Benjamin Aw
Add updated pkl file v3
6fa4bc9
{
"paper_id": "O17-1032",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:59:50.634436Z"
},
"title": "On the Use of Sequence Labeling and Matching Methods for ASR Error Detection and Correction",
"authors": [
{
"first": "Chia-Hua",
"middle": [],
"last": "\u5433\u4f73\u6a3a",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Taiwan Normal University",
"location": {}
},
"email": ""
},
{
"first": "Chun-I",
"middle": [],
"last": "Wu",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Taiwan Normal University",
"location": {}
},
"email": ""
},
{
"first": "Hsiao-Tsung",
"middle": [],
"last": "Tsai",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Taiwan Normal University",
"location": {}
},
"email": ""
},
{
"first": "Yu -Chen",
"middle": [],
"last": "Hung",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Taiwan Normal University",
"location": {}
},
"email": ""
},
{
"first": "Berlin",
"middle": [],
"last": "Kao",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Taiwan Normal University",
"location": {}
},
"email": "[email protected]"
},
{
"first": "",
"middle": [],
"last": "Chen",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Taiwan Normal University",
"location": {}
},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "This paper sets out to study several important aspects pertaining to speech recognition errors, especially the out-of-vocabulary (OOV) word problem that is caused by using generic speech recognition systems for a specific application domain. To this end, a two-stage processing method, involving error detection and error correction, is proposed. For error detection, we explore and compare disparate sequence labeling methods to detect possible errors of different types. Further, in the error correction stage, an effective phone-level matching mechanism along with a domain-specific keyword list is exploited to correct errors of different types detected by the previous stage. Extensive experiments conducted on four application domains, including educational issues, industrial technology-related interviews and speech memos and meeting recordings, show that our proposed methods can boot the performance of a given 354",
"pdf_parse": {
"paper_id": "O17-1032",
"_pdf_hash": "",
"abstract": [
{
"text": "This paper sets out to study several important aspects pertaining to speech recognition errors, especially the out-of-vocabulary (OOV) word problem that is caused by using generic speech recognition systems for a specific application domain. To this end, a two-stage processing method, involving error detection and error correction, is proposed. For error detection, we explore and compare disparate sequence labeling methods to detect possible errors of different types. Further, in the error correction stage, an effective phone-level matching mechanism along with a domain-specific keyword list is exploited to correct errors of different types detected by the previous stage. Extensive experiments conducted on four application domains, including educational issues, industrial technology-related interviews and speech memos and meeting recordings, show that our proposed methods can boot the performance of a given 354",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups",
"authors": [
{
"first": "G",
"middle": [],
"last": "Hinton",
"suffix": ""
}
],
"year": 2012,
"venue": "IEEE Signal Process. Mag",
"volume": "29",
"issue": "6",
"pages": "82--97",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "G.Hinton et al., \"Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups,\" IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82-97, 2012.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "An overview of noise-robust automatic speech recognition",
"authors": [
{
"first": "J",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Deng",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Gong",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Haeb-Umbach",
"suffix": ""
}
],
"year": 2014,
"venue": "IEEE Transactions on Audio, Speech and Language Processing",
"volume": "22",
"issue": "4",
"pages": "745--777",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J.Li, L.Deng, Y.Gong, andR.Haeb-Umbach, \"An overview of noise-robust automatic speech recognition,\" IEEE Transactions on Audio, Speech and Language Processing, vol. 22, no. 4. pp. 745-777, 2014.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Learning Out-of-Vocabulary Words in Automatic Speech Recognition",
"authors": [
{
"first": "L",
"middle": [],
"last": "Qin",
"suffix": ""
}
],
"year": 2013,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "L.Qin, \"Learning Out-of-Vocabulary Words in Automatic Speech Recognition,\" 2013.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Error detection and accuracy estimation in automatic speech recognition using deep bidirectional recurrent neural networks",
"authors": [
{
"first": "A",
"middle": [],
"last": "Ogawa",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Hori",
"suffix": ""
}
],
"year": 2017,
"venue": "Speech Commun",
"volume": "89",
"issue": "",
"pages": "70--83",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A.Ogawa andT.Hori, \"Error detection and accuracy estimation in automatic speech recognition using deep bidirectional recurrent neural networks,\" Speech Commun., vol. 89, pp. 70-83, 2017.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "OOV Detection and Recovery using Hybrid Models with Different Fragments",
"authors": [
{
"first": "L",
"middle": [],
"last": "Qin",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Rudnicky",
"suffix": ""
}
],
"year": 2011,
"venue": "",
"volume": "",
"issue": "",
"pages": "1913--1916",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "L.Qin, M.Sun, andA.Rudnicky, \"OOV Detection and Recovery using Hybrid Models with Different Fragments,\" no. August, pp. 1913-1916, 2011.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Automatic pronunciation scoring of specific phone segments for language instruction",
"authors": [
{
"first": "Y",
"middle": [],
"last": "Kim",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Franco",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Neumeyer",
"suffix": ""
}
],
"year": 1997,
"venue": "Proc. of EUROSPEECH",
"volume": "97",
"issue": "",
"pages": "649--652",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Y.Kim, H.Franco, andL.Neumeyer, \"Automatic pronunciation scoring of specific phone segments for language instruction,\" in Proc. of EUROSPEECH, 1997, vol. 97, pp. 649- 652.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Automatic correction of ASR outputs by using machine translation",
"authors": [
{
"first": "L",
"middle": [
"F"
],
"last": "D'haro Andr",
"suffix": ""
},
{
"first": ".",
"middle": [
"E"
],
"last": "Banchs",
"suffix": ""
}
],
"year": 2016,
"venue": "Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH",
"volume": "",
"issue": "",
"pages": "3469--3473",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "L. F.D'Haro andR. E.Banchs, \"Automatic correction of ASR outputs by using machine translation,\" Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH, vol. 08- 12-Sept, pp. 3469-3473, 2016.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "CRF-based combination of contextual features to improve a posteriori word-level confidence measures",
"authors": [
{
"first": "P",
"middle": [],
"last": "Fayolle",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Moreau",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Raymond",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Gravier",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Gros",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "P.Fayolle, J., Moreau, F., Raymond, C., Gravier, G., & Gros, \"CRF-based combination of contextual features to improve a posteriori word-level confidence measures.,\" Elev.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Improving domain-independent cloud-based speech recognition with domain-dependent phonetic post-processing",
"authors": [
{
"first": "J",
"middle": [],
"last": "Twiefel",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Baumann",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Heinrich",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Wermter",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI-14)",
"volume": "",
"issue": "",
"pages": "1--7",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J.Twiefel, T.Baumann, S.Heinrich, andS.Wermter, \"Improving domain-independent cloud-based speech recognition with domain-dependent phonetic post-processing,\" in Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI-14), 2014, pp. 1-7.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "ASR error segment localization for spoken recovery strategy",
"authors": [
{
"first": "F",
"middle": [],
"last": "Bechet",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Favre",
"suffix": ""
}
],
"year": 2013,
"venue": "ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing -Proceedings",
"volume": "",
"issue": "",
"pages": "6837--6841",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "F.Bechet andB.Favre, \"ASR error segment localization for spoken recovery strategy,\" in ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing -Proceedings, 2013, pp. 6837-6841.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Person name recognition in ASR outputs using continuous context models",
"authors": [
{
"first": "R",
"middle": [],
"last": "Bigot",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Senay",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Linares",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Fredouille",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Dufour",
"suffix": ""
}
],
"year": 2013,
"venue": "ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. -Proc",
"volume": "",
"issue": "",
"pages": "8470--8474",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R.Bigot, B., Senay, G., Linares, G., Fredouille, C., & Dufour, \"Person name recognition in ASR outputs using continuous context models.,\" ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. -Proc., pp. 8470-8474, 2013.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Optimizing lexical and n-gram coverage via judicious use of linguistic data",
"authors": [
{
"first": "R",
"middle": [],
"last": "Rosenfeld",
"suffix": ""
}
],
"year": 1995,
"venue": "Fourth European Conference on Speech Communication and Technology",
"volume": "",
"issue": "",
"pages": "1763--1766",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R.Rosenfeld, \"Optimizing lexical and n-gram coverage via judicious use of linguistic data,\" in Fourth European Conference on Speech Communication and Technology, 1995, pp. 1763-1766.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Scikit-learn: Machine learning in Python",
"authors": [
{
"first": "F",
"middle": [],
"last": "Pedregosa",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Varoquaux",
"suffix": ""
}
],
"year": 2011,
"venue": "",
"volume": "12",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "F.Pedregosa andG.Varoquaux, Scikit-learn: Machine learning in Python, vol. 12. 2011.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Theano: a CPU and GPU Math Expression Compiler",
"authors": [
{
"first": "J",
"middle": [],
"last": "Bergstra",
"suffix": ""
}
],
"year": 2010,
"venue": "Proc. Python Sci. Comput. Conf",
"volume": "",
"issue": "",
"pages": "1--7",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J.Bergstra et al., \"Theano: a CPU and GPU Math Expression Compiler,\" Proc. Python Sci. Comput. Conf., pp. 1-7, 2010.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "GitHub",
"authors": [
{
"first": "F",
"middle": [],
"last": "Chollet",
"suffix": ""
}
],
"year": 2015,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "F.Chollet, \"Keras,\" GitHub, 2015. [Online]. Available: https://github.com/fchollet/keras.",
"links": null
}
},
"ref_entries": {
"TABREF0": {
"text": "\u4ee5\u53ca\u97f3\u7d20\u5c0d\u7167\u6cd5[9]\u3002\u901a\u5e38\u662f\u4ee5\u5b57\u8a5e(word)\u3001\u97f3 \u7d20(phone)\u3001\u7b26\u865f(symbol)\u7b49\u4f5c\u70ba\u8f38\u5165\u7279\u5fb5\u3002\u4f8b\u5982\uff1a[10]\u63d0\u51fa\u4e86\u4e00\u500b\u5728\u5c0d\u8a71\u7cfb\u7d71\u4e2d\u7684\u8a9e\u97f3 \u5230\u8a9e\u97f3(speech-to-speech)\u8f49\u63db\u6a5f\u5236\uff0c\u662f\u5229\u7528\u689d\u4ef6\u96a8\u6a5f\u57df\u5075\u6e2c\u932f\u8aa4\u6a19\u8a18\u9054\u5230\u4fee\u6b63\u6587\u5b57\u7684\u76ee \u7684\u3002[11]\u63d0\u51fa\u4e86\u4e00\u7a2e\u57fa\u65bc\u85c9\u7531\u6f5b\u5728\u8a9e\u7fa9\u5206\u6790(latent sematic analysis, LSA)\u63d0\u53d6\u4e0a\u4e0b\u6587\u7684\u5411 \u91cf\u8868\u793a\u65b9\u6cd5\uff0c\u4e26\u5229\u7528\u652f\u6301\u5411\u91cf\u6a5f(support vector machine, SVM)\u5206\u985e\u5668\u4f5c\u4eba\u540d\u8fa8\u8a8d\u3002\u7531\u65bc",
"content": "<table><tr><td>\u8868\u4e00\u3001 \u83ef\u8a9e\u6703\u8b70\u8a9e\u6599\u5167\u5bb9\u4ecb\u7d39 \u8868\u4e8c\u3001 \u83ef\u8a9e\u8a9e\u6599\u5eab\u53ca\u81ea\u52d5\u8a9e\u97f3\u8fa8\u8b58\u7d50\u679c \u8868\u4e09\u3001 ROC \u5206\u6790\u4e2d\u7684\u56db\u9805\u6307\u6a19\u5728\u8fa8\u8b58\u5075\u6e2c\u4efb\u52d9\u4e2d\u7684\u5b9a\u7fa9</td></tr><tr><td>\u4e00\u3001 \u7dd2\u8ad6 \u7531\u65bc\u6a5f\u5668\u5b78\u7fd2\u53ca\u6df1\u5ea6\u5b78\u7fd2\u7684\u8fc5\u901f\u767c\u5c55[1]\uff0c\u8a31\u591a\u9818\u57df\u7684\u6027\u80fd\u8868\u73fe\u90fd\u6709\u5927\u5e45\u5ea6\u7684\u63d0\u5347\u53ca\u7a81 \u7834\uff0c\u800c\u8a9e\u97f3\u8fa8\u8b58\u4e5f\u4e0d\u4f8b\u5916\u3002\u8a31\u591a\u5927\u578b\u4f01\u696d\u76f8\u7e7c\u6295\u5165\u8a9e\u97f3\u65b9\u9762\u7684\u7814\u7a76\u53ca\u61c9\u7528\u4e0a\uff0c\u4e26\u4e14\u63d0\u4f9b \u4f7f\u7528\u8005\u8a9e\u97f3\u76f8\u95dc\u670d\u52d9\uff0c\u5305\u542b\u96f2\u7aef\u8a08\u7b97\u8207\u7d42\u7aef\u88dd\u7f6e\u7684\u8a9e\u97f3\u8fa8\u8b58\u7684\u61c9\u7528\u7a0b\u5f0f\u4ecb\u9762(API)\u3002\u56e0 \u70ba\u4e0a\u8ff0\u5e73\u53f0\u63d0\u4f9b\u7684\u4fbf\u5229\u6027\uff0c\u4f7f\u5f97\u5927\u91cf\u8a9e\u97f3\u4e92\u52d5\u7684\u667a\u6167\u578b\u88dd\u7f6e\u88ab\u5ee3\u6cdb\u5730\u61c9\u7528\uff0c\u4f8b\u5982\u8eca\u8f09\u96fb \u8166\u7684\u8a9e\u97f3\u5c0d\u8a71\u4ecb\u9762\u548c\u8a9e\u97f3\u5ba2\u670d\u7b49\uff0c\u9019\u985e\u7684\u61c9\u7528\u901a\u5e38\u662f\u4f9d\u9644\u5728\u8a9e\u97f3\u8fa8\u8b58\u5668\u4e4b\u5f8c\u3002\u56e0\u70ba\u8a9e\u6599 \u7684\u6536\u96c6\u4fbf\u5229\u6027\u53ca\u6210\u672c\u7684\u5dee\u7570\uff0c\u4f7f\u5f97\u4e00\u822c\u7684\u4f7f\u7528\u8005\u65e5\u5e38\u5c0d\u8a71\u6216\u71b1\u9580\u8a71\u984c\u90fd\u80fd\u9054\u5230\u826f\u597d\u7684\u8fa8 \u8b58\u6b63\u78ba\u7387\uff0c\u4f46\u5728\u7279\u5b9a\u9818\u57df\uff0c\u4f8b\u5982\u5de5\u696d\u61c9\u7528\uff0c\u5247\u6703\u906d\u9047\u5230\u7279\u6b8a\u8a5e\u5f59\u6216\u8a72\u9818\u57df\u7684\u5c08\u696d\u8853\u8a9e\uff0c \u53ef\u80fd\u9020\u6210\u91cd\u8981\u5b57\u8a5e\u7121\u6cd5\u8fa8\u8a8d\u7684\u554f\u984c\u3002\u6700\u76f4\u63a5\u7684\u89e3\u6c7a\u65b9\u6cd5\u662f\u91cd\u65b0\u6536\u96c6\u8a9e\u6599\uff0c\u5305\u542b\u8a9e\u97f3\u4ee5\u53ca \u6587\u5b57\u5167\u5bb9\uff0c\u518d\u61c9\u7528\u6a21\u578b\u8abf\u9069\u7b49\u65b9\u6cd5\u89e3\u6c7a\u554f\u984c\u3002\u7136\u800c\uff0c\u65b0\u5f0f\u7684\u8a9e\u97f3\u8fa8\u8b58\u6280\u8853\u4f9d\u8cf4\u6df1\u5c64\u985e\u795e \u7d93\u7db2\u8def\u8207\u5927\u6578\u64da\u8cc7\u6599\uff0c\u9700\u8981\u82b1\u8cbb\u66f4\u9577\u7684\u6536\u96c6\u8cc7\u6599\u7684\u6642\u9593\u6210\u672c\uff0c\u624d\u80fd\u9054\u5230\u548c\u4e00\u822c\u60c5\u5883\u76f8\u8fd1 \u7684\u8fa8\u8b58\u7387\uff0c\u800c\u771f\u5be6\u7684\u61c9\u7528\u60c5\u5883\u53ef\u80fd\u7121\u6cd5\u5148\u6536\u96c6\u8a9e\u97f3\u518d\u4f7f\u7528\u670d\u52d9\u3002\u56e0\u6b64\uff0c\u5982\u4f55\u5feb\u901f\u5730\u5c07\u8fa8 \u6539\u5584\u95dc\u9375\u8a5e\u8fa8\u8b58\u932f\u8aa4\u6240\u5c0e\u81f4\u7684\u554f\u984c\u3002\u5047\u8a2d\u9019\u4e9b\u5b57\u8a5e\u82e5\u80fd\u88ab\u6b63\u78ba\u8f49\u5beb\uff0c\u5247\u80fd\u5e6b\u52a9\u8a9e\u97f3\u8fa8\u8b58 \u61c9\u7528\u65bc\u66f4\u591a\u9818\u57df\u53ca\u60c5\u5883\u4e4b\u4e0b\u3002\u901a\u7528\u7684\u8a9e\u97f3\u8fa8\u8b58\u5668\u662f\u7531\u5927\u6578\u64da\u8a13\u7df4\u800c\u5f97\u7684\u8907\u96dc\u8fa8\u8b58\u5668\uff0c\u4e14 \u9700\u8981 GPU \u7b49\u904b\u7b97\u8cc7\u6e90\uff0c\u800c\u6bcf\u500b\u7d42\u7aef\u61c9\u7528\u90fd\u5f9e\u6b64\u8fa8\u8b58\u5668\u5f97\u5230\u7b2c\u4e00\u968e\u6bb5\u7684\u8f49\u5beb\u6587\u5b57\uff0c\u518d\u642d \u914d\u8f15\u91cf\u7684\u6f14\u7b97\u6cd5\uff0c\u9032\u884c\u7b2c\u4e8c\u6b21\u7684\u8f49\u5beb\u5167\u5bb9\u4fee\u6b63\u3002\u6211\u5011\u5617\u8a66\u5169\u968e\u6bb5\u7684\u89e3\u6c7a\u65b9\u6cd5\uff1a\u9996\u5148\u8a2d\u8a08 \u4e00\u500b\u81ea\u52d5\u5206\u6790\u8fa8\u8b58\u5668\u932f\u8aa4\u7684\u5206\u985e\u5668\uff0c\u518d\u6839\u64da\u932f\u8aa4\u985e\u578b\u8cc7\u8a0a\uff0c\u642d\u914d\u5c11\u91cf\u7684\u95dc\u9375\u8a5e\u6e05\u55ae\u4f86\u4fee \u6b63\u5167\u5bb9\u3002 \u5728\u7279\u6b8a\u9818\u57df\u77e5\u8b58\u7684\u8a9e\u97f3\u8fa8\u8b58\u4efb\u52d9\u4e2d\uff0c\u7531\u65bc\u8a9e\u97f3\u5167\u5bb9\u5305\u542b\u5927\u91cf\u7684\u7279\u6b8a\u540d\u8a5e\uff0c\u4f7f\u5f97\u8fad\u5178 \u5916\u7684\u672a\u77e5\u8a5e(out of vocabulary words, OOV words)\u6703\u56b4\u91cd\u5f71\u97ff\u8fa8\u8b58\u6b63\u78ba\u7387\u3002\u7d93\u7531\u8a9e\u97f3\u8fa8\u8b58 \u6d41\u7a0b\u5f8c\u7684\u7d50\u679c\u4ecd\u6709\u8f49\u5beb\u932f\u8aa4\uff0c\u5728\u6b64\u6211\u5011\u6839\u64da\u662f\u5426\u7834\u58de\u5c0d\u8a71\u4efb\u52d9\u7684\u7406\u89e3\uff0c\u5c07\u932f\u8aa4\u5206\u70ba\u5169\u985e\u3002 \u7b2c\u4e00\u7a2e\u8f15\u5fae\u7684\u932f\u8aa4\uff0c\u901a\u5e38\u662f\u4e00\u822c\u5b57\u8a5e\uff0c\u4f46\u767c\u97f3\u4e0d\u6e05\u695a\u5c0e\u81f4\u767c\u751f\u8a9e\u97f3\u8fa8\u8b58\u932f\u8aa4\u3002\u9019\u6a23\u932f\u8aa4 \u5e38\u767c\u751f\u5728\u65bc\u81ea\u7136\u5c0d\u8a71\u4e0a\uff0c\u4f8b\u5982\u4e0d\u6d41\u5229\u7684\u91cd\u8907\u8d05\u8a5e\u6216\u8a9e\u52a9\u8a5e\u7b49\u3002\u7b2c\u4e8c\u7a2e\u6703\u5f71\u97ff\u7406\u89e3\u7684\u932f\u8aa4\uff0c \u5927\u591a\u662f\u7279\u6b8a\u5b57\u8a5e\u4e14\u4e0d\u5b58\u5728\u8a13\u7df4\u8a9e\u6599\u7684\u8fad\u5178\u4e2d\uff0c\u5c0e\u81f4\u8a9e\u97f3\u8fa8\u8b58\u5668\u7121\u6cd5\u53bb\u6b63\u78ba\u8f49\u5beb\u3002\u4f8b\u5982\u5c08 \u6709\u540d\u8a5e\u3001\u4eba\u540d\u3001\u5730\u540d\u3001\u6578\u5b57\u53ca\u4e2d\u82f1\u593e\u96dc\u7684\u5b57\u8a5e\u7b49\u3002\u5728\u5be6\u969b\u61c9\u7528\u4e2d\uff0c\u4e0d\u6d41\u5229\u8a9e\u53e5\u9020\u6210\u7684\u932f \u8aa4\u9069\u5408\u5728\u7b2c\u4e00\u968e\u6bb5\u7684\u901a\u7528\u8a9e\u97f3\u8fa8\u8b58\u5668\u4e2d\u89e3\u6c7a\uff0c\u5728\u6b64\u4e26\u4e0d\u8a0e\u8ad6\u3002\u800c\u5f71\u97ff\u7406\u89e3\u7684\u7279\u6b8a\u8a5e\u5f59\u4e0d \u5bb9\u6613\u6536\u96c6\u5927\u6578\u64da\u4e26\u52a0\u5165\u8a13\u7df4\u8a9e\u6599\u4e2d\uff0c\u9700\u8981\u7368\u7acb\u89e3\u6c7a\u6b64\u554f\u984c\u3002\u91cd\u8981\u8a5e\u5f59\u6e05\u55ae\u8f03\u5bb9\u6613\u4eba\u5de5\u5b9a \u7fa9\uff0c\u800c\u5f71\u97ff\u7406\u89e3\u7684\u8a5e\u53ef\u4ee5\u8996\u70ba\u95dc\u9375\u8a5e\uff0c\u800c\u6211\u5011\u53ef\u4ee5\u5f9e\u95dc\u9375\u8a5e\u7684\u7cbe\u78ba\u7387\u548c\u53ec\u56de\u7387\u8a55\u4f30\u8f49\u5beb \u6587\u5b57\u5426\u80fd\u6eff\u8db3\u5c0d\u8a71\u5167\u5bb9\u7684\u7406\u89e3\u3002 \u672a\u77e5\u8a5e\u662f\u4e00\u500b\u51fa\u73fe\u5728\u6e2c\u8a66\u8a9e\u6599\uff0c\u4f46\u4e26\u4e14\u4e0d\u5b58\u5728\u65bc\u8fa8\u8b58\u8fad\u5178\u4e2d\u7684\u5b57\u8a5e\u3002\u7136\u800c\uff0c\u5927\u591a\u6578\u8a9e\u97f3 \u8fa8\u8b58\u7cfb\u7d71\u90fd\u662f\u5c6c\u65bc\u5c01\u9589\u8a5e\u5f59(closed-vocabulary)\u7684\u8fa8\u8b58\u5668\uff0c\u5373\u53ea\u80fd\u8fa8\u8b58\u56fa\u5b9a\u4e14\u6709\u9650\u7684\u8a5e\u5f59\u3002 \u7576\u9019\u4e9b\u672a\u77e5\u8a5e\u51fa\u73fe\u5728\u6e2c\u8a66\u8a9e\u6599\u4e2d\uff0c\u7cfb\u7d71\u5c07\u7121\u6cd5\u8b58\u5225\uff0c\u5c0e\u81f4\u5b83\u88ab\u8aa4\u8a8d\u6210\u5df2\u77e5\u8a5e\u3002\u6b64\u5916\uff0c\u767c \u751f\u672a\u77e5\u8a5e\u7684\u540c\u6642\uff0c\u66f4\u53ef\u80fd\u9023\u5e36\u5f71\u97ff\u5468\u906d\u5176\u4ed6\u7684\u5df2\u77e5\u8a5e[3]\u3002\u800c\u5e73\u5747\u4f86\u8aaa\uff0c\u4e00\u500b\u672a\u77e5\u8a5e\u53ef\u80fd \u7522\u751f 1.2 \u500b\u5b57\u932f\u8aa4[4]\u3002\u70ba\u4e86\u6539\u5584\u672a\u77e5\u8a5e\u7684\u554f\u984c\uff0c\u8a31\u591a\u7814\u7a76\u63d0\u51fa\u4e86\u4ee5\u6a21\u578b\u8abf\u9069(model adaptation)\u6216\u662f\u958b\u653e\u8a5e\u5f59(open-vocabulary)\u65b9\u6cd5\u4f86\u505a\u6539\u5584\u3002\u4e00\u822c\u800c\u8a00\uff0c\u9700\u8981\u6536\u96c6\u81ea\u7136\u8a9e\u53e5 \u624d\u80fd\u5efa\u7acb\u8a9e\u8a00\u6a21\u578b\u4f9b\u8fa8\u8b58\u5668\u4f7f\u7528\uff0c\u4f46\u4f7f\u7528\u5c08\u6709\u540d\u8a5e\u7684\u8a9e\u53e5\u4e0d\u5bb9\u6613\u6536\u96c6\u3002\u4ee5\u4e0b\u6211\u5011\u91dd\u5c0d\u8a9e \u97f3\u8b58\u5225\u932f\u8aa4\u7684\u6539\u5584\u6240\u4f7f\u7528\u7684\u7279\u5fb5\u53ca\u6a21\u578b\u65b9\u6cd5\u505a\u66f4\u9032\u4e00\u6b65\u7684\u63a2\u8a0e\u3002 \u8fd1\u4e8c\u5341\u5e74\u4f86\uff0c\u5df2\u6709\u8a31\u591a\u7814\u7a76\u5617\u8a66\u6aa2\u6e2c\u548c\u4fee\u5fa9\u8a9e\u97f3\u8fa8\u8b58\u932f\u8aa4\u3002\u6709\u5e7e\u500b\u65b9\u6cd5\u80fd\u5920\u5075\u6e2c\u672a \u77e5\u8a5e\uff1a1)\u4ee5\u6df7\u5408\u8a9e\u8a00\u6a21\u578b(hybrid language model)\u505a\u89e3\u78bc(decoding)\uff0c\u4e26\u4e14\u4ee5\u97f3\u7d20\u3001\u5b50\u8a5e\u7b49 \u4f86\u8868\u793a\u672a\u77e5\u8a5e\uff1b2)\u4ee5\u4fe1\u5fc3\u5206\u6578(confidence score)\u548c\u5176\u4ed6\u8cc7\u8a0a\u4f86\u5c0b\u627e\u53ef\u80fd\u7684\u672a\u77e5\u8a5e\u5340\u57df\uff1b3) \u7d50\u5408\u6df7\u5408\u8a9e\u8a00\u6a21\u578b\u53ca\u4fe1\u5fc3\u5206\u6578\uff0c\u9032\u4e00\u6b65\u63d0\u5347\u6aa2\u7d22\u6027\u80fd[5]\u3002 \u932f\u8aa4\u4fee\u5fa9\u6d41\u7a0b\u5305\u542b\u932f\u8aa4\u5075\u6e2c\u53ca\u932f\u8aa4\u4fee\u6b63\u5169\u968e\u6bb5\u3002\u932f\u8aa4\u5075\u6e2c\u65b9\u6cd5\u53ef\u5206\u70ba\u57fa\u65bc\u8a2d\u5b9a\u9580\u6abb \u503c(threshold-based)\u8207\u5206\u985e\u5668(classification-based)\u70ba\u57fa\u790e\u7684\u5169\u7a2e\u7b56\u7565\u3002\u5169\u8005\u4e4b\u9593\u6709\u4e9b\u8a31\u5dee \u7570\uff0c\u57fa\u65bc\u9580\u6abb\u503c\u7684\u65b9\u6cd5\u662f\u8a2d\u5b9a\u55ae\u4e00\u8a55\u4f30\u6307\u6a19\u6216\u5206\u6578\u4f86\u5224\u5b9a\u662f\u5426\u767c\u751f\u932f\u8aa4\uff1b\u800c\u57fa\u65bc\u5206\u985e\u5668 \u7684\u65b9\u6cd5\u5927\u591a\u662f\u6574\u5408\u591a\u7a2e\u7279\u5fb5\u53bb\u8a13\u7df4\u4e8c\u5143\u5206\u985e\u5668\u3002\u57fa\u65bc\u5236\u5b9a\u9580\u6abb\u503c\u7684\u4f5c\u6cd5\u53ef\u4f9d\u64da\u8072\u5b78\u6a21\u578b \u7684\u767c\u97f3\u5206\u6578[6]\u6216\u8a9e\u8a00\u6a21\u578b\u7684\u6a5f\u7387\u7576\u4f5c\u4fe1\u5fc3\u5206\u6578\u3002\u8072\u5b78\u6a21\u578b\u6240\u64f7\u53d6\u7684\u5c0d\u6578\u4e8b\u5f8c\u6a5f\u7387\u6216\u5c0d \u7de8\u8f2f\u8ddd\u96e2\uff0c\u4e26\u6a19\u8a18\u70ba\u4e09\u7a2e\u6a21\u5f0f\uff1a \uf0d8 \u6b63\u78ba\u5b57\u53ca\u932f\u8aa4\u5b57\u5206\u985e\u6a21\u578b\u6a19\u8a18\uff1a\u6b63\u78ba(C)\u53ca\u932f\u8aa4(C \u0305 )\u4e4b\u5340\u584a \u9304\u88fd\u6a21\u5f0f \u7de8\u865f\u4ee3\u865f \u8a9e\u97f3\u4e3b\u984c Corpus01 Corpus02 Corpus03 Corpus04 \u63cf\u8ff0 0 \u5c07\u7121\u6cd5\u8a08\u7b97 F1 \u5206\u6578\uff0c\u56e0\u6b64\u5728\u5be6\u9a57\u8868\u683c\u4e2d\u5c07\u4ee5 --\u8868\u793a\u3002 \u9996\u5148\uff0c\u5728\u8868\u56db\u6211\u5011\u80fd\u5920\u89c0\u5bdf\u5230\uff0c\u5728\u5be6\u9a57\u5ba4\u9304\u97f3\u8a9e\u6599\u4e2d\uff0c\u8868\u73fe\u8f03\u597d\u5206\u985e\u5668\u70ba Decision \u5b57\u662f\u66f4\u70ba\u91cd\u8981\u7684\u6548\u80fd\u8a55\u4f30\u65b9\u6cd5\uff0c\u800c\u6211\u5011\u4ee5\u522a\u9664\u5b57\u7684\u6548\u80fd\u8868\u73fe\u4f86\u770b\uff0cDecision tree \u8868\u73fe\u76f8 \u8f03\u65bc\u985e\u795e\u7d93\u7db2\u8def\u66f4\u70ba\u7a81\u51fa\uff0c\u91dd\u5c0d\u6b64\u4efb\u52d9 SVM \u53ca BRNN \u7121\u6cd5\u6709\u8f03\u597d\u7684\u6027\u80fd\u8868\u73fe\u6211\u8a8d\u70ba\u53ef \u7a2e\u5b57\u8a5e\uff0c\u800c\u85c9\u6b64\u767c\u73fe\u6211\u5011\u4e5f\u89c0\u5bdf\u5230\uff0c\u4ee5\u6642\u9593\u5e8f\u5217\u4e14\u9577\u8a18\u61b6\u6027\u7684\u795e\u7d93\u7db2\u8def\u5728\u5075\u6e2c\u66ff\u63db\u5b57\u6642 \u80fd\u5920\u6709\u5f88\u4e0d\u932f\u7684\u8868\u73fe\uff0c\u9019\u5c0d\u65bc\u6211\u5011\u5728\u7b2c\u4e8c\u6b65\u9a5f\u7684\u932f\u8aa4\u4fee\u6b63\u662f\u975e\u5e38\u6709\u5229\u7684\u4e00\u7a2e\u73fe\u8c61\u3002 \u9375\u5b57\u8a5e\u3002\u800c\u7531\u6211\u5011\u5728\u57fa\u790e\u5be6\u9a57\u4e2d\u7684\u95dc\u9375\u5b57\u4fee\u6b63\u8868\u73fe\u5c31\u80fd\u9054\u5230\u5e73\u5747\u53ec\u56de\u7387\u7d04 78%\u3001\u7cbe\u78ba\u7387 \u7d04 87%\uff0c\u7136\u800c\u6211\u5011\u66f4\u9032\u4e00\u6b65\u505a\u4fee\u6b63\u6539\u5584\uff0c\u4e26\u4e14\u5448\u73fe\u51fa\u66f4\u597d\u6027\u80fd\u8868\u73fe\u5e73\u5747\u53ec\u56de\u7387\u7d04 78%\u3001 \u6a21\u578b\u3001\u7d71\u8a08\u6a21\u578b\u3001\u6a5f\u5668\u5b78\u7fd2\u3001\u6a5f\u5668\u7ffb\u8b6f[7]\u4e0a\u4e0b\u6587\u8a9e\u610f\u53ca\u4e3b\u984c\u6a21\u578b\u9700\u8981\u5927\u91cf\u8cc7\u6599\u8a13\u7df4\u5b57\u8a5e\u8868\u793a\u6cd5\uff0c\u4e26\u4e14\u4e0d\u9069\u7528\u65bc\u6587\u672c\u7d50\u69cb\u8f03\u5f31\u7684\u6703 Corpus01 \u8ab2\u5802\u8a66\u9a57\u5c0d\u8a71 \u5b57\u6578 3878 2593 1267 1665 \u6b63\u78ba\u63a5\u53d7 \u5be6\u969b\u4e0a\u662f\u6b63\u78ba\u5b57\uff0c\u4e26\u4e14\u88ab\u5206\u985e\u5230\u6b63\u78ba tree \u53ca RNN\uff0c\u800c\u66f4\u70ba\u8907\u96dc\u7684 BRNN \u985e\u795e\u7d93\u7db2\u8def\u67b6\u69cb\u53cd\u800c\u5728\u932f\u8aa4\u5b57\u5075\u6e2c\u4e0a\u4e0d\u5982\u524d\u8005\uff0c\u751a \u80fd\u539f\u56e0\u70ba\uff1a1)\u7531\u65bc\u5927\u91cf\u8cc7\u8a0a\u7686\u70ba\u672a\u522a\u9664\u5b57\u5c6c\u65bc\u5206\u985e\u985e\u5225\u6578\u91cf\u8f03\u70ba\u6975\u7aef\uff0c\u56e0\u6b64 SVM \u8f03\u7121 \u7cbe\u78ba\u7387\u7d04 90%\uff0c\u6709\u6548\u63d0\u5347 3%\u9818\u57df\u8a5e\u7cbe\u78ba\u7387\uff0c\u4e26\u4e14\u6539\u5584\u8a9e\u97f3\u8fa8\u8b58\u6587\u672c\u7684\u932f\u8aa4\u3002 \u8868\u516d\u3001 \u6bd4\u8f03 Corpus01~ Corpus04 \u932f\u8aa4\u578b\u614b\u5075\u6e2c\u6548\u80fd \uf0d8 \u672a\u522a\u9664\u53ca\u522a\u9664\u5b57\u5206\u985e\u6a21\u578b\u6a19\u8a18\uff1a\u672a\u767c\u751f\u522a\u9664\u932f\u8aa4(D \u0305 )\u53ca\u522a\u9664\u932f\u8aa4(D)\u4e4b\u5340\u584a \uf0d8 \u932f\u8aa4\u985e\u578b\u5206\u985e\u6a21\u578b\u6a19\u8a18\uff1a\u6b63\u78ba(C)\u3001\u63d2\u5165\u932f\u8aa4(I)\u53ca\u66ff\u63db\u932f\u8aa4(S)\u4e4b\u5340\u584a 3 \u6a21\u578b \u5be6\u9a57\u5ba4\u9304\u97f3 Corpus02 \u696d\u52d9\u62dc\u8a2a\u5c0d\u8a71 Corpus03 \u53e5\u6578 204 176 323 85 \u8a9e\u8005\u6578 7 8 8 7 (true positives, TP) \u932f\u8aa4\u63a5\u53d7 \u5be6\u969b\u4e0a\u662f\u932f\u8aa4\u5b57\uff0c\u4e26\u4e14\u88ab\u5206\u985e\u5230\u932f\u8aa4 \u81f3 BRNN \u7684\u6b63\u78ba\u5b57\u5075\u6e2c\u4e5f\u76f8\u5c0d\u8868\u73fe\u8f03\u5dee\uff0c\u6211\u8a8d\u70ba\u53ef\u80fd\u539f\u56e0\u5982\u4e0b\uff1a1)\u7531\u65bc\u5be6\u9a57\u5ba4\u9304\u97f3\u662f\u5c6c \u65bc\u9078\u53d6\u91cd\u8981\u8a9e\u53e5\u91cd\u8907\u9304\u97f3\uff0c\u5f8c\u8005\u8f03\u8907\u96dc\u67b6\u69cb\u53ef\u80fd\u76f8\u5c0d\u770b\u4e86\u6bd4\u8f03\u9577\u7684\u524d\u5f8c\u6587\u8cc7\u8a0a\uff0c\u4e26\u975e\u771f \u6cd5\u6709\u6548\u4f5c\u5206\u985e\u30022)\u932f\u8aa4\u522a\u9664\u8cc7\u8a0a\uff0c\u5176\u5be6\u4e0d\u5bb9\u6613\u5f9e\u524d\u5f8c\u6587\u89c0\u5bdf\u5230\uff0c\u6545\u7576\u6211\u5011\u5617\u8a66\u4f7f\u7528\u8f03\u8907 \u96dc\u7684\u985e\u795e\u7d93\u7db2\u8def\u67b6\u69cb\u6642\uff0c\u6975\u53ef\u80fd\u5c0e\u81f4\u5176\u53cd\u6548\u679c\uff0c\u800c\u6c92\u6709\u826f\u597d\u7684\u6548\u80fd\u8868\u73fe\u3002 Type SVM \u8868\u4e03\u3001 \u6bd4\u8f03\u4ee5\u97f3\u7d20\u6bd4\u5c0d\u65b9\u6cd5\u4fee\u6b63\u8fa8\u8b58\u932f\u8aa4\u4e4b\u6548\u80fd Decision DNN RNN LSTM BRNN tree Corpus Name evaluation PM IMP_PM \u8a9e\u97f3\u8a18\u4e8b\u60c5\u5883 \u6e96\u78ba\u7387 93.4% 87.5% 77.7% 75.9% (false negatives, FN) \u7684\u6709\u5229\uff0c\u56e0\u70ba\u5176\u5be6\u6311\u9078\u53e5\u5b50\u91cd\u65b0\u9304\u88fd\u7684\u6587\u672c\u76f8\u5c0d\u65bc\u5be6\u969b\u5c0d\u8a71\u6587\u672c\u7d50\u69cb\u8f03\u5f31\uff0c\u4e0a\u4e0b\u6587\u8a9e\u53e5 \u8868\u4e94\u3001 \u6bd4\u8f03\u5404\u6a21\u578b\u5728 Corpus01~ Corpus04 \u672a\u767c\u751f\u522a\u9664\u53ca\u767c\u751f\u522a\u9664\u932f\u8aa4\u5075\u6e2c\u6548\u80fd C 0.54 0.88 0.96 0.98 0.97 0.97 Precision 75.20% 82.00% \u8b70\u8a9e\u97f3\u8f49\u5beb\u4e2d\uff0c\u6240\u4ee5\u5728\u672c\u6587\uff0c\u6211\u5011\u5c07\u63a1\u7528\u5b57\u4e32\u641c\u5c0b\u6bd4\u5c0d[9]\u4f5c\u70ba\u57fa\u790e\u65b9\u6cd5\u3002 \u5728\u7279\u5b9a\u9818\u57df\u7684\u8a9e\u97f3\u8fa8\u8b58\u4e2d\uff0c\u7f55\u898b\u8a5e\u6216\u672a\u77e5\u8a5e\u7684\u8655\u7406\u90fd\u662f\u6838\u5fc3\u7684\u554f\u984c[2]\u3002\u800c\u672c\u8ad6\u6587\u63a2 \u8a0e\u7684\u60c5\u5883\u662f\u5728\u4e00\u500b\u5177\u6709\u8a9e\u97f3\u5f37\u5065\u6027\u7684\u8fa8\u8b58\u5668\u7684\u60c5\u6cc1\u4e0b\uff0c\u5617\u8a66\u5229\u7528\u8a72\u9818\u57df\u5c11\u91cf\u7684\u8a9e\u6599\u8cc7\u6e90 \u5728\u6a21\u578b\u90e8\u5206\uff0c\u6211\u5011\u63a2\u8a0e\u5728\u4e0d\u540c\u76e3\u7763\u5f0f\u5b78\u7fd2\u65b9\u6cd5\u4e2d\uff0c\u5c0d\u65bc\u5075\u6e2c\u932f\u8aa4\u7684\u6548\u80fd\u3002\u5176\u4e2d\uff0c\u6211\u5011\u4f7f \u7528\u4e86\u5169\u7a2e\u6a5f\u5668\u5b78\u7fd2\u65b9\u6cd5\uff1a \uff1a\u652f\u6301\u5411\u91cf\u6a5f(SVM) \u3001\u6c7a\u7b56\u6a39(DT) \uff0c\u4e26\u4ee5\u9810\u8a13\u7df4\u8a5e\u5411\u91cf(pre-trained word vectors) \u4f5c\u70ba\u8f38\u5165\u3002\u70ba\u4e86\u7b26\u5408\u8a9e\u97f3\u8f49\u5beb\u5bcc\u542b\u6642\u9593\u53ca\u5e8f\u5217\u7279\u6027\uff0c\u6211\u5011\u66f4\u6df1\u5165\u63a2\u8a0e\u4e86\u4ee5 \u56db\u3001 \u5be6\u9a57 Corpus04 \u6280\u8853\u6703\u8b70\u5c0d\u8a71 \u6b63\u78ba\u5b57 94.1% 87.8% 79.2% 83.3% \u66ff\u63db\u932f\u8aa4\u5b57 4.8% 11.1% 19.3% 15.0% \u63d2\u5165\u932f\u8aa4\u5b57 0.7% 0.3% 1.5% 7.4% \u932f\u8aa4\u62d2\u7d55 (false positives, FP) \u5be6\u969b\u4e0a\u662f\u932f\u8aa4\u5b57\uff0c\u4e26\u4e14\u88ab\u5206\u985e\u5230\u6b63\u78ba \u6b63\u78ba\u62d2\u7d55 \u5be6\u969b\u4e0a\u662f\u6b63\u78ba\u5b57\uff0c\u4e26\u4e14\u88ab\u5206\u985e\u5230\u932f\u8aa4 \u7684\u95dc\u806f\u6027\u4e5f\u8f03\u4f4e\uff0c\u5c0e\u81f4\u5176\u5728\u5206\u985e\u4e0a\u53d7\u5230\u5e72\u64fe\uff0c\u6545\u7121\u6cd5\u6709\u6548\u53bb\u505a\u6b63\u78ba\u5206\u985e\u30022)\u4ee5\u6211\u5011\u7684\u8cc7 \u6599\u96c6\u800c\u8a00\uff0c\u985e\u795e\u7d93\u7db2\u8def\u672c\u8eab\u9700\u8981\u5927\u91cf\u8cc7\u6599\u4f86\u8a13\u7df4\u624d\u80fd\u5920\u6709\u8f03\u597d\u7684\u6548\u80fd\uff0c\u76f8\u5c0d\u65bc\u5c0f\u8cc7\u6599\u96c6 \u800c\u8a00\uff0c\u904e\u5ea6\u8907\u96dc\u7684\u985e\u795e\u7d93\u7db2\u8def\u53cd\u800c\u5c0e\u81f4\u5176\u767c\u751f\u904e\u5ea6\u64ec\u5408\u7684\u73fe\u8c61\u3002 Type SVM Decision DNN RNN LSTM CORPUS01 S --0.23 0.38 0.75 0.5 Corpus01 0.64 Recall 94.50% 94.50% BRNN tree CORPUS01 I ------0.33 ----Precision 87.60% 90.00% D \u0305 0.93 0.95 0.98 0.99 0.99 0.98 C 1.0 0.87 0.97 0.97 0.96 Corpus02 0.96 Recall 87.90% 87.90% \u89e3\u6c7a\u7f55\u898b\u8a5e\u8207\u672a\u77e5\u8a5e\u9020\u6210\u7684\u554f\u984c\u3002 \u4e09\u3001 \u8a9e\u97f3\u8fa8\u8b58\u932f\u8aa4\u5075\u6e2c\u548c\u6539\u932f \u5728\u672c\u7bc0\uff0c\u6211\u5011\u63a2\u8a0e\u8fa8\u8b58\u932f\u8aa4\u4fee\u6b63\u7684\u554f\u984c\uff0c\u4e26\u4e14\u63d0\u51fa\u4e86\u4e00\u500b\u5169\u6b65\u9a5f\u932f\u8aa4\u4fee\u6b63\u67b6\u69cb(\u5716\u4e00)\u3002 \u7b2c\u4e00\u6b65\u9a5f\uff0c\u5c0b\u627e\u53ef\u80fd\u6e2c\u8a66\u8a9e\u6599\u4e2d\uff0c\u53ef\u80fd\u767c\u751f\u932f\u8aa4\u7684\u4f4d\u7f6e\u3002\u7b2c\u4e8c\u6b65\u9a5f\uff0c\u4ee5\u97f3\u7d20\u6bd4\u5c0d\u6cd5\u5c0b\u627e \u53ef\u80fd\u767c\u751f\u932f\u8aa4\u7684\u5340\u584a\u3002\u4ee5\u4e0b\u6211\u5011\u5c07\u5be6\u9a57\u67b6\u69cb\u4e2d\u7684\u5169\u5927\u4e3b\u8ef8\uff0c\u932f\u8aa4\u5075\u6e2c\u6a21\u578b\u8207\u8fa8\u8b58\u932f\u8aa4\u4fee \u6b63\uff0c\u505a\u66f4\u9032\u4e00\u6b65\u7684\u6a21\u578b\u53ca\u65b9\u6cd5\u4ecb\u7d39\u3002 (\u4e00)\u3001 \u932f\u8aa4\u5075\u6e2c\u6a21\u578b \u8868\u793a\u6cd5\u3002\u50b3\u7d71\u8868\u793a\u6cd5\u4e2d\uff0c\u4f8b\u5982\u4e00\u5143\u8868\u793a\u6cd5(one-hot representation)\uff0c\u53ef\u80fd\u56e0\u70ba\u8fad\u5178\u592a\u5927\u5c0e \u81f4\u7dad\u5ea6\u8a5b\u5492\u7684\u554f\u984c[12]\u3002\u56e0\u6b64\u5728\u672c\u8ad6\u6587\u4e2d\uff0c\u6211\u5011\u63d0\u51fa\u540c\u6642\u8003\u616e\u8a5e\u8207\u8a5e\u6027\u7684\u65b0\u6a19\u8a18\uff0c\u518d\u8a13 \u7df4\u65b0\u6a19\u8a18\u7684\u8a5e\u5411\u91cf\u3002\u9996\u5148\u5c07\u8fa8\u8b58\u7d50\u679c\u7684\u6bcf\u500b\u8a9e\u53e5\u8a5e\u5e8f\u5217\u505a\u4e2d\u6587\u65b7\u8a5e\u53ca\u6a19\u8a18\u8a5e\u6027\uff0c\u4e26\u4e14\u5c07 \u5716\u4e00\u3001\u4fee\u6b63\u53ca\u5075\u6e2c\u932f\u8aa4\u4e4b\u6d41\u7a0b\u5716 \u4e0b\u5e7e\u7a2e\u65b9\u6cd5\uff0c\u5728\u672c\u4efb\u52d9\u4e0a\u7684\u6548\u80fd\u3002\u5982\uff1a\u6df1\u5c64\u985e\u795e\u7d93\u7db2\u8def(DNN)\u3001\u905e\u8ff4\u795e\u7d93\u7db2\u8def(RNN)\u3001 \u9577\u77ed\u671f\u8a18\u61b6\u985e\u795e\u7d93\u7db2\u8def(LSTM)\u3001\u96d9\u5411\u905e\u8ff4\u795e\u7d93\u7db2\u8def(BRNN)\u3002\u4ee5\u8a5e\u5411\u91cf\u4f5c\u70ba\u8f38\u5165\uff0c\u4e26\u4e14 \u8207\u795e\u7d93\u7db2\u8def\u53c3\u6578\u4e00\u540c\u8a13\u7df4\u3002 (\u4e8c)\u3001 \u8fa8\u8b58\u932f\u8aa4\u4fee\u6b63 \u5728\u672c\u8ad6\u6587\u4e2d\uff0c\u6211\u5011\u4f7f\u7528\u840a\u6587\u65af\u5766\u8ddd\u96e2(Levenshtein distance)[9]\u53bb\u6bd4\u8f03\u81ea\u52d5\u8a9e\u97f3\u8fa8\u8b58\u8f38\u51fa \u7684\u97f3\u7d20\u5e8f\u5217\u8207\u5047\u8a2d\u7684\u95dc\u9375\u8a5e\u76f8\u4f3c\u6027\uff0c\u800c\u9019\u6a23\u7684\u65b9\u5f0f\u4e5f\u5e38\u88ab\u4f7f\u7528\u5728\u5b57\u5c64\u7d1a\u7684\u6bd4\u5c0d\u3002\u8a9e\u97f3\u8f49 \u5beb\u7684\u932f\u8aa4\u4e3b\u8981\u5206\u70ba\u4e09\u7a2e\uff0c\u5305\u542b\uff1a\u4ee3\u66ff\u3001\u63d2\u5165\u3001\u522a\u9664\u3002\u7576\u8a9e\u97f3\u8fa8\u8b58\u4e2d\u672a\u77e5\u8a5e\u5c0e\u81f4\u8a9e\u97f3\u932f\u8aa4 \u672c\u7bc0\u4e2d\u4e3b\u8981\u662f\u4ecb\u7d39\u672c\u8ad6\u6587\u4e2d\u5be6\u9a57\u8a9e\u6599\u5eab\u8207\u76f8\u95dc\u5be6\u9a57\u8a2d\u5b9a\uff0c\u7b2c\u4e00\u90e8\u5206\u5c07\u4ecb\u7d39\u672c\u8ad6\u6587\u6240\u4f7f\u7528 \u7684\u5be6\u9a57\u8a9e\u6599\u5eab\u53ca\u8a9e\u6599\u5eab\u5206\u6790\uff1b\u7b2c\u4e8c\u90e8\u5206\u5c07\u8aaa\u660e\u672c\u8ad6\u6587\u6240\u4f7f\u7528\u7684\u76f8\u95dc\u5be6\u9a57\u8a2d\u5b9a\uff1b\u7b2c\u4e09\u90e8\u5206 \u4ecb\u7d39\u5be6\u9a57\u6548\u80fd\u7684\u8a55\u4f30\u65b9\u6cd5\uff1b\u6700\u5f8c\u5c07\u5448\u73fe\u76f8\u95dc\u5be6\u9a57\u7d50\u679c\u53ca\u89c0\u5bdf\u3002 (\u4e00)\u3001 \u8a9e\u6599\u5eab\u4ecb\u7d39 \u672c\u8ad6\u6587\u4f7f\u7528\u83ef\u8a9e\u5c0d\u8a71\u53ca\u6703\u8b70\u8a9e\u6599\u70ba\u53f0\u7063\u5e2b\u7bc4\u5927\u5b78\u8207\u570b\u5167\u4f01\u696d\u7684\u7522\u5b78\u5408\u4f5c\u8a08\u756b\u8a9e\u6599\u5eab\uff0c\u672c \u8a9e\u6599\u90e8\u5206\u8a9e\u97f3\u70ba\u6539\u5584\u8a9e\u97f3\u8fa8\u8b58\u932f\u8aa4\u800c\u91cd\u65b0\u9304\u88fd\u7684\u5be6\u9a57\u5ba4\u9304\u97f3\u8a9e\u6599\u3002\u4e3b\u8981\u7531\u56db\u500b\u4e0d\u540c\u9818\u57df \u4e3b\u984c\u5167\u5bb9\u53ca\u5169\u7a2e\u4e0d\u540c\u7684\u9304\u88fd\u6a21\u5f0f\uff0c\u5176\u4e2d Corpus01~ Corpus04 \u70ba\u5be6\u9a57\u5ba4\u9304\u97f3\uff0c\u5be6\u9a57\u5ba4\u9304\u97f3 \u4e0a\u6703\u8b70\u9304\u97f3\u4e2d\u6703\u8b70\u5ef3\u7684\u9ea5\u514b\u98a8\u6536\u97f3\u6548\u679c\u53ca\u6703\u8b70\u5ba4\u74b0\u5883\u4e0b\u7684\u566a\u97f3\u5e72\u64fe\u7b49\u7b49\uff0c\u5176\u5be6\u9019\u6a23\u7684\u8a9e \u6599\u5eab\u662f\u975e\u5e38\u5177\u6709\u6311\u6230\u6027\uff0c\u56e0\u6b64\u6211\u5011\u4e5f\u7279\u5225\u70ba\u6b64\u5167\u5bb9\uff0c\u91cd\u65b0\u9304\u88fd\u5c0d\u8a71\uff0c\u4e26\u4e14\u5617\u8a66\u53bb\u6539\u5584\u6b64 \u5c0d\u8a71\u5167\u5bb9\u5c0d\u65bc\u8a9e\u97f3\u8fa8\u8b58\u6027\u7684\u56f0\u96e3\u5ea6\uff0c\u4e26\u85c9\u6b64\u9032\u4e00\u6b65\u5206\u6790\u66f4\u6709\u6548\u6539\u5584\u8fa8\u8b58\u7d50\u679c\u7684\u65b9\u6cd5\u3002 (\u4e8c)\u3001 \u5be6\u9a57\u8a2d\u5b9a \u8a9e\u97f3\u932f\u8aa4\u6aa2\u6e2c\u7684\u96e3\u6613\u5ea6\u8207\u8a9e\u97f3\u8fa8\u8b58\u7cfb\u7d71\u7684\u6027\u80fd\u8868\u73fe\u606f\u606f\u76f8\u95dc\uff0c\u7136\u800c\u8a9e\u97f3\u8fa8\u8b58\u7cfb\u7d71\u7684\u8868\u73fe \u522a\u9664\u932f\u8aa4\u5b57 1.2% 1.1% 1.5% 1.7% \u95dc\u9375\u5b57 40 52 36 28 \u5c07\u5c0d\u65bc\u6b63\u78ba\u5b57\u53ca\u932f\u8aa4\u5b57\u5075\u6e2c\u7d50\u679c\u505a\u8a55\u4f30\uff0c\u56e0\u6b64\u6211\u5011\u5148\u5b9a\u7fa9\u6b63\u78ba\u5b57\u5075\u6e2c\u7684\u53ec\u56de\u7387( )\u3001 \u7cbe\u6e96\u5ea6( )\u53ca F1 \u5206\u6578( 1 \u2212 )\u7684\u8a08\u7b97\uff0c\u53cd\u4e4b\uff0c\u932f\u8aa4\u8a5e\u4e4b\u8a55\u4f30\u65b9\u6cd5\u4ea6\u53ef\u985e\u63a8\u3002 \u5728\u672c\u5be6\u9a57\u4e2d\uff0c\u6211\u5011\u4ee5 F1 \u5206\u6578\u4f5c\u70ba\u672c\u8ad6\u6587\u7814\u7a76\u8a0e\u8ad6\u7684\u8a55\u4f30\u65b9\u6cd5\uff0c\u7531\u65bc F1 \u5206\u6578\u80fd\u5920\u540c \u6642\u8003\u616e\u53ec\u56de\u7387\u8207\u7cbe\u6e96\u5ea6\uff0c\u5c07\u8f03\u65bc\u5206\u985e\u5668\u7684\u6e96\u78ba\u7387(Accuracy)\u8a55\u4f30\u66f4\u80fd\u5920\u770b\u898b\u6b63\u53cd\u5206\u985e\u4e4b (true negatives, TN) \u8868\u56db\u3001 \u6bd4\u8f03\u5404\u6a21\u578b\u5728 Corpus01~ Corpus04 \u6b63\u78ba\u53ca\u932f\u8aa4\u5340\u57df\u5075\u6e2c\u6548\u80fd Type SVM Decision DNN RNN LSTM BRNN D --0.50 0.22 0.44 0.44 0.5 CORPUS02 CORPUS02 S --0.29 0.77 0.79 0.71 0.72 Precision 94.80% 97.00% D \u0305 0.97 0.97 0.99 0.99 0.99 0.99 I ------0.33 --Corpus03 --Recall 91.60% 91.60% tree CORPUS01 C 0.9 0.97 0.96 0.96 0.96 0.94 C \u0305 --0.85 0.62 0.67 0.61 D --0.66 0.66 0.66 0.66 0.66 CORPUS03 C 1.0 0.87 0.97 0.97 0.96 0.96 Precision 93.20% 93.20% D \u0305 0.96 0.98 0.95 0.96 0.94 0.98 CORPUS03 S --0.29 0.77 0.79 0.71 Corpus04 0.72 Recall 39.90% 39.90% 0.55 D --0.66 0.33 0.57 0.44 0.8 I ------0.33 ----\u7cbe\u6e96\u5ea6\u53ca\u5206\u985e\u7684\u7d30\u7bc0\uff0c\u6545\u5728\u672c\u8ad6\u6587\u5be6\u9a57\u4e2d\uff0c\u6211\u5011\u5c07\u4ee5 F1 \u5206\u6578\u4f5c\u5be6\u9a57\u7d50\u679c\u8a0e\u8ad6\u7684\u4f9d\u64da\u3002 (\u4e09)\u3001 \u5075\u6e2c\u8fa8\u8b58\u932f\u8aa4\u4e4b\u5be6\u9a57\u7d50\u679c CORPUS02 C 0.9 0.97 0.97 0.94 0.95 0.91 D \u0305 0.95 1.0 0.99 0.99 0.99 \u4e94\u3001 \u7d50\u8ad6\u8207\u672a\u4f86\u5c55\u671b 0.98 C 0.82 0.85 0.91 0.96 0.94 0.94 CORPUS04 C \u0305 --0.88 0.84 0.69 0.73 0.59 D --1.0 0.66 0.72 0.66 --CORPUS04 S ----0.62 0.84 0.76 0.79 \u672c\u8ad6\u6587\u63a2\u8a0e\u4e00\u822c\u7684\u8a9e\u97f3\u8fa8\u8b58\u7cfb\u7d71\u61c9\u7528\u65bc\u7279\u5b9a\u9818\u57df\u7684\u5c0d\u8a71\u4e2d\u5c0e\u81f4\u7684\u8fa8\u8b58\u932f\u8aa4\uff0c\u4e26\u4e14\u63d0\u51fa\u4e86 \u8b58\u5668\u61c9\u7528\u81f3\u5404\u9805\u9818\u57df\u662f\u500b\u91cd\u8981\u7684\u554f\u984c\u3002 \u8fd1\u5e74\u4f86\uff0c\u5927\u6578\u64da\u53ca\u96fb\u8166\u904b\u7b97\u80fd\u529b\u7684\u5927\u5e45\u63d0\u5347\uff0c\u4ee5\u81f3\u65bc\u8a9e\u97f3\u8fa8\u8b58\u6280\u8853\u5df2\u7d93\u9032\u5c55\u5230\u66f4\u5177 \u6311\u6230\u7684\u61c9\u7528\uff0c\u751a\u81f3\u88ab\u5be6\u8e10\u65bc\u73fe\u5be6\u74b0\u5883\u4e2d[2]\u3002\u800c \u8a9e\u97f3\u8fa8\u8b58\u7cfb\u7d71\u4e2d\u7684\u8072\u5b78\u6a21\u578b\u5df2\u7531\u6df1\u5c64\u985e\u795e \u7d93\u7db2\u8def(Deep Neural Network, DNN)\u6280\u8853\u53d6\u4ee3\u50b3\u7d71\u9ad8\u65af\u6df7\u5408\u6a21\u578b(Gaussian Mixture Model, GMM)\uff0c\u4e26\u4e14\u5728\u8a9e\u97f3\u8fa8\u8b58\u4efb\u52d9\u4e0a\u7372\u5f97\u66f4\u597d\u7684\u6548\u80fd[1]\u3002\u800c\u5728\u904e\u53bb\u4e09\u5341\u591a\u5e74\u4f86\uff0c\u5df2\u6709\u6578\u4ee5\u767e \u8a08\u7684\u5f37\u5065\u6027(noise-robust)\u8a9e\u97f3\u8fa8\u8b58\u65b9\u6cd5\u88ab\u63d0\u51fa\uff0c\u4e26\u4e14\u8b49\u660e\u5176\u4e2d\u6709\u8a31\u591a\u65b9\u6cd5\u5728\u7814\u7a76\u53ca\u5546\u696d \u7528\u9014\u4e0a\u5177\u6709\u91cd\u5927\u5f71\u97ff\u53ca\u6548\u7528[2]\u3002\u800c\u672c\u8ad6\u6587\u4e3b\u8981\u8a0e\u8ad6\u5728\u73fe\u5be6\u74b0\u5883\u4e2d\uff0c\u5927\u898f\u6a21\u904b\u7528\u7684\u8a9e\u97f3\u8fa8 \u8b58\u6280\u8853\uff0c\u5c07\u5176\u61c9\u7528\u65bc\u7279\u5b9a\u9818\u57df\u7684\u60c5\u5883\u4e0b\uff0c\u5c0e\u81f4\u8fa8\u8b58\u7387\u5927\u5e45\u964d\u4f4e\uff0c\u91dd\u5c0d\u9019\u6a23\u4e0d\u5339\u914d (mismatch)\u7684\u554f\u984c\u53bb\u63a2\u8a0e\u5176\u4fee\u5fa9\u932f\u8aa4\u7684\u53ef\u80fd\u6027\u3002\u672c\u8ad6\u6587\u6839\u64da\u4eba\u5de5\u6536\u96c6\u95dc\u9375\u8a5e\u6e05\u55ae\uff0c\u7528\u4f86 \u5728\u672c\u8ad6\u6587\u7576\u4e2d\uff0c\u6211\u5011\u5617\u8a66\u89e3\u6c7a\u5728\u7279\u5b9a\u9818\u57df\u4e0a\u8a9e\u97f3\u8fa8\u8b58\u7387\u7684\u4e0d\u8db3\uff0c\u5c07\u91dd\u5c0d\u9019\u500b\u4efb\u52d9\u7684 \u7f3a\u5931\u63d0\u51fa\u5169\u6b65\u9a5f\u7684\u6539\u5584\u6a21\u578b\uff1b\u7b2c\u4e00\u6b65\u9a5f\u5148\u5075\u6e2c\u8a9e\u97f3\u932f\u8aa4\u4e4b\u5340\u584a\uff0c\u7b2c\u4e8c\u6b65\u9a5f\u5247\u4ee5\u95dc\u9375\u8a5e\u56de \u5fa9\u8a9e\u97f3\u932f\u8aa4\uff0c\u4e26\u4e14\u63d0\u5347\u8a9e\u97f3\u8fa8\u8b58\u7387\u53ca\u53ef\u8b80\u6027\u3002\u6211\u5011\u63d0\u51fa\u7684\u65b9\u6cd5\u80fd\u6bd4\u57fa\u672c\u7684\u97f3\u7d20\u5c0d\u7167\u6cd5\u66f4 \u53ef\u9760\uff0c\u4e26\u4e14\u66f4\u6709\u6548\u53bb\u6539\u5584\u6587\u672c\u932f\u8aa4\u3002\u672c\u8ad6\u6587\u5728\u7b2c\u4e8c\u7bc0\u5c07\u4ecb\u7d39\u8a9e\u97f3\u932f\u8aa4\u5075\u6e2c\u53ca\u672a\u77e5\u8a5e\u6539\u932f \u76f8\u95dc\u7814\u7a76\u7684\u767c\u5c55\u8fd1\u6cc1\uff1b\u7b2c\u4e09\u7bc0\u4ecb\u7d39\u76e3\u7763\u5f0f\u5b78\u7fd2\u7684\u8a9e\u97f3\u932f\u8aa4\u5075\u6e2c\u548c\u6539\u932f\u65b9\u6cd5\uff1b\u7b2c \u56db\u7bc0\u5247\u662f \u672c\u6b21\u6539\u932f\u4efb\u52d9\u4e0a\u5be6\u9a57\u7d50\u679c\u53ca\u8a0e\u8ad6\uff1b\u6700\u5f8c\uff0c\u7b2c\u4e94\u7bc0\u63d0\u51fa\u7d50\u8ad6\u53ca\u63a2\u8a0e\u672a\u4f86\u53ef\u4ee5\u5617\u8a66\u7684\u65b9\u5411\u3002 \u4e8c\u3001 \u76f8\u95dc\u7814\u7a76 \u6578\u76f8\u4f3c\u503c\u4f5c\u70ba\u767c\u97f3\u5206\u6578[7]\u3002\u53e6\u4e00\u65b9\u9762\uff0c\u5229\u7528\u8a9e\u8a00\u6a21\u578b\u8a08\u7b97\u8a5e\u5e8f\u5217\u6a5f\u7387\u4e5f\u662f\u5e38\u7528\u7684\u65b9\u6cd5\uff0c \u53ef\u4ee5\u4f5c\u70ba\u8fa8\u8b58\u5b57\u8a5e\u7684\u4fe1\u5fc3\u5206\u6578\u3002\u5728\u57fa\u65bc\u5206\u985e\u5668\u7684\u65b9\u6cd5\uff0c\u4e3b\u8981\u662f\u4ee5\u7d71\u8a08\u6a21\u578b\u3001\u6a5f\u5668\u5b78\u7fd2\u6216 \u985e\u795e\u7d93\u7db2\u8def\u7b49\u7684\u9032\u884c\u4e8c\u5143\u5206\u985e\u3002\u4f8b\u5982\u4ee5\u97f3\u9577\u6a21\u578b(duration model)\u3001\u8a9e\u97f3\u8fa8\u8b58\u6a21\u7d44\u4e2d\u7684\u8072 \u5b78\u6a21\u578b\u6a5f\u7387\u53ca\u8fa8\u8b58\u7d50\u679c\u7b49\u4f5c\u70ba\u8f38\u5165\u7279\u5fb5\uff0c\u518d\u642d\u914d\u5408\u9069\u7684\u6a19\u8a18\u65b9\u5f0f\uff0c\u4f8b\u5982\u689d\u4ef6\u96a8\u6a5f\u57df (conditional random field, CRF)[4], [8]\u3001\u985e\u795e\u7d93\u7db2\u8def(neural network, NN)[4]\u7b49\u90fd\u662f\u5e38\u88ab\u63a1 \u7528\u7684\u9078\u9805\u3002 \u5728\u932f\u8aa4\u4fee\u6b63\u65b9\u9762\uff0c\u6f14\u7b97\u6cd5\u53ef\u4ee5\u5206\u6210\u7c21\u6613\u7684\u5b57\u4e32\u641c\u5c0b\u6bd4\u5c0d\uff0c\u548c\u57fa\u65bc\u8a9e\u53e5\u64f7\u53d6\u7279\u5fb5\u518d\u66f4 \u6b63\u6587\u5b57\u7684\u5169\u985e\u3002\u57fa\u65bc\u8a9e\u53e5\u7279\u5fb5\u7684\u65b9\u6cd5\u662f\u85c9\u7531\u4e0a\u4e0b\u6587\u8cc7\u8a0a\u4f86\u5224\u65b7\u4fee\u5fa9\u5167\u5bb9\uff0c\u65b9\u6cd5\u5305\u542b\u6a5f\u7387 \u6211\u5011\u63a2\u8a0e\u4f7f\u7528\u6a5f\u5668\u5b78\u7fd2\u53ca\u985e\u795e\u7d93\u7db2\u8def\u6a21\u578b\u4f86\u6355\u6349\u8fa8\u8b58\u5b57\u7684\u7279\u6027\uff0c\u5728\u6b64\u67b6\u69cb\u4e0b\uff0c\u7db2\u8def\u8f38\u5165 \u5b57\u8a5e\u53ca\u8a5e\u6027\u5b58\u653e\u5728\u8fad\u5178\u4e2d\u3002\u6587\u672c\u4e2d\u7684\u5b57\u8a5e \u8207\u5176\u8a5e\u6027 \u7684\u8a5e\u7d22\u5f15\u503c\u70ba \u0302\uff0c\u53ef\u4ee5\u8868 \u793a\u70ba \u0302= [ ; ] \u3002\u7d93\u7531\u7d50\u5408\u8a5e\u4ee5\u53ca\u5176\u8a5e\u6027\u5f97\u5230\u7684\u65b0\u7d22\u5f15\uff0c\u9810\u671f\u589e\u5f37\u4e2d\u6587\u8a5e\u5f59\u5728\u4e0d\u540c \u6642\uff0c\u53ef\u80fd\u540c\u6642\u767c\u751f\u4ee3\u66ff\u53ca\u522a\u9664\u7684\u9023\u7e8c\u932f\u8aa4\u3002\u56e0\u6b64\uff0c\u70ba\u4e86\u89e3\u6c7a\u9023\u7e8c\u932f\u8aa4\u5c0e\u81f4\u5b57\u8a5e\u908a\u754c\u6a21\u7cca \u7684\u554f\u984c\uff0c\u6211\u5011\u5c07\u4f7f\u7528\u97f3\u7d20\u5c64\u63d0\u5347\u5c0b\u627e\u95dc\u9375\u5b57\u7684\u53ef\u80fd\u6027\u3002\u4e26\u4e14\u7d93\u7531\u6211\u5011\u521d\u6b65\u5be6\u9a57\uff0c\u97f3\u7d20\u5c0d \u4e4b\u5167\u5bb9\u4e3b\u8981\u9078\u53d6\u5c0d\u8a71\u4e2d\u95dc\u9375\u8a5e\u5f59\u7247\u6bb5\u9304\u88fd\uff0c\u4e26\u4e14\u7531\u5c08\u696d\u4eba\u54e1\u8f49\u5beb\u8207\u6a19\u8a18\u3002\u6703\u8b70\u53c3\u8207\u4eba\u6578 \u7d04 7 \u4f4d\u8a9e\u8005\uff0c\u672c\u5be6\u9a57\u5c07\u8a9e\u6599\u5eab\u5206\u6210\u8a13\u7df4\u96c6\u3001\u767c\u5c55\u96c6\u53ca\u6e2c\u8a66\u96c6\uff0c\u4e3b\u8981\u4ee5\u8a9e\u6599\u4e4b\u7e3d\u53e5\u6578\u6bd4\u4f8b \u548c\u8a9e\u8005\u3001\u8a9e\u97f3\u7684\u5167\u5bb9\u53ca\u9304\u88fd\u6a21\u5f0f\u6709\u5f88\u5927\u95dc\u806f\u6027\uff0c\u56e0\u6b64\u5728\u8a9e\u6599\u5eab\u65b9\u9762\uff0c\u6211\u5011\u8a73\u7d30\u5206\u6790\u83ef\u8a9e \u8a9e\u6599\u7684\u9304\u88fd\u5167\u5bb9\u53ca\u7d71\u8a08\u8a9e\u97f3\u8fa8\u8b58\u5f8c\u7684\u7d50\u679c\u3002\u4e26\u91dd\u5c0d\u8fa8\u8b58\u7d50\u679c\u505a\u5206\u985e\uff0c\u671f\u671b\u80fd\u5920\u9810\u6e2c\u8fa8\u7d50 \u672c\u6bb5\u843d\u4e3b\u8981\u5448\u73fe\u7b2c\u4e09\u7bc0\u65b9\u6cd5\u7684\u5be6\u9a57\u7d50\u679c\uff0c\u5075\u6e2c\u932f\u8aa4\u985e\u578b\u5206\u985e\u6a21\u578b\u4e2d\u53c8\u5283\u5206\u51fa\u5169\u500b\u5b50\u6a21\u578b\uff0c C 0.7 0.94 0.98 0.98 0.98 0.98 \u8a0e\u8ad6\u5b8c\u672c\u5be6\u9a57\u4e4b\u5b50\u6a21\u578b\u4e4b\u5f8c\uff0c\u6211\u5011\u5c07\u7531\u5be6\u9a57\u66f4\u6df1\u5165\u8a0e\u8ad6\u8fa8\u8b58\u932f\u8aa4\u76f8\u95dc\u554f\u984c\uff0c\u4e26\u4e14\u7531 I ----0.18 0.33 --\u5169\u6b65\u9a5f\u6539\u5584\u63aa\u65bd\uff0c\u5176\u4e2d\u5305\u542b\u4e86\u8fa8\u8a8d\u932f\u8aa4\u5340\u57df\u548c\u4fee\u88dc\u6bc0\u640d\u5167\u5bb9\u3002\u5728\u7b2c\u4e00\u6b65\u9a5f\u4e2d\uff0c\u6211\u5011\u63a2\u8a0e --CORPUS03 \u5206\u5225\u662f\u6b63\u78ba\u5b57(C ) \u53ca\u932f\u8aa4\u5b57(C \u0305 ) \u5206\u985e\u6a21\u578b\u53ca\u672a\u522a\u9664(D \u0305 ) \u53ca\u522a\u9664\u5b57(D ) \u5206\u985e\u6a21\u578b\uff0c\u800c\u5075\u6e2c\u932f\u8aa4 C \u0305 --0.92 0.97 0.97 0.97 0.97 \u4e0d\u540c\u5206\u985e\u65b9\u6cd5\u53ca\u8a9e\u6599\u53bb\u63a2\u8a0e\u53bb\u5075\u6e2c\u4e4b\u96e3\u6613\u5ea6\uff0c\u800c\u6211\u5011\u7531\u8868\u516d\u53ef\u89c0\u5bdf\u767c\u73fe\u9664\u4e86 Corpus04 \u4e86\u5e8f\u5217\u6a19\u8a18\u7684\u65b9\u6cd5\u61c9\u7528\u65bc\u932f\u8aa4\u6aa2\u6e2c\u7684\u6548\u80fd\uff0c\u5728\u5be6\u9a57\u4e2d\u6211\u5011\u767c\u73fe\u5229\u7528\u6709\u6642\u9593\u5e8f\u5217\u53ca\u8a18\u61b6\u7684 \u70ba\u8fa8\u8b58\u8f49\u5beb\u6587\u4ef6 D\uff0c\u5176\u4e2d n \u500b\u8a5e\u69cb\u6210\u7684\u8a9e\u53e5\u4ee5{ 1 , 2 , 3 \u2026 } \u8868\u793a\u3002\u7db2\u8def\u8f38\u51fa\u70ba\u932f\u8aa4 \u985e\u5225\uff0c\u6211\u5011\u4f7f\u7528 ( | , \u0398) \u4f86\u5b9a\u7fa9\u5b57\u8a5e \u7528\u6cd5\u9593\u7684\u9451\u5225\u6027\uff0c\u518d\u900f\u904e\u9810\u8a13\u7df4\u8a5e\u5411\u91cf\u4f5c\u70ba\u5408\u9069\u7684\u8868\u793a\u6cd5\uff0c\u65b0\u7684\u8a5e\u5411\u91cf\u4ee5 1 , 2 , 3 \u2026 \u7167\u6cd5\u80fd\u6bd4\u6587\u5b57\u5c64\u7d1a\u7684\u6bd4\u5c0d\u627e\u5c0b\u5230\u66f4\u7d30\u90e8\u7684\u5dee\u7570\uff0c\u7531\u65bc\u672c\u8ad6\u6587\u4f7f\u7528\u4e4b\u8a9e\u6599\u5bcc\u542b\u4e4b\u8f03\u591a\u9818\u57df \u70ba 8:1:1\u3002\u6703\u8b70\u8a9e\u8a00\u4e3b\u8981\u70ba\u4e2d\u6587\uff0c\u593e\u96dc\u5c11\u90e8\u5206\u82f1\u6587\u3002 \u679c\u7684\u5b57\u985e\u578b\uff0c\u5728\u8a9e\u6599\u5eab\u65b9\u9762\u6211\u5011\u4e5f\u5c07\u5176\u5206\u6210\u8a13\u7df4\u96c6\u3001\u767c\u5c55\u96c6\u53ca\u6e2c\u8a66\u96c6\u4f5c\u8a13\u7df4\u3002 \u985e\u5225\u4e3b\u8981\u5206\u6210\u6b63\u78ba\u5b57(C ) \u3001\u66ff\u63db\u5b57(S ) \u53ca\u63d2\u5165\u5b57(I ) \uff0c\u4e26\u4e14\u5728\u672c\u5be6\u9a57\u4e2d\uff0c\u5229\u7528\u6a21\u578b\u53ca\u8a9e\u6599\u4e3b C 1.0 0.95 0.96 0.86 0.91 0.86 \u4e4b\u5916\uff0c\u5be6\u9a57\u5ba4\u9304\u97f3\u8a9e\u6599\u5e73\u5747\u63d2\u5165\u7387\u70ba 0.83%\u3002\u5728\u5be6\u9a57\u5ba4\u9304\u97f3\u8a9e\u6599\u4e0a\uff0cRNN \u7684\u5206\u985e\u6548\u679c\u6700 (\u56db)\u3001 \u8fa8\u8b58\u932f\u8aa4\u4fee\u6b63\u4e4b\u5be6\u9a57\u7d50\u679c \u905e\u8ff4\u795e\u7d93\u7db2\u8def\u5c0d\u65bc\u932f\u8aa4\u5075\u6e2c\u662f\u975e\u5e38\u6709\u5e6b\u52a9\u7684\uff1b\u5728\u7b2c\u4e8c\u6b65\u9a5f\u4e2d\uff0c\u6211\u5011\u4ee5\u7b2c\u4e00\u6b65\u9a5f\u7684\u6a19\u8a18\u7d50 \u5c6c\u65bc\u932f\u8aa4\u985e\u5225 \u7684\u4e8b\u5f8c\u6a5f\u7387\uff0c\u5176\u4e2d \u0398 \u8868\u793a \u6a21\u578b\u4e2d\u7684\u53c3\u6578\u3002 1 \u8a5e\u8868\u793a\u6cd5 \u8a5e\u5d4c\u5165(word embedding)\u662f\u4e00\u500b\u5b57\u8a5e\u7684\u5206\u5e03\u8868\u793a(distributed representation)\u3002\u5206\u5e03\u8868\u793a\u9069 \u7528\u5728\u985e\u795e\u7d93\u7db2\u8def\u6a21\u578b\u7684\u8f38\u5165\u503c\uff0c\u4e26\u4e14\u80fd\u8207\u5176\u4e00\u8d77\u8abf\u6574\u53c3\u6578\uff0c\u8a08\u7b97\u51fa\u4e00\u500b\u66f4\u4f73\u7684\u4efb\u52d9\u5b57\u8a5e \u8868\u793a\u3002 2 \u6a19\u8a18 \u8a9e\u97f3\u8fa8\u8b58\u932f\u8aa4\u5075\u6e2c\u4efb\u52d9\u662f\u53bb\u8a55\u4f30\u8fa8\u8b58\u5b57\u548c\u4eba\u5de5\u8f49\u5beb\u5b57\u7684\u6bd4\u5c0d\u7d50\u679c\u3002\u800c\u5728\u672c\u4efb\u52d9\u4e2d\uff0c\u6211\u5011 \u5c07\u8a9e\u97f3\u8fa8\u8b58\u932f\u8aa4\u5075\u6e2c\u4efb\u52d9\u6b78\u985e\u6210\u4e09\u7a2e\u985e\u5225\uff0c\u4e26\u4e14\u5617\u8a66\u4ee5\u6a5f\u5668\u5b78\u7fd2\u53ca\u985e\u795e\u7d93\u7db2\u8def\u7684\u67b6\u69cb\u53bb \u63a2\u8a0e\u5075\u6e2c\u932f\u8aa4\u4e4b\u6548\u679c\u3002\u800c\u5728\u6a21\u578b\u6a19\u8a18\u65b9\u9762\uff0c\u6211\u5011\u4ee5\u8fa8\u8b58\u7d50\u679c\u4e4b\u6587\u672c\u548c\u4eba\u5de5\u8f49\u5beb\u6587\u672c\u8a08\u7b97 \u8a5e\uff0c\u4e26\u4e14\u5167\u5bb9\u901a\u5e38\u4e2d\u82f1\u6df7\u96dc\uff0c\u56e0\u6b64\u5728\u9019\u6a23\u7684\u60c5\u6cc1\u4e0b\uff0c\u4ee5\u5b57\u5c64\u7d1a\u4f86\u505a\u6bd4\u5c0d\u662f\u8f03\u96e3\u7b26\u5408\u6211\u5011 \u83ef\u8a9e\u6703\u8b70\u8a9e\u6599\u4e3b\u8981\u70ba\u5c0d\u8a71\u6216\u6703\u8b70\u4ea4\u8ac7\u5167\u5bb9\uff0c\u8a9e\u97f3\u5167\u5bb9\u662f\u4ee5\u771f\u5be6\u5c0d\u8ac7\u6216\u6703\u8b70\u6a21\u5f0f\u70ba\u4e3b\uff0c \u672c\u5be6\u9a57\u5be6\u4f5c\u5728\u83ef\u8a9e\u5be6\u9a57\u5ba4\u9304\u97f3\u53ca\u6703\u8b70\u8a9e\u6599\u4e0a\uff0c\u4e26\u57fa\u65bc Python \u7a0b\u5f0f\u8a9e\u8a00\u7684\u51fd\u5f0f\u5eab \u984c\u4e4b\u5dee\u7570\u53bb\u63a2\u8a0e\u5075\u6e2c\u8fa8\u8b58\u932f\u8aa4\u4e4b\u8b70\u984c\u3002 CORPUS04 C \u0305 ----0.62 0.70 0.79 \u70ba\u7a81\u51fa\uff0c\u800c\u50b3\u7d71\u7684\u6a5f\u5668\u5b78\u7fd2\u65b9\u6cd5\u90fd\u8868\u73fe\u8f03\u5dee\u4e4b\u5916\uff0c\u672c\u4efb\u52d9\u5728\u63d2\u5165\u932f\u8aa4\u5075\u6e2c\u4e0a\u5e73\u5747\u8868\u73fe\u90fd \u5728\u8868\u4e03\u4e2d\uff0c\u6211\u5011\u505a\u4e86\u932f\u8aa4\u4fee\u6b63\u7684\u57fa\u790e\u5be6\u9a57\u7a31\u70ba\u97f3\u7d20\u6bd4\u5c0d\u6cd5(Phone Match)\u7c21\u7a31\u70ba PM \u4ee5\u53ca \u679c\u4f5c\u70ba\u4f9d\u64da\uff0c\u4e26\u4ee5\u7279\u6b8a\u9818\u57df\u7684\u95dc\u9375\u8a5e\u8868\u8207\u932f\u8aa4\u5b57\u505a\u97f3\u7d20\u6bd4\u5c0d\u3002\u7d93\u7531\u6211\u5011\u7684\u5169\u968e\u6bb5\u6539\u932f\u65b9 0.71 \u7684\u671f\u5f85\u3002 \u840a\u6587\u65af\u5766\u8ddd\u96e2\u80fd\u5920\u7c21\u55ae\u627e\u5230\u4e00\u7d44\u7d66\u5b9a\u53e5\u5b50\u4e2d\u6700\u53ef\u80fd\u7684\u5168\u8c8c\uff0c\u6216\u662f\u7528\u7d66\u5b9a\u8a5e\u5f59\u4e2d\u6700\u76f8 \u4f3c\u7684\u8a5e\u4f86\u66ff\u63db\u8b58\u5225\u7684\u55ae\u8a5e\u3002\u800c\u70ba\u4e86\u6539\u5584\u4e26\u4e14\u5c0b\u627e\u5230\u66f4\u591a\u53ef\u80fd\u9818\u57df\u8a5e\uff0c\u6211\u5011\u5c07\u5728\u672c\u8ad6\u6587\u7b2c \u56db\u7bc0\u4e2d\uff0c\u6211\u5011\u6240\u5be6\u9a57\u7684\u932f\u8aa4\u4fee\u6b63\u662f\u4ee5\u8a2d\u5b9a\u76f8\u4f3c\u5ea6\u9580\u6abb\u503c\u70ba 0.8\u3002(\u5716\u4e00) \u5c0d\u8a71\u5167\u5bb9\u7121\u7d93\u904e\u7279\u6b8a\u8a2d\u8a08\uff0c\u6240\u4ee5\u6b64\u8a9e\u6599\u5167\u5bb9\u76f8\u8f03\u65bc\u5176\u4ed6\u8a9e\u6599\u662f\u8f03\u8cbc\u9032\u4e00\u822c\u9818\u57df\u77e5\u8b58\u5c0d\u8a71 \u6216\u662f\u5be6\u969b\u958b\u6703\u5167\u5bb9\uff0c\u7136\u800c\u9019\u6a23\u7684\u5167\u5bb9\u5c0d\u65bc\u4e00\u822c\u8a9e\u97f3\u8fa8\u8b58\u7cfb\u7d71\u4e5f\u76f8\u5c0d\u662f\u4e00\u500b\u56f0\u96e3\u7684\u6311\u6230\uff0c \u5176\u4e2d\u672c\u8a9e\u6599\u5167\u5bb9\u4e2d\u53ef\u80fd\u6703\u9762\u81e8\u5230\u4ee5\u4e0b\u5e7e\u500b\u554f\u984c\uff0c\u5982\uff1a\u5c08\u6709\u540d\u8a5e\u3001\u4eba\u540d\u3001\u4e2d\u82f1\u6587\u593e\u96dc\u5167\u5bb9 \u7b49\uff0c\u4e26\u4e14\u6bcf\u4f4d\u8a9e\u8005\u7684\u8aaa\u8a71\u6a21\u5f0f\u53ef\u80fd\u4e5f\u975e\u5e38\u4e0d\u540c\uff0c\u5982\uff1a\u767c\u97f3\u6e96\u78ba\u6027\u3001\u8a9e\u901f\u53ca\u97f3\u91cf\u7b49\uff0c\u518d\u52a0 Scikit-learn[13]\u3001Theano[14]\u53ca Keras[15]\u7b49\u63d0\u4f9b\u6a5f\u5668\u5b78\u7fd2\u53ca\u985e\u795e\u7d93\u7db2\u8def\uff0c\u5728\u7b2c\u4e09\u5c0f\u7bc0\u4e2d\u8a5e \u8868\u793a\u6cd5\u90e8\u5206\u8f38\u51fa\u503c \u4ee5 20 \u7dad\u8868\u793a\u3002\u932f\u8aa4\u4fee\u6b63\u76f8\u4f3c\u5ea6\u9580\u6abb\u503c\u8a2d\u5b9a\u70ba 0.8\u3002 \u5728\u672c\u8ad6\u6587\u7684\u5206\u985e\u554f\u984c\u4e2d\uff0c\u6211\u5011\u5c07\u6839\u64da\u8868\u4e09\u4e2d\u7684\u56db\u9805\u6307\u6a19\u8a08\u7b97\u4e8c\u7a2e\u8a55\u4f30\u65b9\u5f0f\uff1a\u53ec\u56de\u7387 ( )\u548c\u6e96\u78ba\u7387( )\uff0c\u4e26\u4ee5 F1 \u5206\u6578( 1 \u2212 )\u4f5c\u70ba\u672c\u5be6\u9a57\u4e2d\u4e3b\u8981\u8a55\u4f30\u3002\u6211\u5011 \u6211\u5011\u6bd4\u8f03\u4e86\u5206\u985e\u5668\u5728\u5404\u4e3b\u984c\u9818\u57df\u4e4b\u6027\u80fd\u8868\u73fe\uff0c\u4e26\u4e14\u91dd\u5c0d\u5176\u5206\u985e\u7d50\u679c\u8a08\u7b97\u51fa\u8868\u56db~\u8868 \u4e03\u7684 F1 \u5206\u6578\uff0c\u89c0\u5bdf\u6b63\u78ba\u53ca\u932f\u8aa4\u578b\u614b\u5206\u985e\u7684\u60c5\u5f62\uff0c\u4ee5\u4e0b\u6211\u5011\u5c07\u4ee5\u5169\u500b\u50b3\u7d71\u6a5f\u5668\u5b78\u7fd2\u65b9\u6cd5\uff1a SVM\u3001Decision tree\uff0c\u548c\u56db\u500b\u985e\u795e\u7d93\u7db2\u8def\u65b9\u6cd5\uff1aDNN\u3001RNN\u3001LSTM\u3001BRNN\uff0c\u4e26\u66f4\u9032\u4e00 \u6b65\u5206\u6790\u53ca\u63a2\u8a0e\u5176\u6027\u80fd\u8868\u73fe\u3002\u505a\u5be6\u9a57\u4e2d\uff0c\u82e5\u53ec\u56de\u7387( ) \u53ca\u7cbe\u6e96\u5ea6( ) \u4efb\u4e00\u503c\u70ba \u6539\u826f\u65b9\u6cd5\u7c21\u7a31\u70ba IMP_PM\uff0c\u5982\u540c\u7b2c\u4e09\u7bc0\u6240\u63cf\u8ff0\u65b9\u6cd5\uff0c\u6211\u5011\u4f7f\u7528\u97f3\u7d20\u6bd4\u5c0d\u6cd5\u4f86\u53bb\u5c0b\u627e\u8207\u95dc \u6cd5\uff0c\u80fd\u5920\u6709\u6548\u63d0\u9ad8\u95dc\u9375\u5b57\u4fee\u6b63\u7684\u7cbe\u78ba\u7387\uff0c\u4e26\u4e14\u964d\u4f4e\u539f\u672c\u97f3\u7d20\u5c0d\u7167\u6cd5\u9020\u6210\u5047\u8b66\u5831\u6240\u7522\u751f\u7684 \u8f03\u70ba\u666e\u901a\uff0c\u4e3b\u8981\u539f\u56e0\u70ba\uff1a1)\u7531\u65bc\u5be6\u9a57\u5ba4\u9304\u97f3\u54c1\u8cea\u76f8\u5c0d\u8f03\u597d\uff0c\u6240\u4ee5\u5728\u8a9e\u97f3\u8fa8\u8b58\u4e0a\u8f03\u4e0a\u51fa\u73fe \u9664\u4e86\u63a2\u8a0e\u6b63\u78ba\u5b57\u53ca\u932f\u8aa4\u5b57\u5075\u6e2c\u4e4b\u5916\uff0c\u6211\u5011\u66f4\u9032\u4e00\u6b65\u53bb\u8a0e\u8ad6\u5728\u8fa8\u8b58\u5668\u4e2d\u6240\u767c\u751f\u7684\u522a\u9664 \u9375\u8a5e\u76f8\u4f3c\u7684\u4f4d\u7f6e\uff0c\u4f46\u7531\u5be6\u9a57\u4e2d\u89c0\u5bdf\u5230\uff0c\u6b64\u65b9\u6cd5\u5728\u67d0\u4e9b\u8a9e\u6599\u4e0a\u5bb9\u6613\u7522\u751f\u5047\u8b66\u5831(false alarm) \u3002 \u554f\u984c\u3002\u672a\u4f86\u6211\u5011\u5e0c\u671b\u80fd\u5920\u91dd\u5c0d\u8fa8\u8b58\u932f\u8aa4\u53ca\u672a\u77e5\u8a5e\u505a\u66f4\u9032\u4e00\u6b65\u7684\u63a2\u8a0e\u53ca\u5206\u6790\uff0c\u4e26\u4e14\u52a0\u5165\u8a9e \u63d2\u5165\u932f\u8aa4\u7684\u60c5\u5f62\uff0c\u800c\u7531\u8a9e\u6599\u5eab\u63a2\u8a0e\u4e2d\u6211\u5011\u4e5f\u80fd\u89c0\u5bdf\u5230\u5e73\u5747\u63d2\u5165\u7387\u70ba 0.83%\uff0c\u76f8\u8f03\u65bc\u5176\u4ed6 \u932f\u8aa4\uff0c\u4e26\u4e14\u53bb\u63a2\u8a0e\u9810\u6e2c\u522a\u9664\u932f\u8aa4\u5b57\u4e4b\u8b70\u984c\uff0c\u800c\u7531\u8a9e\u6599\u5eab\u5206\u6790\u4e2d\u6211\u5011\u53ef\u4ee5\u89c0\u5bdf\u5230\u7531\u65bc\u8868\u4e94\uff0c \u70ba\u4e86\u6539\u5584\u9019\u500b\u554f\u984c\uff0c\u6211\u5011\u5c07\u5075\u6e2c\u8fa8\u8b58\u932f\u8aa4\u7684\u7d50\u679c\u4f5c\u70ba\u6b64\u90e8\u5206\u7684\u53c3\u8003\u503c\uff0c\u82e5\u6211\u5011\u5075\u6e2c\u6b64\u5340 \u53e5\u53ca\u8a9e\u610f\u8cc7\u8a0a\u5f37\u5316\u5075\u6e2c\u6a21\u578b\uff0c\u8b93\u4fee\u6b63\u932f\u8aa4\u5b57\u80fd\u5920\u6709\u66f4\u7a69\u5b9a\u7684\u6548\u80fd\u8868\u73fe\u3002\u672c\u8ad6\u6587\u671f\u671b\u63d0\u51fa \u932f\u8aa4\u662f\u8f03\u70ba\u5c11\u898b\u7684\u932f\u8aa4\u985e\u578b\u3002\u5728\u66ff\u63db\u932f\u8aa4\u5075\u6e2c\u4e0a\uff0c\u6211\u5011\u4e5f\u89c0\u5bdf\u5230\u4e00\u500b\u6709\u8da3\u7684\u73fe\u8c61\uff0c\u7d93\u5e38 \u672c\u8a9e\u6599\u522a\u9664\u5b57\u5e73\u5747\u767c\u751f\u6a5f\u7387\u7d04 1.4%\uff0c\u6240\u4ee5\u5176\u5be6\u662f\u76f8\u5c0d\u975e\u5e38\u7f55\u898b\u7684\u932f\u8aa4\u578b\u614b\uff0c\u800c\u5728\u672c\u8a9e \u6599\u4e0a\u7684\u522a\u9664\u5b57\u5075\u6e2c\uff0c\u6211\u5011\u4e5f\u767c\u73fe\u7531\u65bc\u5927\u90e8\u5206\u5b57\u90fd\u6b78\u985e\u70ba\u672a\u522a\u9664\uff0c\u6240\u4ee5\u6b64\u4efb\u52d9\u4e0a\u767c\u73fe\u522a\u9664 \u88ab\u8fa8\u8b58\u932f\u8aa4\u4e14\u88ab\u66ff\u63db\u7684\u5b57\u4f3c\u4e4e\u53ef\u4ee5\u5f9e\u4e00\u4e9b\u898f\u5247\u4e2d\u770b\u898b\uff0c\u4f8b\u5982\uff1a\u67d0\u5b57\u8a5e\u5e38\u88ab\u66ff\u63db\u6210\u5176\u4ed6\u5e7e \u57df\u767c\u751f\u8fa8\u8b58\u932f\u8aa4\uff0c\u624d\u4ee5\u95dc\u9375\u5b57\u8a5e\u8868\u505a\u70ba\u66ff\u63db\u7684\u5019\u9078\u8a5e\uff0c\u4e26\u4ee5\u97f3\u7d20\u6bd4\u5c0d\u6cd5\u627e\u51fa\u6700\u76f8\u4f3c\u7684\u95dc \u4e00\u500b\u6539\u5584\u67b6\u69cb\uff0c\u4f86\u89e3\u6c7a\u672a\u77e5\u8a5e\u6240\u5c0e\u81f4\u6587\u672c\u8a9e\u610f\u4e0d\u6e05\u7684\u554f\u984c\u3002</td></tr></table>",
"type_str": "table",
"html": null,
"num": null
}
}
}
}