|
{ |
|
"paper_id": "O17-1027", |
|
"header": { |
|
"generated_with": "S2ORC 1.0.0", |
|
"date_generated": "2023-01-19T07:59:50.186277Z" |
|
}, |
|
"title": "Real-time monitoring device of phonation speed and volume based on speech energy: A pilot study", |
|
"authors": [ |
|
{ |
|
"first": "Chi-Te", |
|
"middle": [], |
|
"last": "\u738b\u68e8\u5fb7", |
|
"suffix": "", |
|
"affiliation": {}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "\u4e9e\u6771\u7d00\u5ff5\u91ab\u9662\u8033\u9f3b\u5589\u79d1", |
|
"middle": [], |
|
"last": "Wang", |
|
"suffix": "", |
|
"affiliation": {}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "\u4e3b\u6cbb\u91ab\u5e2b", |
|
"suffix": "", |
|
"affiliation": {}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Feng-Chuan", |
|
"middle": [], |
|
"last": "Lin", |
|
"suffix": "", |
|
"affiliation": {}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "\u4e9e\u6771\u7d00\u5ff5\u91ab\u9662\u8033\u9f3b\u5589\u79d1", |
|
"middle": [], |
|
"last": "\u8a9e\u8a00\u6cbb\u7642\u5e2b", |
|
"suffix": "", |
|
"affiliation": {}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Wei-Zhung", |
|
"middle": [], |
|
"last": "\u912d\u60df\u4e2d", |
|
"suffix": "", |
|
"affiliation": {}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Shih-Hau", |
|
"middle": [], |
|
"last": "\u65b9\u58eb\u8c6a", |
|
"suffix": "", |
|
"affiliation": {}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "Fang", |
|
"suffix": "", |
|
"affiliation": {}, |
|
"email": "[email protected]" |
|
}, |
|
{ |
|
"first": "Yu", |
|
"middle": [], |
|
"last": "\u66f9\u6631", |
|
"suffix": "", |
|
"affiliation": {}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "Tsao", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "\u4e2d\u592e\u7814\u7a76\u9662 \u8cc7\u8a0a\u79d1\u6280\u5275\u65b0\u7814\u7a76\u4e2d\u5fc3 Research center for information technology innovation Academia Sinica", |
|
"institution": "", |
|
"location": {} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Ying-Hui", |
|
"middle": [], |
|
"last": "\u8cf4\u7a4e\u6689", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "\u4e2d\u592e\u7814\u7a76\u9662 \u8cc7\u8a0a\u79d1\u6280\u5275\u65b0\u7814\u7a76\u4e2d\u5fc3 Research center for information technology innovation Academia Sinica", |
|
"institution": "", |
|
"location": {} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "Lai", |
|
"suffix": "", |
|
"affiliation": {}, |
|
"email": "" |
|
} |
|
], |
|
"year": "", |
|
"venue": null, |
|
"identifiers": {}, |
|
"abstract": "", |
|
"pdf_parse": { |
|
"paper_id": "O17-1027", |
|
"_pdf_hash": "", |
|
"abstract": [], |
|
"body_text": [], |
|
"back_matter": [], |
|
"bib_entries": { |
|
"BIBREF0": { |
|
"ref_id": "b0", |
|
"title": "Prevalence of voice disorders in teachers and the general population", |
|
"authors": [], |
|
"year": null, |
|
"venue": "J Speech Lang Hear Res", |
|
"volume": "47", |
|
"issue": "2", |
|
"pages": "281--293", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.1044/1092-4388(2004/023" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Prevalence of voice disorders in teachers and the general population. J Speech Lang Hear Res, 47(2), 281-293. doi:10.1044/1092-4388(2004/023)", |
|
"links": null |
|
}, |
|
"BIBREF1": { |
|
"ref_id": "b1", |
|
"title": "The prevalence and risk factors for occupational voice disorders in teachers", |
|
"authors": [ |
|
{ |
|
"first": "M", |
|
"middle": [], |
|
"last": "\u015aliwi\u0144ska-Kowalska", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "E", |
|
"middle": [], |
|
"last": "Niebudek-Bogusz", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "M", |
|
"middle": [], |
|
"last": "Fiszer", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "T", |
|
"middle": [], |
|
"last": "\u0141o\u015b-Spychalska", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "P", |
|
"middle": [], |
|
"last": "Koty\u0142o", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "B", |
|
"middle": [], |
|
"last": "Sznurowska-Przygocka", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2006, |
|
"venue": "Folia Phoniatrica et Logopaedica", |
|
"volume": "58", |
|
"issue": "2", |
|
"pages": "85--102", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "\u015aliwi\u0144ska-Kowalska, M., Niebudek-Bogusz, E., Fiszer, M., \u0141o\u015b-Spychalska, T., Koty\u0142o, P., & Sznurowska-Przygocka, B. (2006). The prevalence and risk factors for occupational voice disorders in teachers. Folia Phoniatrica et Logopaedica, 58(2), 85-102.", |
|
"links": null |
|
}, |
|
"BIBREF2": { |
|
"ref_id": "b2", |
|
"title": "The voice and voice therapy", |
|
"authors": [ |
|
{ |
|
"first": "D", |
|
"middle": [ |
|
"R" |
|
], |
|
"last": "Boone", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "S", |
|
"middle": [ |
|
"C" |
|
], |
|
"last": "Mcfarlane", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Von", |
|
"middle": [], |
|
"last": "Berg", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "S", |
|
"middle": [ |
|
"L" |
|
], |
|
"last": "Zraick", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "R", |
|
"middle": [ |
|
"L" |
|
], |
|
"last": "", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2013, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Boone, D. R., McFarlane, S. C., Von Berg, S. L., & Zraick, R. L. (2013). The voice and voice therapy (9th ed.). Boston, MA: Allyn & Bacon.", |
|
"links": null |
|
}, |
|
"BIBREF3": { |
|
"ref_id": "b3", |
|
"title": "Function vocal examination and acoustic analysis of 905 teaching staff of La Rioja", |
|
"authors": [ |
|
{ |
|
"first": "J", |
|
"middle": [], |
|
"last": "Preciado", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "C", |
|
"middle": [], |
|
"last": "P\u00e9rez", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "M", |
|
"middle": [], |
|
"last": "Calzada", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "P", |
|
"middle": [], |
|
"last": "Preciado", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2005, |
|
"venue": "Spain. Acta otorrinolaringol\u00f3gica espa\u00f1ola", |
|
"volume": "56", |
|
"issue": "6", |
|
"pages": "261--272", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Preciado, J., P\u00e9rez, C., Calzada, M., & Preciado, P. (2005). Function vocal examination and acoustic analysis of 905 teaching staff of La Rioja, Spain. Acta otorrinolaringol\u00f3gica espa\u00f1ola, 56(6), 261-272.", |
|
"links": null |
|
}, |
|
"BIBREF4": { |
|
"ref_id": "b4", |
|
"title": "The impact of preventive voice care programs for training teachers: a longitudinal study", |
|
"authors": [ |
|
{ |
|
"first": "O", |
|
"middle": [ |
|
"M" |
|
], |
|
"last": "Duffy", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "D", |
|
"middle": [ |
|
"E" |
|
], |
|
"last": "Hazlett", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2004, |
|
"venue": "J Voice", |
|
"volume": "18", |
|
"issue": "1", |
|
"pages": "88--90", |
|
"other_ids": { |
|
"DOI": [ |
|
"10.1016/S0892-1997(03" |
|
] |
|
}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Duffy, O. M., & Hazlett, D. E. (2004). The impact of preventive voice care programs for training teachers: a longitudinal study. J Voice, 18(1), 63-70. doi:10.1016/S0892- 1997(03)00088-2.", |
|
"links": null |
|
}, |
|
"BIBREF5": { |
|
"ref_id": "b5", |
|
"title": "Vocal behaviour and vocal loading factors for preschool teachers at work studied with binaural DATrecordings", |
|
"authors": [ |
|
{ |
|
"first": "M", |
|
"middle": [], |
|
"last": "S\u00f6dersten", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "S", |
|
"middle": [], |
|
"last": "Granqvist", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "B", |
|
"middle": [], |
|
"last": "Hammarberg", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "A", |
|
"middle": [], |
|
"last": "Szabo", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2002, |
|
"venue": "Journal of Voice", |
|
"volume": "16", |
|
"issue": "", |
|
"pages": "356--371", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "S\u00f6dersten, M., Granqvist, S., Hammarberg, B., & Szabo, A. (2002). Vocal behaviour and vocal loading factors for preschool teachers at work studied with binaural DAT- recordings. Journal of Voice, 16, 356-371.", |
|
"links": null |
|
}, |
|
"BIBREF6": { |
|
"ref_id": "b6", |
|
"title": "Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence", |
|
"authors": [ |
|
{ |
|
"first": "J", |
|
"middle": [ |
|
"H" |
|
], |
|
"last": "Holland", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1992, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence: MIT press.", |
|
"links": null |
|
}, |
|
"BIBREF7": { |
|
"ref_id": "b7", |
|
"title": "Speech enhancement using a minimum mean-square error log-spectral amplitude estimator", |
|
"authors": [ |
|
{ |
|
"first": "Y", |
|
"middle": [], |
|
"last": "Ephraim", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "D", |
|
"middle": [], |
|
"last": "Malah", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1985, |
|
"venue": "IEEE Transactions on Acoustics, Speech, and Signal Processing", |
|
"volume": "33", |
|
"issue": "2", |
|
"pages": "443--445", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Ephraim, Y., & Malah, D. (1985). Speech enhancement using a minimum mean-square error log-spectral amplitude estimator. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(2), 443-445.", |
|
"links": null |
|
}, |
|
"BIBREF8": { |
|
"ref_id": "b8", |
|
"title": "Speech enhancement based on deep denoising autoencoder", |
|
"authors": [ |
|
{ |
|
"first": "X", |
|
"middle": [], |
|
"last": "Lu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Y", |
|
"middle": [], |
|
"last": "Tsao", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "S", |
|
"middle": [], |
|
"last": "Matsuda", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "C", |
|
"middle": [], |
|
"last": "Hori", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2013, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Lu, X., Tsao, Y., Matsuda, S., & Hori, C. (2013). Speech enhancement based on deep denoising autoencoder. Paper presented at the Interspeech.", |
|
"links": null |
|
}, |
|
"BIBREF9": { |
|
"ref_id": "b9", |
|
"title": "Ensemble modeling of denoising autoencoder for speech spectrum restoration", |
|
"authors": [ |
|
{ |
|
"first": "X", |
|
"middle": [], |
|
"last": "Lu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Y", |
|
"middle": [], |
|
"last": "Tsao", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "S", |
|
"middle": [], |
|
"last": "Matsuda", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "C", |
|
"middle": [], |
|
"last": "Hori", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2014, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Lu, X., Tsao, Y., Matsuda, S., & Hori, C. (2014). Ensemble modeling of denoising autoencoder for speech spectrum restoration. Paper presented at the Interspeech.", |
|
"links": null |
|
}, |
|
"BIBREF11": { |
|
"ref_id": "b11", |
|
"title": "Ambulatory Voice Biofeedback: Relative Frequency and Summary Feedback Effects on Performance and Retention of Reduced Vocal Intensity in the Daily Lives of Participants With Normal Voices", |
|
"authors": [], |
|
"year": null, |
|
"venue": "J Speech Lang Hear Res", |
|
"volume": "60", |
|
"issue": "4", |
|
"pages": "853--864", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Ambulatory Voice Biofeedback: Relative Frequency and Summary Feedback Effects on Performance and Retention of Reduced Vocal Intensity in the Daily Lives of Participants With Normal Voices. J Speech Lang Hear Res, 60(4), 853-864.", |
|
"links": null |
|
} |
|
}, |
|
"ref_entries": { |
|
"FIGREF0": { |
|
"uris": null, |
|
"text": "Smith, E., Gray, S. D., Dove, H., Kirchner, L., & Heras, H. (1997). Frequency and effects of teachers' voice problems. Journal of Voice, 11, 81-87. [3] Smith, E., Lemke, J., Taylor, M., Kirchner, H. L., & Hoffman, H. (1998). Frequency of Voice Problems Among Teachers and Other Occupations. Journal of Voice, 12(4), 480-488. [4] Roy, N., Merrill, R. M., Thibeault, S., Parsa, R. A., Gray, S. D., & Smith, E. M. (2004).", |
|
"type_str": "figure", |
|
"num": null |
|
}, |
|
"TABREF0": { |
|
"text": "\u6458\u8981 \u55d3\u97f3\u554f\u984c\u5982\u8072\u5e36\u7d50\u7bc0\u3001\u606f\u8089\u7b49\uff0c\u662f\u73fe\u4ee3\u793e\u6703\u4e2d\u5341\u5206\u5e38\u898b\u7684\u5065\u5eb7\u75be\u75c5\u3002\u5e38\u898b\u7684\u5371\u96aa\u56e0 \u5b50\u5305\u62ec\u6027\u5225(\u5973\u6027)\u3001\u7528\u8072\u7fd2\u6163(\u904e\u5ea6\u6216\u4e0d\u7576\u4f7f\u7528)\u3001\u74b0\u5883\u566a\u97f3(\u80cc\u666f\u503c 65 \u5206\u8c9d\u4ee5\u4e0a)\u53ca\u500b\u4eba \u8655\u4e4b\u74b0\u5883\u9069\u6642\u7684\u8abf\u52d5\u5075\u6e2c\u95be\u503c\u3002\u9032\u800c\u900f\u904e\u6b64\u95be\u503c\u8207\u8a9e\u97f3\u80de\u7dda\u4fe1\u865f\u9593\u4e4b\u95dc\u4fc2\u8f49\u63db\u6210\u4e8c\u5143\u7de8 \u78bc\u8cc7\u8a0a(i.e., binary code)\u4f86\u9810\u4f30\u5176\u8f38\u5165\u4fe1\u865f\u662f\u5426\u70ba\u8a9e\u97f3\u6210\u4efd\u3002\u63a5\u4e0b\u4f86\uff0c\u6211\u5011\u66f4\u9032\u4e00\u6b65\u7684\u628a \u9019\u4e8c\u5143\u7de8\u78bc\u8cc7\u8a0a\u8f49\u63db\u6210\u81e8\u5e8a\u6240\u9700\u4e4b\u55d3\u97f3\u75b2\u52de\u6307\u6a19(i.e., fatigue index)\u3002\u8a3b:\u6b64\u55d3\u97f3\u75b2\u52de\u6307\u6a19 \u5c07\u900f\u904e\u91ab\u5e2b\u4f9d\u7167\u60a3\u8005\u4e4b\u75c5\u60c5\u9032\u884c\u53c3\u6578\u8a2d\u5b9a\uff0c\u9032\u800c\u8b93\u60a3\u8005\u80fd\u5373\u6642\u7684\u9032\u884c\u500b\u4eba\u5316\u4e4b\u8a9e\u901f\u5075\u6e2c (i.e., \u8d85\u901f\u8207\u5426)\u3002\u7576\u60a3\u8005\u7684\u8a9e\u8a71\u904e\u5feb\u6642\uff0c\u7cfb\u7d71\u5c07\u6703\u5373\u6642\u7684\u63d0\u51fa\u8b66\u793a\u4fe1\u865f\u4f86\u63d0\u9192\u60a3\u8005\u6e1b\u6162 \u8a9e\u8aaa\u901f\u5ea6\u4ee5\u63d0\u5347\u81e8\u5e8a\u55d3\u97f3\u5fa9\u5065\u4e4b\u6cbb\u7642\u6548\u76ca\u3002", |
|
"content": "<table><tr><td>\u65bc\u80cc\u666f\u566a\u97f3\u4e0b\u5927\u8072\u8aaa\u8a71\u7b49\u884c\u70ba[6]\u3002\u4ee5\u8a9e\u97f3\u4fe1\u865f\u7684\u89d2\u5ea6\u4f86\u770b\uff0c\u4fbf\u662f\u6307\u6211\u5011\u5e38\u807d\u898b\u4e4b\u8a9e\u901f\u983b \u4f4d\u6642\u9593\u4e0b\u4e4b\u8a9e\u97f3\u8207\u5426\u4e4b\u9810\u4f30\u3002\u5176\u52d5\u614b\u8abf\u6574\u95be\u503c\u4e4b\u8a2d\u8a08\u65b9\u6cd5\u5982\u4e0b(1)\u5f0f: \u4e09\u3001\u7d50\u679c\u8207\u8a0e\u8ad6</td></tr><tr><td>\u7387\u904e\u9ad8\u53ca\u8a9e\u97f3\u80fd\u91cf\u632f\u5e45\u904e\u5927\u3002\u66f4\u5177\u9ad4\u7684\u4f86\u8aaa\uff0c\u55d3\u97f3\u8aa4\u7528(vocal misuse)\u4fc2\u6307\u4e0d\u6b63\u78ba\u7684\u767c (\u4e00) \u7cfb\u7d71\u4ecb\u9762</td></tr><tr><td>\u8072\u7fd2\u6163\uff0c\u5982\u63d0\u9ad8\u8aaa\u8a71\u97f3\u8abf\u3001\u6e05\u5589\u56a8\u6216\u4e0d\u6b63\u78ba\u7684\u547c\u5438\u65b9\u5f0f\u7b49\u884c\u70ba[6]\u3002\u9019\u4e9b\u932f\u8aa4\u7684\u767c\u8072\u884c\u70ba AT = # + & & + ( ( (1) \u5716\u4e09\u70ba\u672c\u7814\u7a76\u6240\u958b\u767c\u51fa\u7cfb\u7d71\u4ecb\u9762\uff0c\u6b64\u7cfb\u7d71\u5df1\u80fd\u8b93\u81e8\u5e8a\u91ab\u5e2b\u9032\u884c\u75b2\u52de\u9580\u6abb\u53c3\u6578\u8a2d\u5b9a\uff0c</td></tr><tr><td>\u7279\u8cea(\u5982 A \u578b\u4eba\u683c)\u7b49\u3002\u5176\u4e2d\uff0c\u53c8\u4ee5\u932f\u8aa4\u7684\u7528\u8072\u7fd2\u6163\u70ba\u75be\u75c5\u5e38\u898b\u8d77\u56e0\u3002\u904e\u53bb\u7684\u7814\u7a76\u6307\u51fa\uff0c \u9069\u5ea6\u7684\u7d66\u4e88\u60a3\u8005\u5728\u932f\u8aa4\u8a9e\u901f(\u6216\u97f3\u91cf\u61c9)\u7522\u751f\u6642\u7d66\u4e88\u63d0\u9192\uff0c\u5c07\u80fd\u6709\u6548\u7684\u63d0\u5347\u81e8\u5e8a\u6cbb\u7642\u6548\u76ca\u3002 \u6709\u9451\u65bc\u6b64\uff0c\u672c\u8a08\u756b\u63d0\u51fa\u4e00\u5957\u4f4e\u904b\u7b97\u9700\u6c42\u4e4b\u5373\u6642\u55d3\u97f3\u76e3\u6e2c\u7cfb\u7d71\u4f86\u5e6b\u52a9\u60a3\u8005\u5728\u4e0d\u7576\u7528\u8072\u6642\uff0c \u7d66\u4e88\u60a3\u8005\u5373\u6642\u4e4b\u63d0\u9192(\u4f8b\u5982\u632f\u52d5\u3001\u9583\u71c8)\u3002\u8a08\u756b\u63d0\u51fa\u4e4b\u7cfb\u7d71\u5305\u62ec:(1)\u8a9e\u97f3\u8a0a\u865f\u9810\u8655\u7406\u3001(2)\u566a \u97f3\u6d88\u9664\u3001(3)\u8a9e\u97f3\u80fd\u91cf\u80de\u7d61\u7dda\u5075\u6e2c\u3001(4)\u52d5\u614b\u767c\u8072\u95be\u503c\u8abf\u6574\u53ca(5)\u5373\u6642\u56de\u994b\u7b49\u4e94\u500b\u90e8\u4efd\u3002\u7531 \u5be6\u9a57\u7d50\u679c\u8b49\u660e\uff0c\u672c\u7814\u7a76\u6240\u767c\u5c55\u4e4b\u7cfb\u7d71\u65bc\u566a\u97f3\u60c5\u5883\u4e0b\u4e4b\u8a9e\u901f\u5075\u6e2c\u6e96\u78ba\u7387\u53ef\u9054\u5230 95.4%\u3002\u6b64 \u662f\u9020\u6210\u55d3\u97f3\u7570\u5e38\u6700\u4e3b\u8981\u7684\u539f\u56e0 [1,6]\u3002Preciado \u7b49\u5b78\u8005\u65bc 2005 [7]\u5c0d 579 \u540d\u55d3\u97f3\u7570\u5e38\u6559\u5e2b \u4e26\u8b93\u60a3\u8005\u80fd\u5373\u6642\u7684\u9032\u884c\u500b\u4eba\u5316\u4e4b\u8a9e\u901f\u5075\u6e2c(i.e., \u8d85\u901f\u8207\u5426)\u3002\u66f4\u5177\u9ad4\u7684\u4f86\u8aaa\uff0c\u81e8\u5e8a\u91ab\u5e2b\u53ef \u5176\u4e2d # \u3001 & \u53ca ( \u5206\u5225\u662f\u7576\u4e0b\u97f3\u6846\u53ca\u524d\u5169\u500b\u97f3\u6846\u8cc7\u8a0a\uff0c\u800c a\u3001b \u53ca c \u5206\u5225\u662f\u512a\u5316\u53c3\u6578\u3002 \u548c 326 \u540d\u55d3\u97f3\u6b63\u5e38\u6559\u5e2b\u9032\u884c\u55d3\u97f3\u7814\u7a76\u3002\u7d50\u679c\u767c\u73fe\uff0c\u55d3\u97f3\u7570\u5e38\u6559\u5e2b\u7684\u6feb\u7528\u884c\u70ba\u6bd4\u7121\u55d3\u97f3\u7570 \u4ee5\u4f9d\u7167\u60a3\u8005\u7684\u55d3\u97f3\u50b7\u5bb3\u60c5\u6cc1\u4f86\u500b\u5225\u5316\u7684\u8abf\u6574\u75b2\u52de\u9580\u6abb\u53c3\u6578\u8a2d\u5b9a\u3002\u7576\u60a3\u8005\u7684\u8a9e\u8a71\u904e\u5feb\u6642\u800c \u8a3b:\u6b64\u4e09\u500b\u512a\u5316\u53c3\u6578\u6211\u5011\u63a1\u7528\u57fa\u56e0\u6f14\u7b97\u6cd5[10]\u9032\u884c\u6700\u4f73\u5316\u53c3\u6578\u641c\u5c0b\uff0c\u4ee5\u512a\u5316\u5c0d\u6bcf\u4e00\u500b\u97f3\u6846 \u5e38\u6559\u5e2b\u591a (i.e.,74.8\uff05\u6bd4 67.1\uff05) \u3002\u63db\u8a00\u4e4b\uff0c\u55d3\u97f3\u6feb\u7528\u5c07\u662f\u6b64\u75be\u75c5\u91cd\u8981\u7684\u767c\u75c5\u539f\u56e0\u4e4b\u4e00[8,9] \u3002 \u8d85\u904e\u6b64\u75b2\u52de\u9580\u6abb\u6642\uff0c\u7cfb\u7d71\u5c07\u6703\u5373\u6642\u7684\u7522\u751f\u8b66\u793a\u4fe1\u865f(\u7da0\u71c8\uff1a\u6b63\u5e38\u3001\u7d05\u71c8\uff1a\u75b2\u52de)\u4f86\u63d0\u9192\u60a3 \u6240\u7528\u4e4b AT \u4f86\u63d0\u5347\u7cfb\u7d71\u7684\u6e96\u78ba\u6027\u3002\u63a5\u8457\uff0c\u6211\u5011\u5c07\u900f\u4e0a\u8ff0\u8aaa\u660e\u4e4b\u4e8c\u5143\u7de8\u78bc\u65b9\u6cd5\u9032\u884c\u55ae\u4f4d\u6642 \u81e8\u5e8a\u4e0a\u70ba\u6709\u6548\u7684\u5e6b\u52a9\u55d3\u97f3\u7570\u5e38\u60a3\u8005\u80fd\u7372\u5f97\u6709\u6548\u4e4b\u6cbb\u7642\uff0c\u6700\u70ba\u5e38\u898b\u7684\u65b9\u6cd5\u662f\u9032\u884c\u55d3\u97f3 \u8005\u6e1b\u6162\u8a9e\u8aaa\u901f\u5ea6\u4ee5\u63d0\u5347\u81e8\u5e8a\u55d3\u97f3\u5fa9\u5065\u4e4b\u6cbb\u7642\u6548\u76ca\u3002\u6b64\u5916\uff0c\u672c\u7cfb\u7d71\u4e5f\u63d0\u5230\u8996\u89ba\u5316\u4e4b\u4ecb\u9762\u8b93 \u9593\u4e2d\u4e4b\u8a9e\u97f3\u901f\u5ea6\u767e\u5206\u6bd4\uff0c\u4e26\u518d\u5c07\u6b64\u8cc7\u8a0a\u8f49\u63db\u6210\u81e8\u5e8a\u6240\u9700\u4e4b\"fatigue index\"\u4ee5\u505a\u70ba\u60a3\u8005\u8a9e \u6cbb\u7642\u8a13\u7df4\uff0c\u4ee5\u6e1b\u5c11\u932f\u8aa4\u7684\u767c\u8072\u6a5f\u6703\u3002\u6839\u64da\u81e8\u5e8a\u89c0\u5bdf\uff0c\u55d3\u97f3\u6cbb\u7642\u5728\u985e\u5316\u5230\u65e5\u5e38\u751f\u6d3b\u4e2d\u5bb9\u6613 \u4f7f\u7528\u8005(\u6216\u5bb6\u4eba)\u80fd\u5373\u6642\u81ea\u6211\u89c0\u5bdf\u60a3\u8005\u7576\u524d\u4e4b\u55d3\u97f3\u4f7f\u7528\u60c5\u6cc1(i.e., \u6642\u57df\u53ca\u983b\u57df\u8a9e\u97f3\u4fe1\u865f\u7684 \u901f\u662f\u5426\u7b26\u5408\u91ab\u5e2b\u5efa\u8b70\u4e4b\u8a55\u4f30\u4f9d\u64da\u3002\u7576\u60a3\u8005\u8a9e\u901f\u904e\u9ad8\u6642\uff0c\u7cfb\u7d71\u5c07\u900f\u904e\u71c8\u865f(\u6216\u632f\u52d5)\u9069\u6642\u4e4b \u767c\u751f\u56f0\u96e3\u3002\u63db\u8a00\u4e4b\uff0c\u60a3\u8005\u96d6\u7136\u80fd\u5728\u6cbb\u7642\u671f\u9593\u6b63\u78ba\u7684\u4f7f\u7528\u55d3\u97f3\uff0c\u4f46\u96e2\u958b\u4e86\u6cbb\u7642\u7684\u5834\u57df\u5c07\u6703 \u4e0d\u81ea\u4e3b\u7684\u56de\u5fa9\u5230\u932f\u8aa4\u7684\u55d3\u97f3\u61c9\u7528\u60c5\u6cc1\u3002\u56e0\u6b64\uff0c\u8b93\u60a3\u8005\u8d70\u51fa\u6cbb\u7642\u5ba4\u5f8c\u4e5f\u80fd\u6301\u7e8c\u6b63\u78ba\u61c9\u7528\u55d3 Noise reduction Vocoder based envelope detection Adaptive threshold \u8b93\u4f7f\u7528\u8005\u5011\u53ef\u4ee5\u66f4\u5373\u6642\u7684\u638c\u63e1\u55d3\u97f3\u4f7f\u7528\u7387\u7684\u638c\u63a7\u3002 algorithm \u63d0\u9192\u60a3\u8005\uff0c\u4ee5\u9054\u5230\u6cbb\u7642\u4e4b\u76ee\u7684\u3002 \u8996\u89ba\u5316)\uff0c\u672c\u7cfb\u7d71\u4ea6\u6709\u4f7f\u7528\u671f\u9593\u5167\u6574\u9ad4\u55d3\u97f3\u4e4b\u4f11\u606f\u6bd4\u4f8b\u53ca\u4f7f\u7528\u6bd4\u4f8b\u7684\u6578\u503c\u5316\u5448\u73fe\uff0c\u53ef\u4ee5 \u5716\u56db\u3001\u8a9e\u97f3\u5075\u6e2c\u6e96\u78ba\u7387(%)</td></tr><tr><td>\u5916\uff0c\u7531\u65bc\u672c\u7814\u7a76\u6240\u63d0\u51fa\u4e4b\u7cfb\u7d71\u904b\u7b97\u9700\u6c42\u91cf\u5c0f\uff0c\u672a\u4f86\u5c07\u6703\u4ee5\u5fae\u578b\u5316\u70ba\u76ee\u6a19\u5c07\u5176\u5be6\u8e10\u65bc\u5d4c\u5165 Fatigue Proposed \u97f3\u5c07\u662f\u6700\u70ba\u6839\u672c\u4e4b\u6cbb\u7642\u65b9\u6cd5\u3002\u6709\u9451\u65bc\u6b64\uff0c\u8fd1\u5e74\u5df2\u958b\u59cb\u8457\u624b\u65bc\u97f3\u91cf\u76e3\u63a7\u4e4b\u88dd\u7f6e\u958b\u767c\u7814\u7a76\u3002 Van Stan \u7b49\u5c07\u97f3\u91cf\u76e3\u63a7\u8a2d\u5099\u300eAmbulatory voice biofeedback\u300f\u61c9\u7528\u5728\u8072\u5e36\u7d50\u7bc0\u7684\u60a3\u8005\uff0c\u8b93 index method Envelope Binary \u56db\u3001\u7d50\u8ad6 \u5f0f\u7cfb\u7d71\u4e2d\u4ee5\u65b9\u4fbf\u65bc\u81e8\u5e8a\u6cbb\u7642\u4e4b\u61c9\u7528\u3002 \u4f7f\u7528\u8005\u5728\u6cbb\u7642\u5ba4\u4ee5\u5916\u7684\u5730\u65b9\u914d\u5408\u4f7f\u7528\uff0c\u4ee5\u63a7\u5236\u97f3\u91cf\u904e\u5927\u7684\u60c5\u6cc1[14]\u3002\u7d50\u679c\u986f\u793a\uff0c\u900f\u904e\u5e73 Envelope Enhanced Envelope detection \u65bc\u672c\u7814\u7a76\u4e4b\u7d50\u679c\u8b49\u660e\uff0c\u566a\u97f3\u6d88\u9664\u6cd5\u80fd\u6709\u6548\u7684\u63d0\u5347\u4ee5\u8a9e\u97f3\u80fd\u91cf\u70ba\u57fa\u790e\u4e4b\u8a9e\u901f\u5075\u6e2c\u80fd\u91cf\u3002</td></tr><tr><td>\u95dc\u9375\u8a5e\uff1a\u8a9e\u97f3\u8a0a\u865f\u9810\u8655\u7406\u3001\u566a\u97f3\u6d88\u9664\u3001\u8a9e\u97f3\u80fd\u91cf\u80de\u7d61\u7dda\u5075\u6e2c\u3001\u52d5\u614b\u767c\u8072\u95be\u503c\u8abf\u6574 \u6642\u4e0d\u65b7\u7684\u5354\u52a9\u60a3\u8005\u63a7\u5236\u5e73\u65e5\u8aaa\u8a71\u97f3\u91cf\u53ca\u8a9e\u901f\uff0c\u5c07\u6703\u986f\u8457\u7684\u63d0\u5347\u55d3\u97f3\u6cbb\u7642\u6210\u6548\u3002\u7136\u800c\u4e0a\u8ff0 \u4e4b\u65b9\u6cd5\u61c9\u7528\u65bc\u81e8\u5e8a\u6cbb\u7642\u4ecd\u6709\u56f0\u96e3(\u4f8b\u5982\u6210\u672c\u8f03\u9ad8\u4e14\u4e0d\u6613\u96a8\u8eab\u651c\u5e36)\u3002\u6b64\u5916\uff0c\u7576\u60a3\u8005\u4f7f\u7528\u74b0 speech \" \u63db\u8a00\u4e4b\uff0c\u4e00\u500b\u826f\u597d\u7684\u566a\u97f3\u6d88\u9664\u6f14\u7b97\u6cd5\u5c07\u80fd\u4f7f\u672c\u7cfb\u7d71\u6709\u66f4\u597d\u7684\u8868\u73fe\u3002\u8fd1\u5e74 Lu \u7b49\u5b78\u8005[12, Pre-RECT. LPF emphasis 13]\u63d0\u51fa\u4e00\u5957\u76e3\u7763\u5f0f\u566a\u97f3\u6d88\u9664\u6cd5\uff0c\u7a31\u70ba\u6df1\u5c64\u964d\u566a\u81ea\u52d5\u7de8\u78bc\u6f14\u7b97\u6cd5(DDAE) \u3002\u5176\u4e3b\u8981\u904b\u7528</td></tr><tr><td>\u4e00\u3001\u7dd2\u8ad6 \u5883\u8655\u65bc\u8f03\u6311\u6230\u6642(\u4f8b\u5982:\u74b0\u5883\u566a\u97f3\u4e0d\u65b7\u8b8a\u52d5)\uff0c\u5176\u65b9\u6cd5\u4ecd\u6709\u5f88\u5927\u7684\u9032\u6b65\u7a7a\u9593\u3002\u6709\u9451\u65bc\u4e0a\u8ff0\u4e4b Remind signal: \u6df1\u985e\u985e\u795e\u7d93\u7db2\u8def\u8a13\u7df4\u67b6\u69cb\u9032\u884c\u566a\u97f3\u6d88\u9664\u4efb\u52d9\u3002\u65bc\u904e\u53bb\u4e4b\u7814\u7a76\u4e5f\u8b49\u660e\u6b64\u65b9\u6cd5\u80fd\u6bd4\u50b3\u7d71\u4e4b\u566a</td></tr><tr><td>\u55d3\u97f3\u7570\u5e38\u662f\u6559\u5e2b\u5e38\u898b\u4e4b\u8077\u696d\u75be\u75c5[1]\u3002\u6839\u64da\u904e\u53bb\u7684\u7814\u7a76\u986f\u793a\uff0c\u6559\u5e2b\u51fa\u73fe\u55d3\u97f3\u7570\u5e38\u7684\u6bd4 \u554f\u984c\uff0c\u672c\u7814\u7a76\u63d0\u51fa\u4e00\u5957\u4ee5\u8a9e\u97f3\u80fd\u91cf\u7279\u6027\u70ba\u57fa\u790e\u4e4b\u5373\u6642\u8a9e\u901f\u53ca\u97f3\u91cf\u5075\u6e2c\u66a8\u56de\u994b\u7cfb\u7d71(\u8a73\u7d30 Light (or Vibrating) Bluetooth microphone Time (s) Adaptive threshold High Low Fatigue index \u97f3\u6d88\u9664\u6cd5\u6709\u66f4\u4f73\u4e4b\u6548\u76ca\uff0c\u56e0\u6b64\u672a\u4f86\u4e5f\u5c07\u5617\u8a66\u63a1\u7528\u6b64\u65b0\u5f0f\u67b6\u69cb\u4f86\u63d0\u5347\u672c\u7cfb\u7d71\u4e4b\u8a9e\u901f\u5075\u6e2c\u80fd</td></tr><tr><td>\u6280\u8853\u53ef\u53c3\u8003\u4e0b)\uff0c\u4f86\u5e6b\u52a9\u55d3\u97f3\u7570\u5e38\u60a3\u8005\u5728\u65e5\u5e38\u751f\u6d3b\u6216\u5de5\u4f5c\u5834\u5408\u4e2d\u4e4b\u9069\u7576\u8abf\u6574\u767c\u8072\u7fd2\u6163\uff0c Input \u529b\u3002</td></tr><tr><td>Wireless \u7387\u660e\u986f\u9ad8\u65bc\u975e\u6559\u5e2b\uff0c\u4e14\u5728\u75c7\u72c0\u7684\u7a0b\u5ea6\u4e0a\u4e5f\u8f03\u70ba\u56b4\u91cd[2,3]\u3002\u8fd1\u5e74\uff0c\u4ee5\u554f\u5377\u7684\u65b9\u5f0f\u8abf\u67e5\u7f8e\u570b \u4ee5\u589e\u9032\u81e8\u5e8a\u6cbb\u7642\u6210\u6548\u3002 \u5716\u4e8c\u3001\u8a9e\u901f\u5075\u6e2c\u4e4b\u4fe1\u865f\u8655\u7406\u6d41\u7a0b\u5716</td></tr><tr><td>Iowa\u5dde\u6559\u5e2b\u55d3\u97f3\u7570\u5e38\u7684\u76db\u884c\u7387\uff0c\u7d50\u679c\u767c\u73fe\u5728554\u4f4d\u4e2d\u5c0f\u5b78\u6559\u5e2b\u4e2d\uff0c\u81ea\u89ba\u6709\u55d3\u97f3\u7570\u5e38\u7684\u6bd4</td></tr><tr><td>\u5716\u4e09\u3001\u672c\u7814\u7a76\u4e2d\u6240\u958b\u767c\u51fa\u5373\u6642\u8a9e\u901f\u5075\u6e2c\u7cfb\u7d71\u4ecb\u9762\u5716(Matlab \u8edf\u9ad4\u5be6\u73fe) (\u4e8c) \u5be6\u9a57\u8a2d\u8a08\u8207\u6d41\u7a0b \u7387\u70ba32 %\uff0c\u986f\u8457\u9ad8\u65bc\u975e\u6559\u5e2b\u76841 %\uff1b\u5176\u4e2d\u670960 %\u7684\u6559\u5e2b\u63d0\u5230\u5728\u904e\u53bb\u7684\u4e00\u5e74\u4e2d\uff0c\u66fe\u7d93\u56e0\u70ba \u4e8c\u3001\u65b9\u6cd5 \u5716\u4e00\u3001\u8a0a\u865f\u8655\u7406\u6d41\u7a0b \u53c3\u8003\u6587\u737b \u672c\u5be6\u9a57\u4e4b\u8a9e\u53e5\u7684\u8a9e\u97f3\u8207\u975e\u8a9e\u97f3\u6a19\u8a18\u63a1\u4eba\u5de5\u6a19\u8a18\uff0c\u6bcf\u4e00\u53e5\u4ee5\u4eba\u5de5\u5c07\u6709\u8a9e\u97f3\u53ca\u6c92\u8a9e\u97f3\u4e4b \u5de5\u4f5c\u51fa\u73fe\u55d3\u97f3\u7570\u5e38\u7684\u60c5\u5f62\uff0c\u5176\u4e2d\u53c8\u4ee5\u5636\u555e\u8072\u3001\u55d3\u97f3\u75b2\u618a\u7b49\u6700\u5e38\u51fa\u73fe\u3002\u6b64\u5916\uff0cRoy\u7b49\u5b78\u8005 (\u4e00) \u7cfb\u7d71\u67b6\u69cb \u767e\u5206\u6bd4\uff0c\u5171 20 \u53e5\uff0c\u6bcf\u53e5 10 \u79d2\uff0c\u6240\u6df7\u4e4b\u566a\u97f3\u985e\u578b\u70ba SSN\u3001\u8a0a\u566a\u6bd4\u70ba 0dB\uff0c\u5171\u5206\u6210 3 \u7d44\u505a (\u4e8c) \u8a9e\u97f3\u8b58\u5225\u7387 [1] Stemple, J. C., Glaze, L. E., & Klaben, B. (2010). Clinical voice pathology: Theory and</td></tr><tr><td>\u65bc2004[4]\u8abf\u67e5\u7f8e\u570b\u7336\u4ed6\u5dde (Utah) \u548c\u611b\u8377\u83ef\u5dde (Iowa)\u76841243\u4f4d\u6559\u5e2b\u548c1288\u4f4d\u975e\u6559\u5e2b\u7684 \u672c\u7814\u7a76\u63d0\u51fa\u4e00\u5957\u4ee5\u8a9e\u97f3\u80fd\u91cf\u7279\u6027\u70ba\u57fa\u790e\u4e4b\u5373\u6642\u55d3\u97f3\u76e3\u6e2c\u7cfb\u7d71\u4f86\u5e6b\u52a9\u60a3\u8005\u5728\u4e0d\u7576\u7528 \u672c\u7814\u7a76\u5c07\u63a1\u7528\u4e4b\u6f14\u7b97\u6cd5\u6982\u5ff5\u5982\u5716\u4e8c\u6240\u793a\u3002\u7576\u4e00\u500b\u5e36\u6709\u566a\u8072\u4e4b\u8a9e\u97f3\u88ab\u4e0a\u8ff0\u7684\u566a\u97f3\u6d88\u9664 \u6e2c\u8a66\uff0c(1)\u70ba\u97f3\u8a0a\u672a\u5957\u7528 Noise Reduction(NR)\u4fbf\u76f4\u63a5\u4ee3\u5165\u56fa\u5b9a\u95be\u503c\u516c\u5f0f\u9032\u884c\u8a9e\u97f3\u5224\u5225\u4e4b \u5716\u56db\u70ba\u672c\u7814\u7a76\u4e4b\u8a9e\u901f\u5075\u6e2c\u5be6\u9a57\u7d50\u679c\uff0cX \u8ef8\u8868\u793a\u4e09\u7a2e\u4e0d\u540c\u4fe1\u865f\u8655\u7406\u65b9\u6cd5(i.e.,\u672a\u4f7f\u7528 management. San Diego, CA: Plural Publishing.</td></tr><tr><td>\u55d3\u97f3\u72c0\u6cc1\uff0c\u7d50\u679c\u767c\u73fe\u6559\u5e2b\u55d3\u97f3\u7570\u5e38\u4e4b\u76db\u884c\u7387\u986f\u8457\u9ad8\u65bc\u975e\u6559\u5e2b\u3002\u6b64\u5916\uff0c\u015aliwi\u0144ska-Kowalska \u8072\u6642(i.e., \u8a9e\u901f\u904e\u5feb\u53ca\u97f3\u91cf\u904e\u9ad8)\uff0c\u7d66\u4e88\u5373\u6642\u4e4b\u63d0\u9192\u4ee5\u63d0\u5347\u81e8\u5e8a\u6cbb\u7642\u6548\u679c\u3002\u800c\u672c\u7814\u7a76\u6240\u63d0 \u6cd5\u8655\u7406\u5f8c(i.e., enhanced speech)\uff0c\u6b64\u4fe1\u865f \u5c07\u6703\u9053\u5148\u900f\u904e pre-emphasis \u8655\u7406\u3002\u63a5\u8457\u6211\u5011\u63a1 \u767e\u5206\u6bd4\uff0c(2)\u70ba\u97f3\u8a0a\u7d93 NR \u5f8c\u4ee3\u5165\u56fa\u5b9a\u95be\u503c\u516c\u5f0f\u9032\u884c\u8a9e\u97f3\u5224\u5225\u4e4b\u767e\u5206\u6bd4 (\u8a3b: logMMSE \u566a NR\u3001\u63a1\u7528 NR \u53ca\u63a1\u7528 NR+AT \u4e4b\u52d5\u614b\u95be\u503c\u8abf\u6574\u6cd5)\u3002\u5be6\u9a57\u7d50\u679c\u767c\u73fe\uff0c\u60a3\u8005\u8a9e\u97f3\u65bc\u566a\u97f3\u60c5</td></tr><tr><td>\u7b49\u5b78\u8005\u65bc2006[5]\u7814\u7a76425\u4f4d\u6559\u5e2b\u55d3\u97f3\u7570\u5e38\u7684\u76db\u884c\u7387\uff0c\u7d50\u679c\u4e5f\u767c\u73fe\u5230\u6559\u5e2b\u767c\u751f\u55d3\u97f3\u7570\u5e38\u7684 \u51fa\u4e4b\u8a0a\u865f\u8655\u7406\u6d41\u7a0b\u5982\u4e0b\u5716\u4e00\u6240\u793a\u3002\u7531\u65bc\u60a3\u8005\u6240\u8655\u4e4b\u74b0\u5883\u5f80\u5f80\u90fd\u5bb9\u6613\u5b58\u5728\u8a31\u591a\u566a\u97f3(\u4f8b\u5982: \u7528\u6574\u6d41\u5668(i.e., rectifier)\u4e4b\u6982\u5ff5\u5c0d\u8a9e\u97f3\u4fe1\u865f\u4e4b\u4e0a\u534a\u90e8\u8a0a\u606f\u4fdd\u7559\u5f8c\uff0c\u63a5\u4e0b\u4f86\u518d\u63a1\u7528\u4e00\u500b\u4f4e\u901a \u97f3\u6d88\u9664\u6cd5\u65bc\u6b64\u7814\u7a76\u88ab\u63a1\u7528 [11]);(3)\u70ba\u97f3\u8a0a\u7d93 NR \u5f8c\u4ee3\u5165\u7531\u57fa\u56e0\u6f14\u7b97\u6cd5(GA)\u6700\u4f73\u5316\u5f8c\u7684 \u5883\u4e0b(i.e., SSN \u566a\u97f3\u985e\u578b\u30010dB SNR level)\uff0c\u672c\u7cfb\u7d71\u5728\u672a\u4f7f\u7528 NR \u8655\u7406\u6642\u7684\u6e96\u78ba\u7387\u70ba 86.8%;</td></tr><tr><td>\u6a5f\u7387\u662f\u975e\u6559\u5e2b\u7684\u4e8c\u81f3\u4e09\u500d\uff0c\u75c7\u72c0\u4e5f\u8f03\u70ba\u56b4\u91cd\u3002\u7531\u4e0a\u8ff0\u5e7e\u9805\u7814\u7a76\u53ef\u767c\u73fe\uff0c\u6559\u5e2b\u55d3\u97f3\u7570\u5e38\u7684 \u51b7\u6c23\u3001\u96fb\u51b0\u7bb1\u3001\u96fb\u8996\u2026\u7b49)\uff0c\u800c\u9019\u4e9b\u566a\u97f3\u4e5f\u6703\u76f4\u63a5\u7684\u5f71\u97ff\u8a9e\u901f\u5075\u6e2c\u4e4b\u6e96\u78ba\u6027\u3002\u6709\u9451\u65bc\u6b64\uff0c \u6ffe\u6ce2\u5668(i.e., LPF)\u9032\u884c\u8a9e\u97f3\u4f4e\u983b\u4fe1\u865f\u4e4b\u4fdd\u91cf\u3002\u8a3b:\u8a9e\u97f3\u80de\u7d61\u7dda\u4f4e\u983b\u90e8\u4efd\u70ba\u4eba\u985e\u767c\u8072\u6642\u632f\u52d5 \u52d5\u614b\u95be\u503c(AT)\u516c\u5f0f\u9032\u884c\u8a9e\u97f3\u5224\u5225\u4e4b\u767e\u5206\u6bd4\uff0c\u4e4b\u5f8c\u5c07\u9019\u4e09\u7d44\u6240\u4f30\u51fa\u7684\u95be\u503c\u767e\u5206\u6bd4\u8207\u4eba\u5de5\u6240 \u7576\u63a1\u7528\u566a\u97f3\u6d88\u9664\u6cd5\u6642\uff0c\u7cfb\u7d71\u6e96\u78ba\u7387\u70ba 93.8%; \u6700\u5f8c\u672c\u7cfb\u7d71\u63a1\u7528 NR+AT \u65b9\u6cd5\u6642\uff0c\u7cfb\u7d71\u6e96</td></tr><tr><td>\u76db\u884c\u7387\u986f\u8457\u9ad8\u65bc\u975e\u6559\u5e2b\uff0c\u800c\u55d3\u97f3\u7570\u5e38\u75c7\u72c0\u4e5f\u8f03\u975e\u6559\u5e2b\u591a\u4e14\u56b4\u91cd\u3002\u6709\u9451\u65bc\u6b64\uff0c\u6559\u5e2b\u7684\u55d3\u97f3 \u672c\u7814\u7a76\u63d0\u51fa\u4e4b\u7cfb\u7d71\u5c07\u63a1\u7528\u975e\u76e3\u7763\u5f0f\u566a\u97f3\u6d88\u9664\u6cd5(i.e., logMMSE[11])\u505a\u70ba\u524d\u7aef\u4fe1\u865f\u8655\u7406\u4ee5 \u4e4b\u57fa\u983b\u4fe1\u865f\uff0c\u800c\u4e5f\u662f\u81e8\u5e8a\u4e0a\u7528\u4f86\u5224\u5225\u8072\u97f3\u52d5\u4f5c\u8207\u5426\u4e4b\u91cd\u8981\u6307\u6a19\u3002\u800c\u5176\u5404\u983b\u5e36\u9593(i.e., \u4f4e \u6a19\u793a\u7684\u7b54\u6848\u505a\u6bd4\u5c0d\uff0c\u5373\u53ef\u8a08\u7b97\u51fa\u672c\u7814\u7a76\u6240\u63d0\u51fa\u4e4b\u67b6\u69cb\u5c0d\u65bc\u8a9e\u97f3\u5224\u5225\u7684\u6e96\u78ba\u7387\uff0c\u8a73\u7d30\u7d50\u679c \u78ba\u7387\u70ba 95.4%\u3002\u7531\u6b64\u7d50\u679c\u6211\u5011\u89c0\u5bdf\u5230\u4ee5\u4e0b\u5e7e\u9805\u7d50\u8ad6:(1)\u566a\u97f3\u6d88\u9664\u6cd5\u5c07\u80fd\u6709\u6548\u7684\u63d0\u5347\u672c\u7cfb</td></tr><tr><td>\u6d88\u9664\u566a\u97f3\u3002\u63a5\u8457\uff0c\u8655\u7406\u5f8c\u4e4b\u8a9e\u97f3\u5c07\u900f\u904e\u8a9e\u97f3\u80fd\u91cf\u7279\u6027\u9032\u884c\u8a9e\u97f3\u80fd\u91cf\u80de\u7d61\u7dda\u63d0\u53d6\u52d5\u4f5c\u3002\u6b64 \u81f3\u9ad8\u983b)\u4e4b\u6b0a\u91cd\u95dc\u4fc2\u5c07\u6703\u4f9d\u64da\u83ef\u8a9e\u8a9e\u8a00\u7279\u6027\u9032\u884c\u6b0a\u91cd\u8abf\u6574\u3002\u63a5\u8457\uff0c\u53d6\u51fa\u4e4b\u80de\u7d61\u7dda\u4fe1\u865f\u5c07 \u7d71\u65bc\u566a\u97f3\u74b0\u5883\u4e0b\u4e4b\u9810\u4f30\u80fd\u529b\u3001(2)\u672c\u7814\u7a76\u63d0\u51fa\u4e4b AT \u52d5\u614b\u95be\u503c\u8abf\u6574\u6cd5\u80fd\u66f4\u9032\u4e00\u6b65\u7684\u63d0\u5347\u672c \u8acb\u53c3\u898b\u5716\u56db\u3002 \u4fdd\u5065\u53ca\u6cbb\u7642\u5c07\u662f\u4e00\u500b\u91cd\u8981\u4e4b\u7814\u7a76\u8ab2\u984c[2-4]\u3002 \u6559\u5e2b\u55d3\u97f3\u7570\u5e38\u7684\u539f\u56e0\u4ee5\u55d3\u97f3\u8aa4\u7528(\u6216\u6feb\u7528)\u70ba\u4e3b [4,6]\uff0c\u4fc2\u6307\u9577\u6642\u9593\u8aaa\u8a71\u4e14\u8a9e\u901f\u904e\u5feb\u3001 \u5916\uff0c\u672c\u7cfb\u7d71\u63d0\u51fa\u4e00\u500b\u9069\u61c9\u6027\u8abf\u52d5\u503c\u6f14\u7b97\u6cd5(adaptive threshold algorithm)\u4f86\u4f9d\u64da\u4f7f\u7528\u8005\u6240 \u57fa\u65bc\u4e00\u500b\u52d5\u614b\u8abf\u6574\u95be\u503c(i.e., adaptive threshold, AT)\u4f86\u5c07\u6b64\u80de\u7dda\u7dda\u8f49\u63db\u6210\u65b9\u6ce2\u4fe1\u865f\u9032\u884c\u55ae \u7cfb\u7d71\u4e4b\u8a9e\u901f\u5075\u6e2c\u6e96\u78ba\u6027\u3002</td></tr></table>", |
|
"type_str": "table", |
|
"num": null, |
|
"html": null |
|
} |
|
} |
|
} |
|
} |