u540d\uff0c\u4f8b\u5982 \u300cF10000-2+PBFN \u03b1 = \u22120.03 \u300d\u8868\u793a\u300c\u6700\u5e38\u51fa\u73fe 10000 \u8a5e(\u9577\u5ea6\u22672)\u300d\u8ddf\u300cPBFN \u03b1 = \u22120.03 \u300d \u5169\u500b\u7279\u5fb5\u96c6\u7684\u7d44\u5408\u3002 \u6211\u5011\u5f9e\u5716\u516d\u53ef\u4ee5\u770b\u51fa\uff0c\u5c07\u5ee3\u7fa9\u77e5\u7db2\u7279\u5fb5\u8207\u5916\u90e8\u8a9e\u6599\u7279\u5fb5\u7d44\u5408\u4e4b\u5f8c\uff0c\u6e96\u78ba\u7387\u90fd\u6709\u986f\u8457\u63d0 F10000-1 96.2400% 97.3652% 96.1767% 92.8339% 94.9153% 89.7436% \u672c\u7814\u7a76\u4f7f\u7528\u4e86 Google Web 5-gram Version 1 \u4f86\u62bd\u53d6\u8a9e\u7bc7\u7279\u5fb5\uff0c\u4e26\u52a0\u4e0a\u4f86\u81ea E-HowNet \u7684 F10000-2 97.5005% 98.2843% 97.4189% 96.0912% 94.9153% 94.8718% Verb \u57fa\u790e\u7fa9\u539f\u7279\u5fb5\uff0c\u7528\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u7684\u65b9\u6cd5\uff0c\u4f86\u9810\u6e2c E-HowNet \u8a5e\u5f59\u7684\u610f\u898b\u6975\u6027\u3002\u96d6\u7136\u55ae 96.5632% 97.5490% 96.5079% 94.4625% 91.5254% 89.7436% NTUSD \u7368\u4f7f\u7528\u4e0d\u540c\u7684\u7279\u5fb5\u5df2\u7d93\u53ef\u4ee5\u63a5\u8fd1 90% \u7684\u6e96\u78ba\u7387\uff0c\u4f46\u5982\u679c\u628a\u5169\u7a2e\u7279\u5fb5\u90fd\u52a0\u4ee5\u4f7f\u7528\uff0c\u5206\u985e 96.8218% 97.3039% 96.8254% 95.1140% 93.2203% 94.8718% \u5668\u7684\u6975\u6027\u9810\u6e2c\u7684\u6e96\u78ba\u7387\u53ef\u5230\u9054 92.33%\uff0c\u9019\u500b\u7d50\u679c\u8ddf\u4eba\u7684\u6a19\u8a18\u6e96\u78ba\u7387\u4e0d\u76f8\u4e0a\u4e0b\uff1b\u4ee5\u9019\u7a2e 42,614 Noun 96.8541% 98.1005% 96.6460% 96.0912% 96.6102% 89.7436% \u65b9\u5f0f\u5efa\u7acb\u7684\u5206\u985e\u5668\uff0c\u53ef\u7528\u4f86\u81ea\u52d5\u6a19\u8a18 E-HowNet \u8a5e\u5f59\u7684\u610f\u898b\u6975\u6027\u3002 \u5347\uff0c\u63d0\u5347\u5f8c\u7684\u6700\u9ad8\u6e96\u78ba\u7387\u70ba 92. 3276%\uff0c\u4f7f\u7528\u300c\u5ee3\u7fa9\u77e5\u7db2\u6240\u6709\u8a5e\u5f59 All+PBFN \u03b1 = \u22120.03 \u300d\u548c All 96.4124% 97.4265% 96.3699% 93.1596% 94.9153% 89.7436% \u300c\u6700\u5e38\u51fa\u73fe 10000 \u8a5e(\u9577\u5ea6\u22672) F10000-2+PBFN \u03b1 = \u22120.03 \u300d\u70ba\u7279\u5fb5\u96c6\u6642\u7686\u6709\u76f8\u540c\u7684\u6e96\u78ba \u6211\u5011\u5e0c\u671b\u5728\u672a\u4f86\u80fd\u628a\u9019\u7a2e\u65b9\u5f0f\uff0c\u5f80\u4e0d\u540c\u7684\u65b9\u5411\u64f4\u5c55\uff0c\u4f86\u7d66\u4e88 E-HowNet \u8a5e\u5f59\u66f4\u591a\u610f\u898b\u7684 \u8ca0\u9762 \u540d\u8a5e 2,040 931 1,109 45.64% 745 887 186 222 \u52d5\u8a5e 9,056 4,134 4922 45.65% 3,307 3,938 827 984 \u526f\u8a5e 383 206 177 53.79% 165 142 41 35 \u5f62\u5bb9\u8a5e 74 45 29 60.81% 36 23 9 6 \u5176\u4ed6 49 30 19 61.22% 24 15 6 4 \u7e3d\u6578 11,602 5,346 6,256 46.08% 4,277 5,005 1,069 1,251 -5 , 2 -3 , 2 -1 ,\u2026, 2 15 }\u3001g \u2208 {2 -15 , 2 -13 , 2 -11 , \u2026, 2 -3 }\uff0c\u7e3d\u5171 110 \u7d44\u53c3\u6578\uff0c\u53d6\u4e94\u758a\u4ea4\u53c9\u9a57\u8b49 (5-fold cross validation) \u4e2d\u5e73\u5747\u6e96\u78ba\u7387\u6700\u9ad8\u7684\u53c3\u6578\u3002 \u6211\u5011\u4f7f\u7528\u9810\u6e2c\u6e96\u78ba\u7387(accuracy)\u4f86\u6bd4\u8f03\u5206\u985e\u5668\u9593\u7684\u6548\u80fd\uff0c\u9019\u662f\u770b\u8a13\u7df4\u51fa\u7684\u5206\u985e\u5668\u5728\u6e2c \u8a74\u8cc7\u6599\u96c6\u4e2d\u7684\u6210\u7e3e\uff0c\u800c\u5206\u985e\u5668\u6703\u5c0d\u6e2c\u8a74\u8cc7\u6599\u96c6\u4e2d\u7684\u6240\u6709\u8a5e\u5f59\u90fd\u9032\u884c\u6975\u6027\u7684\u9810\u6e2c\u3002\u53e6\u5916\uff0c \u4f7f\u7528 McNemar \u6aa2\u5b9a[18]\u4f86\u6e2c\u8a74\u5206\u985e\u5668\u7684\u6548\u80fd\u5dee\u8ddd\u662f\u5426\u70ba\u986f\u8457\uff0c\u986f\u8457\u6c34\u6e96\u8a2d\u5b9a\u70ba 0.95\u3002 McNemar \u6aa2\u5b9a\u5c07\u6e2c\u8a74\u8cc7\u6599\u4f9d\u7167\u5169\u500b\u5206\u985e\u5668(\u4ee5\u4e0b\u7a31\u70ba\u5206\u985e\u5668 A \u8207\u5206\u985e\u5668 B)\u7684\u6a19\u8a18\uff0c \u5206\u6210\u56db\u7d44\u4e26\u8a08\u6578\u3002\u5176\u4e2d\u6e2c\u8a74\u6a23\u672c\u6578\u5373\u70ba\u4e0b\u9762 n 1,1 \u3001n 0,1 \u3001n 1,0 \u3001n 0,0 \u56db\u500b\u6578\u5b57\u7684\u7e3d\u5408\uff0c\u5728\u865b \u7121\u5047\u8a2d(null hypothesis)\u4e2d\uff0c\u5169\u500b\u5206\u985e\u5668\u61c9\u5177\u6709\u76f8\u540c\u7684\u932f\u8aa4\u7387\uff0c\u4e5f\u5c31\u662f n 0,1 =n 1,0 \u3002 \u7531\u65bc \u03b1 &lt; 0 \u6709\u6700\u4f73\u6548\u80fd\uff0c\u9019\u8868\u793a\u6df1\u5ea6\u8f03\u6df1\u7d66\u8f03\u9ad8\u6b0a\u91cd\uff0c\u8a72\u7fa9\u539f\u6709\u8f03\u597d\u7684\u7279\u5fb5\uff0c\u53ef\u4ee5\u7d66\u5206 \u985e\u5668\u5b78\u7fd2\u3002 (\u4e09) \u3001\u8a9e\u7bc7\u7279\u5fb5\u7684\u6548\u80fd \u6211\u5011\u4f7f\u7528\u4e09\u7a2e\u4e0d\u540c\u7684\u52a0\u6b0a\u65b9\u5f0f\u5f97\u5230\u7684\u9810\u6e2c\u6e96\u78ba\u7387\u5982\u5716\u4e94\uff0c\u5716\u4e2d\u6211\u5011\u4e5f\u628a\u7279\u5fb5\u96c6\u7684\u7279\u5fb5\u6578 \u7531\u5de6\u81f3\u53f3\u7531\u5c0f\u5230\u5927\u6392\u5217\u3002 \u5716\u4e94\u3001\u4f7f\u7528\u8a9e\u7bc7\u7279\u5fb5\u6642\u7684\u9810\u6e2c\u6548\u80fd \u5f9e\u5716\u4e94\u53ef\u4ee5\u770b\u51fa\uff0c\u6c92\u6709\u6a19\u6e96\u5316\u7684\u539f\u59cb\u983b\u7387\u7684\u6700\u4f73\u6e96\u78ba\u7387\u70ba 59.70%\uff0c\u4f7f\u7528\u7684\u7279\u5fb5\u96c6\u70ba\u300c\u5ee3 \u7387\u70ba 83.41%\uff0c\u4f7f\u7528\u7684\u7279\u5fb5\u96c6\u70ba\u300c\u6700\u5e38\u51fa\u73fe 10000 \u8a5e\u300d \u3002\u800c\u7d93\u904e\u9918\u5f26\u6a19\u6e96\u5316\u7684\u7279\u5fb5\u503c\u5247\u53ef \u4ee5\u5f97\u5230\u6700\u4f73\u6548\u80fd\uff0c\u5176\u6700\u4f73\u6e96\u78ba\u7387\u70ba 88.23%\uff0c\u6b64\u6642\u4f7f\u7528\u7684\u7279\u5fb5\u96c6\u70ba\u300c\u5ee3\u7fa9\u77e5\u7db2\u52d5\u8a5e\u300d \uff0c\u6b64 \u5f62\u5bb9\u8a5e 14 1 93.3333% Noun 12 (-2) 3 80.0000% \u540c\u8a5e\u6027\u6709\u4e0d\u540c\u7684\u6548\u80fd\uff0c\u6211\u5011\u5c07\u9019\u5341\u500b\u5206\u985e\u5668\u5c0d\u65bc\u6bcf\u500b\u8a5e\u6027\u7684\u6a19\u8a18\u6548\u80fd\u6574\u7406\u6210\u8868\u56db\u3002\u8868\u56db \u526f\u8a5e 67 9 88.1579% F5000-2 69 (+2) 7 90.7895% 96.58% 88.87% 92.56% \u4e09\u4eba\u4e2d\u6700\u4f73\u7684\u4eba\u985e\u6a19\u8a18\u8005 \u5728\u5716\u516d\u4e2d\uff0c\u7d44\u5408\u51fa\u7684\u7279\u5fb5\u96c6\u6709\u5341\u500b\uff0c\u6240\u4ee5\u5171\u6709\u5341\u500b\u5206\u985e\u5668\uff0c\u6bcf\u500b\u5206\u985e\u5668\u5728\u8a13\u7df4\u6642\uff0c\u5c0d\u4e0d \u52d5\u8a5e 1,681 130 92.8216% F10000-2 1,681 (+0) 130 92.8216% F10000-2+PBFN \u03b1 = \u22120.03 92.36% 92.20% 92.27% \u7fa9\u77e5\u7db2\u540d\u8a5e\u300d \uff0c\u5176\u6548\u80fd\u6700\u5dee\u4e14\u5dee\u8ddd\u5f88\u5927\u3002\u9918\u5f26\u6a19\u6e96\u5316 TFIDF \u7684\u6548\u80fd\u6392\u5728\u4e2d\u9593\uff0c\u6700\u4f73\u6e96\u78ba \u7387\u3002\u4e0a\u5716\u4e2d\uff0c \u300c\u5ee3\u7fa9\u77e5\u7db2\u6240\u6709\u8a5e\u5f59 All\u300d\u6e96\u78ba\u7387\u5f9e 88.23%\u63d0\u5347\u81f3 92.33%\u6642\uff0c\u6b64\u5dee\u8ddd\u70ba\u986f \u8457\uff0c\u6aa2\u5b9a\u7d50\u679c (32.14, 1.4*10 -8 )\u3002 \u5716\u516d\u3001\u5ee3\u7fa9\u77e5\u7db2\u3001\u8a9e\u7bc7\u7279\u5fb5\u3001\u8207\u7d44\u5408\u7279\u5fb5\u7684\u6e96\u78ba\u7387\u6bd4\u8f03 (\u4e94) \u3001\u7d44\u5408\u5f0f\u7684\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u6f14\u7b97\u6cd5\u6548\u80fd \u8868\u56db\u4e2d\u6211\u5011\u53ef\u4ee5\u767c\u73fe\uff0c\u8a13\u7df4\u6642\uff0cF10000-2+PBFN \u03b1 = \u22120.03 \u6709\u6700\u9ad8\u7684\u7e3d\u9ad4\u6548\u80fd\uff0c\u5176\u5404\u8a5e\u6027\u6548 \u80fd\u9664\u4e86\u5f62\u5bb9\u8a5e\u5916\uff0c\u591a\u662f\u6700\u597d\uff1b\u8003\u91cf\u5230\u8cc7\u6599\u96c6\u4e2d\u5f62\u5bb9\u8a5e\u7684\u6578\u91cf\u4e26\u4e0d\u591a\uff0c\u9019\u8868\u793a\u7d44\u5408\u591a\u500b\u5206 \u985e\u5668\u5f8c\uff0c\u6548\u80fd\u7684\u63d0\u6607\u7a7a\u9593\u53ef\u80fd\u6709\u9650\u3002\u8868\u56db\u4e2d\u53e6\u4e00\u500b\u503c\u5f97\u6ce8\u610f\u7684\u4e00\u9ede\u662f\u8a13\u7df4\u8cc7\u6599\u96c6\u7684\u5167\u90e8 \u6e2c\u8a74\u6548\u80fd(inside test)F10000-2+PBFN \u03b1 = \u22120.03 \u7684 97.5005% \u8ddf\u5be6\u969b\u6e2c\u8a74\u6548\u80fd 92. 3276% \u76f8\u6bd4\uff0c\u964d\u4f4e\u4e86 5.31%\uff0c\u9019\u964d\u4f4e\u5e45\u5ea6\u4e26\u4e0d\u5927\uff0c\u986f\u793a\u9019\u5206\u985e\u5668\u7684 generalization \u80fd\u529b\u4e0d\u932f\uff0c\u9019 \u4e5f\u662f\u4f7f\u7528 Google Web 5-gram \u7684\u512a\u9ede\uff0c\u5b83\u53ef\u7522\u751f\u8f03\u5f37\u5065(robust)\u7684\u5206\u985e\u5668[19]\u3002 \u6211\u5011\u7a31\u70ba EnsembleClassifier\uff0c\u5176\u7d50\u679c\u5217\u5728\u8868\u4e94\uff0c\u5176\u4e2d F10000-2+PBFN \u03b1 = \u22120.03 \u65bc\u5404\u8a5e\u6027 \u7684\u6a19\u8a18\u6548\u80fd\u4e5f\u5217\u51fa\u4f86\u6bd4\u8f03\u3002 \u8868\u4e94\u3001\u7d44\u5408\u5206\u985e\u5668\u65bc\u5404\u8a5e\u6027\u7684\u6a19\u8a18\u6548\u80fd\u53ca\u6bd4\u8f03 \u5206 \u985e \u5668 \u540d\u8a5e 371 37 90.9314% F10000-2 371 (+0) 37 90.9314% Recall Precision F-Measure \u5206\u985e\u5668 \u8a5e\u6027 F10000-2+PBFN \u03b1 = \u22120.03 \u5206\u985e\u5668 \u65bc\u5404\u8a5e\u6027\u7684\u6a19\u8a18\u6548\u80fd \u7d44\u5408\u5206\u985e\u5668 EnsembleClassifier \u65bc\u5404\u8a5e\u6027\u7684\u6a19\u8a18\u6548\u80fd \u6b63\u78ba \u500b\u6578 \u932f\u8aa4 \u500b\u6578 \u6e96\u78ba\u7387 \u4f7f\u7528\u7684 \u5206\u985e\u5668 \u6b63\u78ba \u500b\u6578 \u589e\u6e1b \u932f\u8aa4 \u500b\u6578 \u6e96\u78ba\u7387 \u5716\u4e03\u3001\u56db\u7a2e\u65b9\u6cd5\u6548\u80fd\u6bd4\u8f03 \u5dee\u7570\u3002\u5728 Ku &amp; Chen [2]\u7684\u7814\u7a76\u4e2d\uff0c\u8058\u8acb\u6a19\u8a18\u8005\u5c0d\u820a\u7248 NTUSD \u9032\u884c\u6a19\u8a18\u3002\u820a\u7248 NTUSD \u70ba\u7d93\u904e\u7ffb\u8b6f\u7684 General Inquirer(GI)\u8207 Chinese Network Sentiment Dictionary(CNSD) \u7684\u7d44\u5408\uff0c\u6bcf\u500b\u8a5e\u5f59\u90fd\u6709\u4eba\u5de5\u7684\u610f\u898b\u6a19\u8a18\u3002\u8a72\u7814\u7a76\u4e2d\u6a19\u8a18\u8005\u7684\u6700\u4f73\u6a19\u8a18\u6548\u80fd\u8207\u672c\u7814\u7a76\u7684\u6bd4 \u8f03\u5982\u8868\u516d\uff0c\u5f9e\u8868\u516d\u4e2d\u53ef\u4ee5\u770b\u51fa\uff0c\u672c\u7814\u7a76\u6240\u7522\u751f\u7684\u81ea\u52d5\u6a19\u8a18\u6f14\u7b97\u6cd5\u9054\u5230\u4e86\u63a5\u8fd1\u4eba\u985e\u6a19\u8a18\u7684 \u6548\u80fd\u3002 \u8868\u516d\u3001NTUSD \u6a19\u8a18\u8005\u8207\u672c\u7814\u7a76\u6a19\u8a18\u6548\u80fd\u6bd4\u8f03 \u5c6c\u6027\uff0c\u9019\u5305\u62ec\u5c0d\u8a5e\u5f59\u6a19\u8a18\u4e3b\u5ba2\u89c0\u7684\u5c6c\u6027\u53ca\u6b63\u8ca0\u9762\u50be\u5411\u7684\u5f37\u5ea6\u7b49\u3002\u9664\u6b64\u4e4b\u5916\uff0c\u56e0\u70ba E-HowNet \u8a5e\u5f59\u6709\u8a31\u591a\u4e0d\u540c\u7684\u8a5e\u6027\uff0c\u6211\u5011\u4e5f\u5e0c\u671b\u80fd\u628a\u6211\u5011\u7684\u65b9\u6cd5\uff0c\u904b\u7528\u8a5e\u6027\u7684\u5c64\u6b21\u4f86\u9032 \u884c\u6a19\u8a18\u3002\u85c9\u7531\u63d0\u4f9b\u66f4\u7cbe\u78ba\u7684\u5b57\u5f59\u610f\u898b\u6a19\u8a18\u8cc7\u8a0a\uff0c\u4f86\u652f\u63f4\u53e5\u5b50\u53ca\u6587\u4ef6\u5c64\u6b21\u7684\u610f\u898b\u5206\u6790\u3002 \u81f4\u8b1d (Prime-\u5169\u500b\u6700\u5927\u503c(\u03b1 = \u22120.02)\u7684\u5dee\u8ddd\u50c5 0.1724%\uff0c\u6b64\u5dee\u8ddd\u70ba\u4e0d\u986f\u8457\uff0c\u6aa2\u5b9a\u7d50\u679c (1.50, 0.22)\u3002 \u6211\u5011\u5728\u8868\u56db\u4e2d\u9078\u4e0d\u540c\u8a5e\u6027\u505a\u5f97\u6700\u597d\u7684\u5206\u985e\u5668\u4f86\u7d44\u5408\uff0c\u5982\u679c\u6548\u80fd\u76f8\u540c\uff0c\u5247\u9078\u7279\u5fb5\u6578\u91cf\u8f03\u5c11 \u7531\u65bc\u6211\u5011\u4f7f\u7528 NTUSD\uff0c\u6211\u5011\u60f3\u770b\u770b NTUSD \u4eba\u985e\u6a19\u8a18\u7684\u6548\u80fd\u8ddf\u6211\u5011\u5206\u985e\u5668\u7684\u6548\u80fd\u6709\u4f55 \u7684\u90a3\u4e00\u500b\u5206\u985e\u5668\uff0c\u56e0\u70ba\u7279\u5fb5\u6578\u8f03\u5c11\u901a\u5e38\u5728\u672a\u770b\u904e\u7684\u8cc7\u6599\u96c6\u6703\u505a\u5f97\u8f03\u597d\u3002\u7d44\u5408\u51fa\u7684\u5206\u985e\u5668 \u53c3\u8003\u6587\u737b</td></tr><tr><td>\u6548\u80fd\u8ddf\u5176\u4ed6\u5169\u8005\u7684\u5dee\u8ddd\u70ba\u986f\u8457\uff0c\u6aa2\u5b9a\u7d50\u679c (4.61, 0.03)\u3002 \u4e2d\u7684\u7279\u5fb5\u96c6\u4ee3\u865f\u662f\u300c\u8a9e\u7bc7\u7279\u5fb5\u96c6\u4ee3\u78bc+PBFN \u03b1 = \u22120.03 \u300d\u7684\u7c21\u5beb\uff0c\u56e0\u70ba\u4f7f\u7528\u76f8\u540c\u7684 PBFN \u03b1 = \u5176\u4ed6 9 1 90.0000% F5000-2 9 (+0) 1 90.0000% \u8a9e\u7bc7\u7279\u5fb5\u4f7f\u7528\u5341\u7d44\u7279\u5fb5\u96c6\u7684\u540d\u7a31\uff0c\u4ee5\u53ca\u7279\u5fb5\u6578\u91cf\uff0c\u5982\u8868\u4e09\u6240\u793a\u3002\u5728\u8868\u4e2d\uff0c\u6211\u5011\u4f7f\u7528\u7279\u5fb5 \u22120.03 \uff0c\u6240\u4ee5\u5c07\u5176\u5ffd\u7565\u3002 \u300c\u7e3d\u9ad4\u6548\u80fd\u300d\u662f\u6307\u5206\u985e\u5668\u8a13\u7df4\u6642\u7684\u6574\u9ad4\u6548\u80fd\u3002\u8868\u4e2d\uff0c\u4e00\u6b04\u4e2d\u6700\u4f73\u7684 \u7e3d\u6578 2,142 178 92.3276% 2142 (+0) 178 92.3276%</td></tr></table>",
"num": null,
"html": null
}
}
}
}