|
{ |
|
"paper_id": "O13-5001", |
|
"header": { |
|
"generated_with": "S2ORC 1.0.0", |
|
"date_generated": "2023-01-19T08:03:49.358640Z" |
|
}, |
|
"title": "Entailment Analysis for Improving Chinese Recognizing Textual Entailment System", |
|
"authors": [ |
|
{ |
|
"first": "\u694a\u5584\u9806", |
|
"middle": [ |
|
"\uf02a" |
|
], |
|
"last": "\u3001\u5433\u4e16\u5f18", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "Chaoyang University of Technology", |
|
"location": { |
|
"settlement": "Taichung", |
|
"country": "Taiwan" |
|
} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "\uf02a", |
|
"middle": [], |
|
"last": "\u3001\u9673\u826f\u5703", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "Chaoyang University of Technology", |
|
"location": { |
|
"settlement": "Taichung", |
|
"country": "Taiwan" |
|
} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "\uf02b", |
|
"middle": [], |
|
"last": "\u3001\u90b1\u5b8f\u6607", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "Chaoyang University of Technology", |
|
"location": { |
|
"settlement": "Taichung", |
|
"country": "Taiwan" |
|
} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "\uf02b", |
|
"middle": [], |
|
"last": "\u3001\u694a\u4ec1\u9054 \uf02b", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "Chaoyang University of Technology", |
|
"location": { |
|
"settlement": "Taichung", |
|
"country": "Taiwan" |
|
} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Shan-Shun", |
|
"middle": [], |
|
"last": "Yang", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "Chaoyang University of Technology", |
|
"location": { |
|
"settlement": "Taichung", |
|
"country": "Taiwan" |
|
} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Shih-Hung", |
|
"middle": [], |
|
"last": "Wu", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "Chaoyang University of Technology", |
|
"location": { |
|
"settlement": "Taichung", |
|
"country": "Taiwan" |
|
} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Liang-Pu", |
|
"middle": [], |
|
"last": "Chen", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "Chaoyang University of Technology", |
|
"location": { |
|
"settlement": "Taichung", |
|
"country": "Taiwan" |
|
} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Hung-Sheng", |
|
"middle": [], |
|
"last": "Chiu", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "Chaoyang University of Technology", |
|
"location": { |
|
"settlement": "Taichung", |
|
"country": "Taiwan" |
|
} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Ren-Dar", |
|
"middle": [], |
|
"last": "Yang", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "Chaoyang University of Technology", |
|
"location": { |
|
"settlement": "Taichung", |
|
"country": "Taiwan" |
|
} |
|
}, |
|
"email": "" |
|
} |
|
], |
|
"year": "", |
|
"venue": null, |
|
"identifiers": {}, |
|
"abstract": "Recognizing Textual Entailment (RTE) is a new research issue in natural language processing (NLP) research area. RTE can be a useful component in many NLP applications. In this paper, we introduce our finding on the entailment analysis of the NTCIR-10 RITE-2 dataset, and use the observation to improve our system. In the previous works, all the input pairs are treated equally in a standard classification architecture. We find that is not suitable for some special cases. We believe that by isolating the special cases and building separated classifiers, a RTE system can perform better. After implementing modules for four special cases into our system, the result is significantly improved from 67.86% to 72.92% on the binary class classification task.", |
|
"pdf_parse": { |
|
"paper_id": "O13-5001", |
|
"_pdf_hash": "", |
|
"abstract": [ |
|
{ |
|
"text": "Recognizing Textual Entailment (RTE) is a new research issue in natural language processing (NLP) research area. RTE can be a useful component in many NLP applications. In this paper, we introduce our finding on the entailment analysis of the NTCIR-10 RITE-2 dataset, and use the observation to improve our system. In the previous works, all the input pairs are treated equally in a standard classification architecture. We find that is not suitable for some special cases. We believe that by isolating the special cases and building separated classifiers, a RTE system can perform better. After implementing modules for four special cases into our system, the result is significantly improved from 67.86% to 72.92% on the binary class classification task.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Abstract", |
|
"sec_num": null |
|
} |
|
], |
|
"body_text": [ |
|
{ |
|
"text": "\u6587\u5b57\u860a\u6db5(Textual Entailment, TE) (Dagan et al., 2006) \u662f\u81ea\u7136\u8a9e\u8a00\u8655\u7406(Natural Language Processing, NLP)\u6700\u8fd1\u8208\u8d77\u7814\u7a76\u8b70\u984c\uff0c\u6587\u5b57\u860a\u6db5\u8b58\u5225\u76ee\u6a19\u70ba\u7d66\u5b9a\u4e00\u500b\u53e5\u5b50\u5c0d(T1,T2)\u7cfb\u7d71\u80fd \u5920\u6e96\u78ba\u7684\u63a8\u65b7\u9019\u5169\u53e5\u5b50\u4e4b\u9593\u7684\u860a\u6db5\u95dc\u4fc2\u3002\u56e0\u6b64\u6587\u5b57\u860a\u6db5\u53ef\u4ee5\u61c9\u7528\u5728\u81ea\u7136\u8a9e\u8a00\u8655\u7406\u5176\u4ed6\u9818 \u57df\u7814\u7a76\u4e2d\uff0c\u4f8b\u5982\u554f\u7b54\u7cfb\u7d71\u3001\u8cc7\u8a0a\u62bd\u53d6\u3001\u8cc7\u8a0a\u6aa2\u7d22\u3001\u6a5f\u5668\u7ffb\u8b6f (Dagan & Glickman, 2004 ; Ou & Yao, 2010) \u7b49\u7b49\u3002\u6587\u5b57\u860a\u6db5\u6700\u57fa\u672c\u7684\u65b9\u6cd5\u5c31\u85c9\u7531\u53e5\u5b50\u5b57\u9762\u4e0a\u7684\u8cc7\u8a0a\u4f8b\u5982\u8a9e\u610f\u3001\u53e5\u6cd5 (Hua & Dinga, 2011) (Yang et al., 2012) \u7b49\u4eba\u63d0\u51fa\u4f7f\u7528\u55ae\u8a9e\u8a00\u6a5f\u5668\u7ffb\u8b6f\u7684\u65b9\u6cd5\uff0c\u85c9\u7531 GIZA++\u4e2d\u5b57\u8a5e\u5c0d \u9f4a\u7684\u5339\u914d\u503c\u9032\u884c\u8a08\u7b97\u51fa\u53e5\u5b50\u4e4b\u9593\u76f8\u4f3c\u5ea6\u4f5c\u70ba\u65b0\u7279\u5fb5\u4f7f\u7528\u4ee5\u6709\u6548\u63d0\u5347\u6b63\u78ba\u7387\uff0c\u4f46\u9019\u500b\u65b9\u6cd5 \u5728\u8655\u7406\u5169\u985e\u4e2d\u6548\u679c\u8f03\u597d\u518d\u8655\u7406\u591a\u985e\u860a\u6db5\u95dc\u4fc2\u6642\u6548\u679c\u4e0d\u5982\u5169\u985e\uff0c\u4e4b\u5f8c (Wang et al., 2013) ", |
|
"cite_spans": [ |
|
{ |
|
"start": 29, |
|
"end": 49, |
|
"text": "(Dagan et al., 2006)", |
|
"ref_id": null |
|
}, |
|
{ |
|
"start": 193, |
|
"end": 218, |
|
"text": "(Dagan & Glickman, 2004 ;", |
|
"ref_id": "BIBREF0" |
|
}, |
|
{ |
|
"start": 219, |
|
"end": 234, |
|
"text": "Ou & Yao, 2010)", |
|
"ref_id": null |
|
}, |
|
{ |
|
"start": 267, |
|
"end": 286, |
|
"text": "(Hua & Dinga, 2011)", |
|
"ref_id": "BIBREF1" |
|
}, |
|
{ |
|
"start": 287, |
|
"end": 306, |
|
"text": "(Yang et al., 2012)", |
|
"ref_id": "BIBREF13" |
|
}, |
|
{ |
|
"start": 407, |
|
"end": 426, |
|
"text": "(Wang et al., 2013)", |
|
"ref_id": "BIBREF11" |
|
} |
|
], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "\u7dd2\u8ad6", |
|
"sec_num": "1." |
|
}, |
|
{ |
|
"text": "\u7b49 \u4eba\u63d0\u51fa\u53cd\u5411\u7684\u77db\u76fe\u5b57\u8a5e\u5c0d\u9f4a\uff0c\u6709\u6548\u6539\u5584\u4e4b\u524d\u6b63\u5411\u5b57\u8a5e\u5c0d\u9f4a\u5bb9\u6613\u7522\u751f\u7684\u8aa4\u5224\u554f\u984c\u3002 \u5728 \u6587 \u5b57 \u860a \u6db5 \u8b58 \u5225 \u7684 \u63a8 \u8ad6 \u6642 \uff0c \u5404 \u7a2e \u8a9e \u7fa9 \u8cc7 \u8a0a \u8207 \u4e0a \u4e0b \u6587 \u8cc7 \u8a0a \u662f \u5fc5 \u8981 \u7684 \u8655 \u7406 \u3002 \u96d6\u7136 NTCIR-10 RITE-2 (Watanabe et al., 2013) \u4efb\u52d9\u76ee\u7684\u5728\u65bc\u8a55\u9451\u5404\u7a2e\u8a9e\u7fa9/\u4e0a\u4e0b\u6587\u8655\u7406\u7cfb\u7d71\uff0c \u4f46\u9019\u6709\u4e00\u500b\u554f\u984c\u6ce8\u91cd\u5177\u9ad4\u8a9e\u8a00\u73fe\u8c61\u7684\u7814\u7a76\u662f\u4e0d\u5bb9\u6613\u7684\u9054\u6210\u3002\u5728 RITE-2 \u65e5\u6587\u5b50\u4efb\u52d9\u7684\u8cc7\u6599 \u96c6\u4e2d\u542b\u5305\u6db5\u4e86\u8b58\u5225 T1 \u548c T2 \u4e4b\u524d\u860a\u6db5\u95dc\u4fc2\u5fc5\u9700\u7684\u8a9e\u8a00\u5b78\u73fe\u8c61\uff0c\u5f9e\u5169\u985e(BC)\u5b50\u4efb\u52d9\u8cc7\u6599\u96c6 \u4e2d\u64f7\u53d6\u53e5\u5b50\u5c0d\u4f5c\u70ba\u6a23\u672c\uff0c\u5efa\u7acb\u5177\u6709\u8a9e\u8a00\u5b78\u73fe\u8c61\u7684\u53e5\u5b50\uff0c\u5c07\u9019\u6a23\u7684\u53e5\u5b50\u52a0\u5165\u8cc7\u6599\u96c6\u4e2d\u4f5c\u70ba \u55ae\u5143\u6e2c\u8a66\u4f7f\u7528\u3002\u55ae\u5143\u6e2c\u8a66\u6578\u64da\u76f8\u7576\u65bc\u591a\u985e(BC)\u4efb\u52d9\u8cc7\u6599\u96c6\u7684\u4e00\u500b\u5b50\u96c6\u3002\u96d6\u7136\u9019\u500b\u8cc7\u6599\u96c6 \u4e26\u4e0d\u591a\uff0c\u4f46\u60a8\u53ef\u4ee5\u5c07\u5b83\u7528\u65bc\u5404\u7a2e\u7814\u7a76\uff0c\u5305\u62ec\u5206\u6790 RITE \u8cc7\u6599\u96c6\u4e2d\u51fa\u73fe\u7684\u8a9e\u8a00\u5b78\u554f\u984c\uff0c\u8a55 \u6e2c\u6bcf\u4e00\u500b\u8a9e\u8a00\u5b78\u73fe\u8c61\u8b58\u5225\u6b63\u78ba\u5ea6\u548c\u70ba\u5404\u7a2e\u8a9e\u8a00\u5b78\u73fe\u8c61\u7684\u5206\u985e\u5668\u8a13\u7df4\u8207\u6e2c\u8a66\u8cc7\u6599\u3002", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "\u7dd2\u8ad6", |
|
"sec_num": "1." |
|
}, |
|
{ |
|
"text": "3. \u7cfb\u7d71\u67b6\u69cb \u6211\u5011\u7684\u7cfb\u7d71\u7684\u7cfb\u7d71\u6d41\u7a0b\u5716\u5982\u5716 1 \u6240\u793a\uff0c\u57fa\u672c\u7d44\u6210\u90e8\u5206\"\u9810\u8655\u7406\"\u3001\"\u65b7\u8a5e\"\u3001\"\u4e2d\u6587\u7c21 \u7e41\u8f49\u63db\"\u3001\"\u7279\u6b8a\u985e\u578b\u5206\u985e\"\u3001\u500b\u5225\" SVM \u5206\u985e\u5668\"\u548c\u6700\u5f8c\"\u7d50\u679c\u6574\u5408\"\u3002 \u53c3\u8003\u6587\u737b Dagan, I., Glickman, O., & Magnini, B. (2006) . The PASCAL recognizing textual entailment challenge.", |
|
"cite_spans": [ |
|
{ |
|
"start": 91, |
|
"end": 136, |
|
"text": "Dagan, I., Glickman, O., & Magnini, B. (2006)", |
|
"ref_id": null |
|
} |
|
], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "\u7dd2\u8ad6", |
|
"sec_num": "1." |
|
}, |
|
{ |
|
"text": "log ( 1 | 2 ) i j i j i j p t t n n p \uf03d \uf03d \uf0e9 \uf0d5 \uf0eb \uf03d (1) \u516c\u5f0f\u4e2d 1 i t \u8207 2 j t \u5206\u5225\u4ee3\u8868 T1 \u8207 T2 \u53e5\u5b50\u4e2d\u5404\u5b57\u8a5e\uff0c ( 1 | 2 ) i j p t t \u4ee3\u8868 1 i t \u8207 2 j t \u5b57\u8a5e\u5c0d\u9f4a\u7684\u6a5f \u7387\uff0c\u4f7f\u7528 GIZA++\u8a08\u7b97\u53e5\u5b50\u4e2d\u5b57\u8a5e\u5c0d\u9f4a\u6a5f\u7387\u5f8c\u9023\u4e58\u53d6 log \u5728\u9664\u4ee5\u9023\u4e58\u7684\u6b21\u6578 n \u5f8c\u5c31\u662f\u4f7f\u7528 \u5728 SVM \u7684\u7279\u5fb5\u503c n p \u3002 \u8868", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "\u9810\u8655\u7406", |
|
"sec_num": "3.1" |
|
} |
|
], |
|
"back_matter": [], |
|
"bib_entries": { |
|
"BIBREF0": { |
|
"ref_id": "b0", |
|
"title": "Probabilistic textual entailment: Generic applied modeling of language variability", |
|
"authors": [ |
|
{ |
|
"first": "I", |
|
"middle": [], |
|
"last": "Dagan", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "O", |
|
"middle": [], |
|
"last": "Glickman", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2004, |
|
"venue": "Proceedings of the Workshop on Learning Methods for Text Understanding and Mining", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Dagan, I., & Glickman, O. (2004). Probabilistic textual entailment: Generic applied modeling of language variability. In Proceedings of the Workshop on Learning Methods for Text Understanding and Mining, Grenoble, France, 2004.", |
|
"links": null |
|
}, |
|
"BIBREF1": { |
|
"ref_id": "b1", |
|
"title": "Study on Similar Engineering Decision Problem Identification Based on Combination of Improved Edit-Distance and Skeletal Dependency Tree with POS", |
|
"authors": [ |
|
{ |
|
"first": "D", |
|
"middle": [ |
|
"B" |
|
], |
|
"last": "Hua", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "J", |
|
"middle": [], |
|
"last": "Dinga", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2011, |
|
"venue": "Systems Engineering Procedia", |
|
"volume": "1", |
|
"issue": "", |
|
"pages": "406--413", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Hua, D. B., & Dinga, J. (2011). Study on Similar Engineering Decision Problem Identification Based on Combination of Improved Edit-Distance and Skeletal Dependency Tree with POS. Systems Engineering Procedia, 1, 406-413.", |
|
"links": null |
|
}, |
|
"BIBREF2": { |
|
"ref_id": "b2", |
|
"title": "Word Similarity Computing Based on How-net", |
|
"authors": [ |
|
{ |
|
"first": "Q", |
|
"middle": [], |
|
"last": "Liu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "S", |
|
"middle": [ |
|
"J" |
|
], |
|
"last": "Li", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2002, |
|
"venue": "International Journal of Computational Linguistics and Chinese Language Processing", |
|
"volume": "7", |
|
"issue": "2", |
|
"pages": "59--76", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Liu, Q., & Li, S. J. (2002). Word Similarity Computing Based on How-net. International Journal of Computational Linguistics and Chinese Language Processing, 7(2), 59-76.", |
|
"links": null |
|
}, |
|
"BIBREF3": { |
|
"ref_id": "b3", |
|
"title": "Chinese Characters Conversion System based on Lookup Table and Language Model", |
|
"authors": [ |
|
{ |
|
"first": "M", |
|
"middle": [ |
|
"H" |
|
], |
|
"last": "Li", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "S", |
|
"middle": [ |
|
"H" |
|
], |
|
"last": "Wu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Y", |
|
"middle": [ |
|
"C" |
|
], |
|
"last": "Zeng", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "P", |
|
"middle": [ |
|
"C" |
|
], |
|
"last": "Yang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "T", |
|
"middle": [], |
|
"last": "Ku", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2010, |
|
"venue": "International Journal of Computational Linguistics and Chinese Language Processing", |
|
"volume": "15", |
|
"issue": "1", |
|
"pages": "19--36", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Li, M. H., Wu, S. H., Zeng, Y. C., Yang, P. C., & Ku, T. (2010). Chinese Characters Conversion System based on Lookup Table and Language Model. International Journal of Computational Linguistics and Chinese Language Processing, 15(1), 19-36.", |
|
"links": null |
|
}, |
|
"BIBREF4": { |
|
"ref_id": "b4", |
|
"title": "FLL: Local Alignments based Approach for NTCIR-10 RITE-2", |
|
"authors": [ |
|
{ |
|
"first": "T", |
|
"middle": [], |
|
"last": "Makino", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "S", |
|
"middle": [], |
|
"last": "Okajima", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "T", |
|
"middle": [], |
|
"last": "Iwakura", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2013, |
|
"venue": "Proceedings of the NTCIR-10 conference", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "18--21", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Makino, T., Okajima, S., & Iwakura, T. (2013). FLL: Local Alignments based Approach for NTCIR-10 RITE-2. In Proceedings of the NTCIR-10 conference, Tokyo, Japan, 18-21", |
|
"links": null |
|
}, |
|
"BIBREF5": { |
|
"ref_id": "b5", |
|
"title": "Recognize Textual Entailment by the Lexical and Semantic Matching", |
|
"authors": [ |
|
{ |
|
"first": "Y", |
|
"middle": [ |
|
"C" |
|
], |
|
"last": "Ou", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2010, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "2--500", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Ou, Y. C. (2010). Recognize Textual Entailment by the Lexical and Semantic Matching. Computer Application and System Modeling, 2010 International Conference on V2-500 -504.", |
|
"links": null |
|
}, |
|
"BIBREF6": { |
|
"ref_id": "b6", |
|
"title": "A systematic comparison of various statistical alignment models", |
|
"authors": [ |
|
{ |
|
"first": "F", |
|
"middle": [ |
|
"J" |
|
], |
|
"last": "Och", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "H", |
|
"middle": [], |
|
"last": "Ney", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2003, |
|
"venue": "Computational Linguistics", |
|
"volume": "29", |
|
"issue": "1", |
|
"pages": "19--51", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Och, F. J., & Ney, H. (2003). A systematic comparison of various statistical alignment models. Computational Linguistics, 29(1), 19-51.", |
|
"links": null |
|
}, |
|
"BIBREF7": { |
|
"ref_id": "b7", |
|
"title": "BLEU: a method for automatic evaluation of machine translation", |
|
"authors": [ |
|
{ |
|
"first": "K", |
|
"middle": [], |
|
"last": "Papineni", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "S", |
|
"middle": [], |
|
"last": "Roukos", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "T", |
|
"middle": [], |
|
"last": "Ward", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "W", |
|
"middle": [ |
|
"J" |
|
], |
|
"last": "Zhu", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2002, |
|
"venue": "Proceedings of the 40th Annual Meeting on ACL", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "311--318", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002). BLEU: a method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting on ACL, 311-318, Philadelphia, PA.", |
|
"links": null |
|
}, |
|
"BIBREF8": { |
|
"ref_id": "b8", |
|
"title": "Using Machine Translation for Recognizing Textual Entailment in Vietnamese Language", |
|
"authors": [ |
|
{ |
|
"first": "M", |
|
"middle": [], |
|
"last": "Quang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "N", |
|
"middle": [], |
|
"last": "Pham", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "L", |
|
"middle": [ |
|
"M" |
|
], |
|
"last": "Nguyen", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "A", |
|
"middle": [], |
|
"last": "Shimazu", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2012, |
|
"venue": "IEEE RIVF International Conference on Computing and Communication Technologies, Research, Innovation, and Vision for the Future", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Quang, M., Pham, N., Nguyen, L. M., & Shimazu, A. (2012). Using Machine Translation for Recognizing Textual Entailment in Vietnamese Language. 2012 IEEE RIVF International Conference on Computing and Communication Technologies, Research, Innovation, and Vision for the Future.", |
|
"links": null |
|
}, |
|
"BIBREF9": { |
|
"ref_id": "b9", |
|
"title": "Predicate-argument Structure based Textual Entailment Recognition System of KYOTO Team for NTCIR-10 RITE-2", |
|
"authors": [ |
|
{ |
|
"first": "T", |
|
"middle": [], |
|
"last": "Shibata", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "S", |
|
"middle": [], |
|
"last": "Kurohashi", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "S", |
|
"middle": [], |
|
"last": "Kohama", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "A", |
|
"middle": [], |
|
"last": "Yamamoto", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2013, |
|
"venue": "Proceedings of the NTCIR-10 conference", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "18--21", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Shibata, T., Kurohashi, S., Kohama, S., & Yamamoto, A. (2013). Predicate-argument Structure based Textual Entailment Recognition System of KYOTO Team for NTCIR-10 RITE-2. In Proceedings of the NTCIR-10 conference, Tokyo, Japan, 18-21", |
|
"links": null |
|
}, |
|
"BIBREF10": { |
|
"ref_id": "b10", |
|
"title": "Binary-class and Multi-class Chinese Textural Entailment System Description in NTCIR-9 RITE", |
|
"authors": [ |
|
{ |
|
"first": "S", |
|
"middle": [ |
|
"H" |
|
], |
|
"last": "Wu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "W", |
|
"middle": [ |
|
"C" |
|
], |
|
"last": "Huang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "L", |
|
"middle": [ |
|
"P" |
|
], |
|
"last": "Chen", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "T", |
|
"middle": [], |
|
"last": "Ku", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2011, |
|
"venue": "Proceedings of the NTCIR-9 workshop", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Wu, S. H., Huang, W. C., Chen, L. P., & Ku, T. (2011). Binary-class and Multi-class Chinese Textural Entailment System Description in NTCIR-9 RITE. In Proceedings of the NTCIR-9 workshop, Tokyo, Japan, 6-10 Dec., 2011", |
|
"links": null |
|
}, |
|
"BIBREF11": { |
|
"ref_id": "b11", |
|
"title": "BCMI-NLP Labeled-Alignment-Based Entailment System for NTCIR-10 RITE-2 Task", |
|
"authors": [ |
|
{ |
|
"first": "X", |
|
"middle": [ |
|
"L" |
|
], |
|
"last": "Wang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "H", |
|
"middle": [], |
|
"last": "Zhao", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "B", |
|
"middle": [ |
|
"L" |
|
], |
|
"last": "Lu", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2013, |
|
"venue": "Proceedings of the NTCIR-10 conference", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "18--21", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Wang, X. L., Zhao, H., & Lu, B. L. (2013). BCMI-NLP Labeled-Alignment-Based Entailment System for NTCIR-10 RITE-2 Task. In Proceedings of the NTCIR-10 conference, Tokyo, Japan, 18-21 June, 2013.", |
|
"links": null |
|
}, |
|
"BIBREF12": { |
|
"ref_id": "b12", |
|
"title": "Overview of the Recognizing Inference in Text (RITE-2) at the NTCIR-10 Workshop", |
|
"authors": [ |
|
{ |
|
"first": "Y", |
|
"middle": [], |
|
"last": "Watanabe", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2013, |
|
"venue": "Proceedings of the NTCIR-10 conference", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "18--21", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Watanabe, Y., et al. (2013). Overview of the Recognizing Inference in Text (RITE-2) at the NTCIR-10 Workshop. In Proceedings of the NTCIR-10 conference, Tokyo, Japan, 18-21", |
|
"links": null |
|
}, |
|
"BIBREF13": { |
|
"ref_id": "b13", |
|
"title": "Improving Binary-class Chinese Textural Entailment by Monolingual Machine Translation Technology", |
|
"authors": [ |
|
{ |
|
"first": "S", |
|
"middle": [ |
|
"S" |
|
], |
|
"last": "Yang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "S", |
|
"middle": [ |
|
"H" |
|
], |
|
"last": "Wu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "L", |
|
"middle": [ |
|
"P" |
|
], |
|
"last": "Chen", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "W", |
|
"middle": [ |
|
"T" |
|
], |
|
"last": "Hsieh", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "S", |
|
"middle": [ |
|
"T" |
|
], |
|
"last": "Chou", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2012, |
|
"venue": "Proceedings of the IEEE IRI 2012", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Yang, S. S., Wu, S. H., Chen, L. P., Hsieh, W. T., & Chou, S. T. (2012). Improving Binary-class Chinese Textural Entailment by Monolingual Machine Translation Technology. In Proceedings of the IEEE IRI 2012, Las Vegas, USA, 8 Aug, 2012.", |
|
"links": null |
|
}, |
|
"BIBREF14": { |
|
"ref_id": "b14", |
|
"title": "ICRC_HITSZ at RITE: Leveraging Multiple Classifiers Voting for Textual Entailment Recognition", |
|
"authors": [ |
|
{ |
|
"first": "Y", |
|
"middle": [], |
|
"last": "Zhang", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2011, |
|
"venue": "Proceedings of the NTCIR-9 workshop", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Zhang, Y., et al. (2011). ICRC_HITSZ at RITE: Leveraging Multiple Classifiers Voting for Textual Entailment Recognition. In NTCIR-9 RITE, in Proceedings of the NTCIR-9 workshop, Tokyo, Japan, 6-10 Dec., 2011.", |
|
"links": null |
|
}, |
|
"BIBREF15": { |
|
"ref_id": "b15", |
|
"title": "Re-evaluating machine translation results with paraphrase support", |
|
"authors": [ |
|
{ |
|
"first": "L", |
|
"middle": [], |
|
"last": "Zhou", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "C", |
|
"middle": [ |
|
"Y" |
|
], |
|
"last": "Lin", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "E", |
|
"middle": [], |
|
"last": "Hovy", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2006, |
|
"venue": "Proceedings of the Conference on EMNLP", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "77--84", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Zhou, L., Lin, C. Y., & Hovy, E. (2006). Re-evaluating machine translation results with paraphrase support. In Proceedings of the Conference on EMNLP, 77-84, Sydney, Australia, 2006.", |
|
"links": null |
|
} |
|
}, |
|
"ref_entries": { |
|
"TABREF0": { |
|
"text": "Binary Class, BC)\u7684\u4efb\u52d9\u7684\u76ee\u6a19\u662f\u55ae \u7d14\u5224\u5225 T1 \u8207 T2 \u4e4b\u9593\u662f\u5426\u6709\u860a\u6db5\u95dc\u4fc2\uff0c\u4f46\u53e5\u5b50\u4e4b\u9593\u860a\u6db5\u95dc\u4fc2\u4e26\u4e0d\u80fd\u55ae\u7d14\u4ee5\u6709\u6216\u6c92\u6709\u9019\u9ebc \u7c21\u55ae\u5c31\u5340\u5206\u958b\uff0c\u56e0\u6b64\u70ba\u4e86\u8868\u793a\u4e0d\u540c\u60c5\u6cc1\u4e0b\u7684\u53e5\u5b50\u4e4b\u9593\u860a\u6db5\u95dc\u4fc2\uff0cNTCIR RITE \u53e6\u5916\u5b9a\u7fa9 \u591a\u985e(Multi Class, MC)\u9019\u9805\u4efb\u52d9\u5c07\u53e5\u5b50\u4e4b\u9593\u7684\u860a\u6db5\u4f5c\u66f4\u70ba\u660e\u78ba\u7684\u5206\u985e\u3002\u5047\u8a2d\u9019\u500b\u53e5\u5b50\u5c0d\u5177 \u6709\u860a\u6db5\u95dc\u4fc2\uff0c\u6211\u5011\u53ef\u4ee5\u5f88\u5408\u7406\u8a8d\u70ba\u9019\u5169\u500b\u53e5\u5b50\u6240\u8868\u9054\u662f\u76f8\u540c\u7684\u610f\u601d\uff0c\u4f46\u6709\u53ef\u80fd\u5169\u500b\u53e5\u5b50 \u5982\u8868 1 \u4e2d\u6b63\u5411\u860a\u6db5\u7684\u4f8b\u53e5\u4e00\u6a23\u5169\u500b\u53e5\u5b50\u6240\u5305\u6db5\u7684\u8cc7\u8a0a\u6578\u91cf\u4e0d\u540c\uff0c\u9020\u6210\u6211\u5011\u53ef\u4ee5\u5f9e T1 \u53e5 \u5b50\u53ef\u4ee5\u63a8\u8ad6\u51fa T2 \u53e5\u5b50\u7684\u5b8c\u6574\u7684\u610f\u601d\uff0c\u4f46\u662f\u4e0d\u80fd\u5f9e T2 \u63a8\u8ad6\u51fa T1 \u53e5\u5b50\u5b8c\u6574\u7684\u610f\u601d\uff0c\u9019\u6a23 \u60c5\u6cc1\u6211\u5011\u5c31\u7a31\u6b63\u5411\u860a\u6db5\u3002\u53cd\u4e4b\u5982\u8868 1 \u4e2d\u96d9\u5411\u860a\u6db5\u7684\u4f8b\u53e5\u4e00\u6a23 T1 \u53e5\u5b50\u53ef\u4ee5\u63a8\u8ad6\u51fa T2 \u53e5\u5b50 \u7684\u542b\u610f\uff0cT2 \u4e5f\u53ef\u4ee5\u63a8\u8ad6\u51fa T1 \u53e5\u5b50\u5b8c\u6574\u7684\u610f\u601d\uff0c\u5169\u500b\u53e5\u5b50\u4e4b\u9593\u53ef\u4ee5\u76f8\u4e92\u63a8\u8ad6\u9019\u6a23\u7684\u60c5\u6cc1", |
|
"num": null, |
|
"content": "<table><tr><td>4</td><td/><td>\u860a\u6db5\u53e5\u578b\u5206\u6790\u65bc\u6539\u9032\u4e2d\u6587\u6587\u5b57\u860a\u6db5\u8b58\u5225\u7cfb\u7d71</td><td>\u694a\u5584\u9806 \u7b49</td><td>3</td></tr><tr><td colspan=\"5\">\u601d\u4e92\u76f8\u885d\u7a81\uff0c\u9019\u6a23\u7684\u60c5\u6cc1\u6211\u5011\u5c31\u7a31\u4e4b\u70ba\u77db\u76fe\u860a\u6db5\u3002\u6216\u662f\u5169\u500b\u53e5\u5b50\u672c\u8eab\u5305\u6db5\u7684\u8cc7\u8a0a\u6beb\u7121\u95dc \u96a8\u5f8c</td></tr><tr><td colspan=\"5\">\u4fc2\u9019\u6a23\u7684\u60c5\u6cc1\u6211\u5011\u5c31\u7a31\u4e4b\u70ba\u7368\u7acb\u860a\u6db5\uff0c\u85c9\u7531\u4e0a\u8ff0\u7684\u56db\u7a2e\u860a\u6db5\u95dc\u4fc2\u5c07\u53e5\u5b50\u4e4b\u9593\u7684\u860a\u6db5\u95dc\u4fc2</td></tr><tr><td colspan=\"3\">\u7d30\u5206\uff0c\u4f7f\u5f97\u6587\u5b57\u860a\u6db5\u7cfb\u8b58\u5225\u7684\u7814\u7a76\u66f4\u6709\u5176\u610f\u7fa9\u3002</td><td/></tr><tr><td/><td colspan=\"4\">\u672c\u7bc7\u91cd\u9ede\u5728\u8655\u7406\u7c21\u9ad4\u4e2d\u6587\u8207\u7e41\u9ad4\u4e2d\u6587\u65b9\u9762\u7684\u6587\u5b57\u860a\u6db5\uff0c\u4f7f\u7528 NTCIR-10 RITE-2 \u6240\u63d0</td></tr><tr><td colspan=\"5\">\u4f9b\u7684\u8a13\u7df4\u8cc7\u6599\u57fa\u65bc\u6a5f\u5668\u5b78\u7fd2\u7684\u65b9\u6cd5 SVM \u5efa\u7acb\u4e00\u500b\u4e2d\u6587\u6587\u5b57\u860a\u6db5\u7cfb\u7d71\u3002\u7cfb\u7d71\u7684\u4e00\u958b\u59cb\u5148</td></tr><tr><td colspan=\"5\">\u5c07\u8f38\u5165\u7684\u6587\u53e5\u5c0d\u8cc7\u6599\u9032\u884c\u9810\u8655\u7406\uff0c\u7531\u65bc\u8655\u7406\u662f\u4e2d\u6587\u8cc7\u6599\u5fc5\u9808\u5148\u9032\u884c\u65b7\u8a5e\u4ee5\u4fbf\u63a5\u4e0b\u4f86\u7684\u5de5</td></tr><tr><td colspan=\"5\">\u4f5c\uff0c\u4f7f\u7528\u554f\u984c\u985e\u578b\u5206\u985e\u5c07\u53ef\u4ee5\u500b\u5225\u8655\u7406\u7684\u985e\u578b\u62bd\u51fa\u7279\u5225\u8655\u7406\uff0c\u63a5\u8457\u53e5\u5b50\u5c0d\u7d93\u7531\u7279\u5fb5\u64f7\u53d6</td></tr><tr><td colspan=\"3\">\u7684\u5b50\u7cfb\u7d71\u53d6\u5f97\u5404\u9805\u7279\u5fb5\u503c\uff0c\u6700\u5f8c\u5c07\u53d6\u7684\u7279\u5fb5\u503c\u4f7f\u7528 SVM \u5206\u985e\u8655\u7406\u3002</td><td/></tr><tr><td/><td colspan=\"4\">\u672c\u7bc7\u63a5\u4e0b\u4f86\u7ae0\u7bc0\u5982\u4e0b\uff0c\u5728\u7b2c\u4e8c\u6bb5\u4ecb\u7d39\u904e\u53bb\u7814\u7a76\u65b9\u6cd5\uff0c\u7b2c\u4e09\u6bb5\u5c07\u4ecb\u7d39\u7cfb\u7d71\u67b6\u69cb\u8207\u9810\u8655</td></tr><tr><td colspan=\"5\">\u7406\u90e8\u5206\u4ee5\u53ca\u7cfb\u7d71\u4f7f\u7528\u5230\u7684\u7279\u5fb5\u503c\u8ddf\u6211\u5011\u6240\u89c0\u5bdf\u5230\u7279\u6b8a\u985e\u578b\u554f\u984c\u5206\u6790\uff0c\u7b2c\u56db\u6bb5\u662f\u5be6\u9a57\u7d50\u679c</td></tr><tr><td colspan=\"3\">\u8207\u8a0e\u8ad6\u6700\u5f8c\u662f\u7d50\u8ad6\u8207\u672a\u4f86\u5de5\u4f5c\u3002</td><td/></tr><tr><td colspan=\"3\">\u8868 1. \u5404\u7a2e\u860a\u6db5\u95dc\u4fc2\u4f8b\u53e5</td><td/></tr><tr><td colspan=\"2\">\u985e\u578b</td><td>\u4f8b\u53e5</td><td/></tr><tr><td/><td/><td colspan=\"2\">t1\uff1a\u7570\u4f4d\u6027\u76ae\u819a\u708e\u597d\u767c\u65bc\u5177\u904e\u654f\u9ad4\u8cea\u7684\u5b30\u5e7c\u5152\u3001\u5152\u7ae5\u53ca\u9752\u5c11\u5e74\uff0c\u5e38\u898b\u75c7\u72c0</td></tr><tr><td colspan=\"2\">\u6b63\u5411\u860a\u6db5</td><td colspan=\"3\">\u662f\u81c9\u3001\u9838\u3001\u624b\u8098\u7aa9\u3001\u819d\u7aa9\u3001\u6216\u56db\u80a2\u80cc\u5074\u7b49\u90e8\u4f4d\u51fa\u73fe\u6414\u7662\u7d05\u75b9\u3001\u76ae\u819a\u8b8a \u539a\u3001\u8b8a\u7c97\u7cd9\u3002</td></tr><tr><td/><td>(F)</td><td colspan=\"2\">t2\uff1a\u7570\u4f4d\u6027\u76ae\u819a\u708e\u7522\u751f\u7684\u767c\u7d05\u76ae\u75b9\u597d\u767c\u65bc\u81c9\u9830\u9838\u5074\u3001\u624b\u8098\u7aa9\u6216\u819d\u84cb\u7b49\u5f4e\u66f2</td></tr><tr><td/><td/><td>\u90e8\u4f4d\u3002</td><td/></tr><tr><td colspan=\"2\">\u96d9\u5411\u860a\u6db5</td><td colspan=\"3\">\u7b49\u7b49\u5b57\u9762\u4e0a\u7684\u76f8\u4f3c\u6027\u9032\u800c\u63a8\u65b7\u53e5\u5b50\u662f\u5426\u6709\u8457\u860a\u6db5\u95dc\u4fc2\u3002\u56e0\u6b64\u5229\u7528\u9019\u500b\u7279\u6027\uff0c t1\uff1a\u6d0b\u57fa\u7403\u5718\u4fdd\u8b77\u9078\u624b\u7684\u7acb\u610f\u751a\u7be4\uff0c\u8981\u6c42\u300c\u53ea\u6295\u4e00\u5834\u4e14\u4e0d\u8d85\u904e\u4e00\u767e\u7403\u300d\u3002</td></tr><tr><td colspan=\"5\">\u6587\u5b57\u860a\u6db5\u6709\u52a9\u65bc\u554f\u7b54\u7cfb\u7d71\u627e\u5230\u8cc7\u6599\u5eab\u4e2d\u8207\u8f38\u5165\u554f\u53e5\u6700\u76f8\u8fd1\u7684\u554f\u53e5\u9032\u800c\u56de\u61c9\u6700\u9069\u7576\u56de\u7b54\u3002 (B) t2\uff1a\u6d0b\u57fa\u7403\u968a\u958b\u51fa\u300c\u53ea\u6295\u4e00\u5834\u4e14\u4e0d\u8d85\u904e\u4e00\u767e\u7403\u300d\u7684\u4fdd\u8b77\u689d\u4ef6\u3002</td></tr><tr><td colspan=\"5\">\u4ee5\u8cc7\u8a0a\u6aa2\u7d22\u4f86\u8aaa\u6aa2\u7d22\u8a5e\u7684\u597d\u58de\u5c0d\u8cc7\u8a0a\u6aa2\u7d22\u6709\u8457\u5f88\u5927\u5f71\u97ff\uff0c\u85c9\u7531\u6587\u5b57\u860a\u6db5\u627e\u5230\u8207\u6aa2\u7d22\u8a5e\u76f8 \u95dc\u7684\u5b57\u8a5e(\u4f8b\u5982\u540c\u7fa9\u8a5e)\u52a0\u5165\u6aa2\u7d22\u689d\u4ef6\u9019\u6a23\u53ef\u4ee5\u8b93\u4f7f\u7528\u8005\u66f4\u5bb9\u6613\u627e\u5230\u4f7f\u7528\u8005\u6240\u9700\u8981\u7684\u8cc7 t1\uff1a\u5370\u5c3c\u8607\u9580\u7b54\u81d8\u897f\u5cb8\u5916\u6d77\u767c\u751f\u82ae\u6c0f\u898f\u6a21\u4e5d\u7684\u5f37\u9707\uff0c\u4e3b\u9707\u8207\u9918\u9707\u6240\u5f15\u767c\u7684 \u77db\u76fe\u860a\u6db5 \u6d77\u562f\u5e2d\u6372\u5357\u4e9e\u8af8\u570b\u7684\u6d77\u5cb8\u3002</td></tr><tr><td>\u8a0a\u3002</td><td>(C)</td><td colspan=\"2\">t2\uff1a\u5370\u5c3c\u8607\u9580\u7b54\u81d8\u5317\u90e8\u5916\u6d77\u5eff\u516b\u65e5\u6df1\u591c\u767c\u751f\u82ae\u6c0f\u898f\u6a21\u516b\u9ede\u4e03\u7684\u5f37\u9707\u3002</td></tr><tr><td colspan=\"5\">\u7368\u7acb\u860a\u6db5 (I) 2. \u904e\u53bb\u7814\u7a76 t1\uff1a\u4e2d\u7814\u9662\u57fa\u56e0\u9ad4\u4e2d\u5fc3\u6b63\u548c\u4f55\u5927\u4e00\u5408\u4f5c\uff0c\u7814\u767c\u65b0\u4e00\u4ee3\u7684\u79bd\u6d41\u611f\u57fa\u56e0\u75ab\u82d7\u3002 t2\uff1a\u4e2d\u7814\u9662\u9662\u58eb\u4f55\u5927\u4e00\u6700\u8fd1\u6b63\u5728\u7814\u767c\u79bd\u6d41\u611f\u57fa\u56e0\u75ab\u82d7\u3002 \u4e4b\u524d\u7684\u7814\u7a76\u6587\u737b\u4e2d\u6709\u8a31\u591a\u4e0d\u540c\u7684\u65b9\u6cd5\u61c9\u7528\u5728\u82f1\u6587\u6587\u5b57\u860a\u6db5\u8b58\u5225\uff0c\u4f8b\u5982\u5b9a\u7406\u8b49\u660e\u6216\u4f7f\u7528 WordNet \u7b49\u7b49\u4e0d\u540c\u7684\u8a5e\u610f\u8a9e\u6599\u8cc7\u6e90\u3002\u5728\u4e2d\u6587\u6587\u5b57\u860a\u6db5\u65b9\u9762(Wu et al., 2011)\u7b49\u4eba\u53c3\u8003\u5176\u4ed6 \u8a9e\u8a00\u7684\u65b9\u6cd5\u63d0\u51fa\u4e00\u500b\u57fa\u790e\u6a5f\u5668\u5b78\u7fd2\u5229\u7528\u6a5f\u5668\u7ffb\u8b6f\u6548\u80fd\u8a55\u4f30\u7684 BLEU \u5206\u6578\u53ca\u53e5\u5b50\u9577\u5ea6\u505a\u70ba \u7279\u5fb5\u4ee5\u53ca\u53e5\u5b50\u9577\u5ea6\u505a\u70ba\u7279\u5fb5\u4f86\u8a13\u7df4\u5206\u985e\u5668\uff0c\u5efa\u7acb\u57fa\u790e\u4e2d\u6587\u6587\u5b57\u860a\u6db5\u8b58\u5225\u7cfb\u7d71\uff0c(Zhang et \u76ee\u524d\u6587\u5b57\u860a\u6db5\u7684\u7814\u7a76\u5206\u6210\u5169\u7a2e\u5c64\u9762\uff0c\u9996\u5148\u5169\u985e(\u6211\u5011\u5c31\u7a31\u70ba\u96d9\u5411\u860a\u6db5\u95dc\u4fc2\u3002\u5047\u8a2d\u53e5\u5b50\u5c0d\u4e4b\u9593\u6c92\u6709\u860a\u6db5\u95dc\u4fc2\uff0c\u6211\u5011\u53ef\u4ee5\u5f88\u5408\u7406\u8a8d\u70ba\u5169\u500b\u53e5 al., 2011)\u7b49\u4eba\u63d0\u51fa\u52a0\u5165\u8a9e\u610f\u76f8\u95dc\u8cc7\u8a0a\u4f5c\u70ba\u7279\u5fb5\u8655\u7406\uff0c\u85c9\u7531\u4e0a\u4e0b\u4f4d\u8a5e\u3001\u540c\u7fa9\u8a5e\u8207\u53cd\u7fa9\u8a5e\u7b49</td></tr><tr><td colspan=\"5\">\u5b50\u6240\u8868\u9054\u7684\u610f\u601d\u4e0d\u76f8\u540c\uff0c\u4f46\u9019\u4e26\u4e0d\u5b8c\u5168\u6b63\u78ba\u7684\u60f3\u6cd5\u3002\u5982\u540c\u8868 1 \u77db\u76fe\u4f8b\u53e5\u4e00\u6a23\u53ef\u80fd\u5169\u500b\u53e5 \u8cc7\u8a0a\u4f86\u9032\u884c\u7684\u63a8\u8ad6\u4ee5\u53ca\u4f7f\u7528\u591a\u500b\u6a5f\u5668\u5b78\u7fd2\u7684\u65b9\u6cd5\uff0c\u6700\u5f8c\u4f7f\u7528\u6295\u7968\u6a5f\u5236\u9078\u51fa\u6700\u5408\u9069\u860a\u6db5\u95dc</td></tr><tr><td colspan=\"5\">\u5b50\u6240\u5305\u6db5\u7684\u8cc7\u8a0a\u5927\u81f4\u76f8\u540c\u53ea\u662f\u5c11\u90e8\u4efd\u8cc7\u8a0a\u4f8b\u5982:\u662f\u8207\u4e0d\u662f\u6216\u662f\u6642\u9593\u9ede\u4e0d\u540c\u9020\u6210\u53e5\u5b50\u7684\u610f \u4fc2\u63d0\u9ad8\u7cfb\u7d71\u6e96\u78ba\u7387\u3002</td></tr></table>", |
|
"type_str": "table", |
|
"html": null |
|
}, |
|
"TABREF1": { |
|
"text": "Papineni et al., 2002)\u4e09\u500b\u7279\u9ede\u3002Bleu(Zhou et al., 2006)\u7576\u521d\u662f\u88ab\u8a2d\u8a08 \u4f86\u6e2c\u91cf\u6a5f\u5668\u7ffb\u8b6f(machine translation)\u7684\u54c1\u8cea\u3002\u4e00\u500b\u826f\u597d\u7684\u6a5f\u5668\u7ffb\u8b6f\u9700\u8981\u5305\u542b\u9069\u7576\u3001\u6e96\u78ba\u4ee5 \u53ca\u6d41\u66a2\u7684\u7ffb\u8b6f\uff0c\u6211\u5011\u7684\u7cfb\u7d71\u6703\u5c07\u5176\u7ffb\u8b6f\u70ba\u539f\u4f86\u7684\u6587\u5b57 T1 \u548c T2 \u5f97\u5230 log Bleu recall\u3001log Bleu precision \u548c log Bleu F measure values\u3002 \u7b2c\u4e03\u5230\u7b2c\u5341\u9019\u56db\u500b\u7279\u5fb5\u662f T1 \u548c T2 \u7684\u53e5\u5b50\u9577\u5ea6\u3002\u6211\u5011\u7684\u7cfb\u7d71\u6839\u64da\u5b57\u5143\u548c\u5b57\u8a5e\u8a08\u7b97 T1 \u548c T2 \u7684\u53e5\u5b50\u4e2d\u9577\u5ea6\u7684\u5dee\u7570\uff0c\u4e26\u4f7f\u7528\u4e86\u9019\u5169\u500b\u7279\u5fb5\u7684\u7d55\u5c0d\u503c\u5728\u6211\u5011\u7684\u7cfb\u7d71\u4e2d\u3002 \u6700\u5f8c\u7279\u5fb5\u662f\u7531 GIZA++(Och & Ney, 2003 )\u5b57\u8a5e\u5c0d\u9f4a\u5206\u6578\uff0c\u9019\u662f T1 \u53e5\u5b50\u4ee5\u55ae\u4e00\u8a9e\u8a00\u6a5f \u5668\u7ffb\u8b6f\u5230 T2 \u53e5\u5b50\u7684\u6a5f\u7387\u3002\u6a5f\u5668\u7ffb\u8b6f\u53ef\u8a72\u529f\u80fd\u6709\u52a9\u65bc RTE(Quang et al., 2012)\uff0c\u6211\u5011\u7684\u7cfb \u7d71\u63a1\u7528\u7684\u55ae\u4e00\u8a9e\u8a00\u6a5f\u5668\u7ffb\u8b6f\u4f5c\u70ba\u4e00\u500b\u7279\u5fb5\u3002\u5728\u6211\u5011\u7684\u7cfb\u7d71\u4e2d\uff0c\u6211\u5011\u4f7f\u7528 GIZA ++\u505a\u70ba\u55ae \u4e00\u8a9e\u8a00\u6a5f\u5668\u7ffb\u8b6f\u5de5\u5177\uff0cGIZA++\u6839\u64da IBM \u6a21\u578b\u88fd\u4f5c\u800c\u6210\uff0c\u6211\u5011\u7d93\u7531 GIZA++ \u8a08\u7b97\u51fa\u5169\u500b", |
|
"num": null, |
|
"content": "<table><tr><td>6</td><td colspan=\"2\">\u860a\u6db5\u53e5\u578b\u5206\u6790\u65bc\u6539\u9032\u4e2d\u6587\u6587\u5b57\u860a\u6db5\u8b58\u5225\u7cfb\u7d71 \u860a\u6db5\u53e5\u578b\u5206\u6790\u65bc\u6539\u9032\u4e2d\u6587\u6587\u5b57\u860a\u6db5\u8b58\u5225\u7cfb\u7d71</td><td colspan=\"2\">\u694a\u5584\u9806 \u7b49</td><td>5 7</td></tr><tr><td colspan=\"5\">3.1.2 \u80cc\u666f\u77e5\u8b58\u7684\u66ff\u63db \u8f38\u5165\u53e5\u5b50\u4e4b\u9593\u7684\u5339\u914d\u5f97\u5206\uff0c\u5728\u4f7f\u7528\u4e0b\u5217\u516c\u5f0f\u8a08\u7b97\u6700\u5f8c\u61c9\u7528\u5728 SVM \u4e0a\u7684\u7279\u5fb5\u503c\uff1a</td></tr><tr><td colspan=\"5\">\u8f38\u5165\u53e5\u5c0d(T1, T2) \u9810\u8655\u7406\u7684\u90e8\u4efd\u7b2c\u4e8c\u6b65\u662f\u4ee3\u66ff\u5b83\u5011\u7684\u540c\u7fa9\u8a5e\uff0c\u540c\u7fa9\u8a5e\u7684\u8cc7\u8a0a\u53ef\u4ee5\u5f9e\"\u7dad\u57fa\u767e\u79d1\"\u3001\" HowNet (Liu & Li, 2002)\u4e2d\u53d6\u5f97\uff0c\u5176\u4e2d\u5f9e\u7dad\u57fa\u767e\u79d1\u4e2d\u53ef\u4ee5\u53d6\u5f97\u53e5\u5b50\u5fc5\u8981\u7684\u80cc\u666f\u77e5\u8b58\uff0c\u5305\u62ec \uf07b , max \uf07d , 0</td></tr><tr><td colspan=\"5\">\u9810\u8655\u7406 \u660e\u78ba\u7684\u6642\u9593\u548c\u5730\u9ede\u7684\u8cc7\u8a0a\u4f5c\u70ba\u540c\u7fa9\u8a5e\u66ff\u63db\u88dc\u5145\u6240\u9700\u7684\u8cc7\u8a0a\u3002\u53e6\u5916\u6709\u95dc\u6642\u9593\u8868\u793a\u683c\u5f0f\u9084\u6709 \u7e41\u9ad4\u4e2d\u6587</td></tr><tr><td colspan=\"5\">\u53e6\u4e00\u500b\u96e3\u984c\u5c31\u662f\u6b77\u53f2\u4e0a\u4e0d\u540c\u671d\u4ee3\u5982\u4f55\u8f49\u63db\u6210\u540c\u4e00\u500b\u6642\u9593\u8868\u793a\uff0c\u9019\u662f\u9700\u8981\u76f8\u7576\u7684\u80cc\u666f\u77e5\u8b58</td></tr><tr><td colspan=\"5\">\u4e2d\u6587\u7c21\u7e41\u8f49\u63db \u624d\u80fd\u6b63\u78ba\u7684\u8f49\u63db\u3002\u4f8b\u5982\"\u4e7e\u9686\"\u662f\u897f\u5143 1735 \u5e74\u548c\"\u662d\u548c\"\u662f\u897f\u5143 1925 \u5e74\u6216\u662f\u4f8b\u5982\"\u5317 \u7c21\u9ad4\u4e2d\u6587</td></tr><tr><td colspan=\"5\">\u4eac\u5967\u904b\"\u64c1\u6709\u80cc\u666f\u77e5\u8b58\u7684\u4eba\u53ef\u4ee5\u5f88\u8f15\u6613\u5c31\u77e5\u9053\"\u5317\u4eac\u5967\u904b\"\u767c\u751f\u65bc\u897f\u5143 2008 \u5e74\u3002\u6240\u4ee5\u6642</td></tr><tr><td colspan=\"5\">\u65b7\u8a5e \u9593\u8868\u793a\u5f0f\u554f\u984c\u9700\u8981\u76f8\u7576\u80cc\u666f\u77e5\u8b58\u624d\u80fd\u9032\u884c\u6b63\u898f\u5316\uff0c\u56e0\u6b64\u6211\u5011\u5f9e\u7dad\u57fa\u767e\u79d1\u53d6\u5f97\u5404\u671d\u4ee3\u8cc7\u8a0a</td></tr><tr><td colspan=\"5\">\u5efa\u7acb\u4e00\u500b\u671d\u4ee3\u8cc7\u6599\u5eab\uff0c\u4f5c\u9810\u8655\u7406\u6642\u5075\u6e2c\u53e5\u5b50\u4e2d\u662f\u5426\u542b\u6709\u671d\u4ee3\u5b57\u8a5e\uff0c\u82e5\u6709\u671d\u4ee3\u5b57\u8a5e\u5c07\u5176\u66ff</td></tr><tr><td colspan=\"5\">\u63db\u6210\u5c0d\u61c9\u5e74\u4efd\u5f8c\u52a0\u4e0a\u671d\u4ee3\u5b57\u8a5e\u5f8c\u6578\u5b57\u6e1b\u4e00\uff0c\u5982\"\u4e7e\u9686 3 \u5e74\"\u5c07\u66ff\u63db\u6210\"\u897f\u5143 1737 \u5e74\"\u3002</td></tr><tr><td colspan=\"5\">\u7279\u6b8a\u985e\u578b\u5206\u985e \u53e6\u4e00\u500b\u985e\u4f3c\u7684\u554f\u984c\u662f\u5730\u540d\u7684\u8868\u793a\u554f\u984c\u6709\u6642\u5019\u53ef\u80fd\u56e0\u4f5c\u8005\u7684\u4e0d\u540c\u5c0d\u65bc\u76f8\u540c\u7684\u5730\u65b9\u6709\u4e0d\u540c\u7684</td></tr><tr><td colspan=\"5\">\u8868\u793a\u65b9\u5f0f\uff0c\u6240\u4ee5\u9047\u5230\u9019\u6a23\u7684\u60c5\u6cc1\u6211\u5011\u5fc5\u9808\u9032\u884c\u5730\u540d\u6b63\u898f\u5316\u7684\u6b65\u9a5f\uff0c\u4f8b\u5982\u7e2e\u5beb\"\u53f0\u3001\u6f8e\u3001</td></tr><tr><td colspan=\"5\">\u91d1\u3001\u99ac\"\u662f\u6307\"\u53f0\u7063\u3001\u6f8e\u6e56\u3001\u91d1\u9580\u3001\u99ac\u7956\"\u6216\u662f\u4ee3\u7a31\uff0c\u89c0\u5bdf\u904e\u53bb\u7684\u8a9e\u6599\u8cc7\u6599\u5efa\u7acb\u5730\u540d\u8cc7</td></tr><tr><td colspan=\"4\">\u80af\u5b9a/\u5426\u5b9a \u6599\u5eab\uff0c\u5075\u6e2c\u53e5\u5b50\u4e2d\u662f\u5426\u542b\u6709\u5730\u540d\u5b57\u8a5e\uff0c\u82e5\u6709\u5730\u540d\u5b57\u8a5e\u5c07\u5176\u66ff\u63db\u6210\u7d71\u4e00\u5b57\u8a5e\u3002 \u6642\u9593\u8cc7\u8a0a \u6578\u5b57\u8cc7\u8a0a \u5dee\u7570\u4e00\u8a5e</td><td>\u5176\u4ed6</td></tr><tr><td colspan=\"2\">\u53e5 3.1.3 \u65b7\u8a5e\u8207\u4e2d\u6587\u7c21\u7e41\u8f49\u63db \u4e0d\u4e00\u81f4</td><td>\u4e0d\u4e00\u81f4</td><td/></tr><tr><td colspan=\"5\">\u7531\u65bc\u6211\u5011\u4f7f\u7528\u7684\u65af\u5766\u798f\u5256\u6790\u5668\u53ea\u80fd\u8655\u7406\u7c21\u9ad4\u4e2d\u6587\u4ee5\u53ca\u82f1\u6587\uff0c\u56e0\u6b64\u6211\u5011\u7684\u7cfb\u7d71\u4e2d\u4f7f\u7528\u7684\u65b7</td></tr><tr><td colspan=\"5\">SVM 0 \u8a5e\u5de5\u5177\u662f ICTCLAS \u65b7\u8a5e\u7cfb\u7d71\uff0c\u9019\u662f\u7531\u4e2d\u570b\u79d1\u5b78\u9662\u8a08\u7b97\u6280\u8853\u7814\u7a76\u6240\u63d0\u4f9b\u3002\u8a72\u5de5\u5177\u529f\u80fd\u5305 SVM 1 SVM 2 SVM 3 SVM 4</td></tr><tr><td colspan=\"5\">\u62ec\u65b7\u8a5e\u3001\u8a5e\u6027\u6a19\u8a3b\u3001NE \u8b58\u5225\u3001\u65b0\u5b57\u8a5e\u8b58\u5225\uff0c\u4ee5\u53ca\u81ea\u8a02\u5b57\u5178\u3002\u70ba\u4e86\u914d\u5408\u65b7\u8a5e\u7cfb\u7d71\u6211\u5011\u8655\u7406</td></tr><tr><td colspan=\"5\">3.1.1 \u8868\u793a\u683c\u5f0f\u6b63\u898f\u5316 \u7e41\u9ad4\u4e2d\u6587\u6642\u5fc5\u9808\u5c07\u7e41\u9ad4\u4e2d\u6587\u6587\u53e5\u5c0d\u8f49\u63db\u6210\u7c21\u9ad4\u4e2d\u6587\u6587\u53e5\uff0c\u4e00\u958b\u59cb\u6211\u5011\u4f7f\u7528 Google \u7ffb\u8b6f\u4e4b</td></tr><tr><td colspan=\"5\">\u5728\u9810\u8655\u7406\u7684\u90e8\u4efd\u7b2c\u4e00\u6b65\u5c31\u662f\u53e5\u5b50\u7684\u5b57\u8a5e\u683c\u5f0f\u6b63\u898f\u5316\uff0c\u6211\u5011\u7cfb\u7d71\u9810\u8655\u7406\u6b63\u898f\u5316\u6a21\u584a\u5c07\u62ec\u865f \u7d50\u679c\u6574\u5408 \u5f8c\u6539\u4f7f\u7528\u6211\u5011\u81ea\u884c\u958b\u767c\u7684\u6a5f\u5668\u7ffb\u8b6f\u7cfb\u7d71(Li et al., 2010)\u3002</td></tr><tr><td colspan=\"5\">\u4e2d\u5b57\u8a5e\u8996\u70ba\u62ec\u865f\u524d\u5b57\u8a5e\u7684\u540c\u7fa9\u8a5e\uff0c\u4f8b\u5982\"\u8449\u671b\u8f1d(Stephen J. Yates)\"\uff0c\u62ec\u865f\u4e2d\u7684\u5b57\u8a5e\"</td></tr><tr><td colspan=\"5\">Stephen J. Yates\"\u662f\u53e6\u4e00\u500b\u5b57\u8a5e\"\u8449\u671b\u8f1d\"\u662f\u76f8\u540c\u610f\u601d\u3002\u53e6\u5916\u6211\u5011\u89c0\u5bdf\u8a13\u7df4\u8cc7\u6599\u767c\u73fe\u6709 \u90e8\u5206\u53e5\u5b50\u4e4b\u9593\u5c0d\u65bc\u6642\u9593\u8868\u793a\u683c\u5f0f\u4e0d\u540c\uff0c\u56e0\u6b64\u6642\u9593\u8868\u793a\u65b9\u6cd5\u5fc5\u9808\u7d71\u4e00\u4ee5\u4fbf\u63a5\u4e0b\u4f86\u7684\u8655\u7406\u5de5 \u5206\u985e\u7d50\u679c 3.2 \u7279\u5fb5\u63d0\u53d6</td></tr><tr><td colspan=\"5\">\u4f5c\uff0c\u5982\u8868 2 \u4e2d\u6240\u793a\u7684\u6642\u9593\u8868\u793a\u683c\u5f0f\u5e38\u898b\u7684\u4f8b\u5b50\uff0c\u6e2c\u8a66\u8cc7\u6599\u4e2d\u6578\u5b57\u7684\u683c\u5f0f\u4e5f\u76f8\u7576\u4e0d\u4e00\u81f4\u9020 \u5716 1. \u7cfb\u7d71\u6d41\u7a0b\u5716</td></tr><tr><td colspan=\"5\">\u6210\u7cfb\u7d71\u5224\u8b80\u4e0a\u7684\u56f0\u96e3\uff0c\u9019\u500b\u90e8\u4efd\u4e5f\u662f\u6211\u5011\u9700\u8981\u7d71\u4e00\u7684\u90e8\u4efd\u3002\u5c07\u53e5\u5b50\u6b63\u898f\u5316\u5f8c\u7684\u8cc7\u6599\u6709\u8457</td></tr><tr><td colspan=\"5\">\u66f4\u9ad8\u7684\u76f8\u4f3c\u5ea6\u4e5f\u66f4\u5bb9\u6613\u88ab\u8b58\u5225\uff0c\u5728\u6a5f\u5668\u7ffb\u8b6f\u65b9\u9762\u4e5f\u53e5\u5b50\u4e2d\u7684\u5b57\u8a5e\u66f4\u5bb9\u6613\u6587\u5b57\u5c0d\u9f4a\u9032\u800c\u63d0</td></tr><tr><td colspan=\"3\">\u9ad8\u5169\u500b\u53e5\u5b50\u53ef\u7ffb\u8b6f\u6a5f\u7387\u3002 \u8868 2. \u5404\u7a2e\u6642\u9593\u8868\u793a\u683c\u5f0f\u4e4b\u4f8b\u53e5</td><td/></tr><tr><td/><td>\u6642\u9593\u578b\u614b</td><td>\u6642\u9593\u8868\u793a\u65b9\u5f0f</td><td/></tr><tr><td/><td>\u4e2d\u6587</td><td>\u4e00\u4e5d\u4e5d\u4e03\u5e74\u4e8c\u6708\u5eff\u4e09\u65e5</td><td/></tr><tr><td/><td>\u6578\u5b57\u5168\u5f62</td><td>\uff11\uff19\uff19\uff17\u5e74\uff12\u6708\uff12\uff13\u65e5</td><td/></tr><tr><td/><td>\u6578\u5b57\u534a\u5f62</td><td>1997\u5e742\u670823\u65e5</td><td/></tr><tr><td/><td>\u6578\u5b57\u4ee5\u300c-\u300d\u9694\u958b</td><td>1999-05-07</td><td/></tr><tr><td/><td>\u6578\u5b57\u4ee5\u300c/\u300d\u9694\u958b</td><td>1985/12/20</td><td/></tr><tr><td/><td>\u7bc4\u570d</td><td>1999\u5e74\u5ef6\u9577\u81f32001\u5e74</td><td/></tr></table>", |
|
"type_str": "table", |
|
"html": null |
|
} |
|
} |
|
} |
|
} |