|
{ |
|
"paper_id": "O18-1008", |
|
"header": { |
|
"generated_with": "S2ORC 1.0.0", |
|
"date_generated": "2023-01-19T08:09:53.149840Z" |
|
}, |
|
"title": "An Ensemble Approach for Multi-document Summarization using Genetic Algorithms", |
|
"authors": [ |
|
{ |
|
"first": "Chun-Chang", |
|
"middle": [], |
|
"last": "\u9673\u4fca\u7ae0", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "Yuan Ze University", |
|
"location": {} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Yu-Hang", |
|
"middle": [], |
|
"last": "Chen", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "Yuan Ze University", |
|
"location": {} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Cheng-Zen", |
|
"middle": [], |
|
"last": "Chung", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "Yuan Ze University", |
|
"location": {} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "\u5143\u667a\u5927\u5b78\u8cc7\u8a0a\u5de5\u7a0b\u5b78\u7cfb", |
|
"middle": [], |
|
"last": "Yang", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "Yuan Ze University", |
|
"location": {} |
|
}, |
|
"email": "[email protected]" |
|
}, |
|
{ |
|
"first": "Jhih-Sheng", |
|
"middle": [], |
|
"last": "\u8303\u690d\u6607", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "Academia Sinica", |
|
"location": {} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "\u4e2d\u592e\u7814\u7a76\u9662\u8cc7\u8a0a\u79d1\u5b78\u7814\u7a76\u6240", |
|
"middle": [], |
|
"last": "Fan", |
|
"suffix": "", |
|
"affiliation": { |
|
"laboratory": "", |
|
"institution": "Academia Sinica", |
|
"location": {} |
|
}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Chao-Yuan", |
|
"middle": [], |
|
"last": "\u674e\u8087\u5143", |
|
"suffix": "", |
|
"affiliation": {}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "\u598d\u767c\u79d1\u6280\u80a1\u4efd\u6709\u9650\u516c\u53f8", |
|
"middle": [], |
|
"last": "Lee", |
|
"suffix": "", |
|
"affiliation": {}, |
|
"email": "" |
|
} |
|
], |
|
"year": "", |
|
"venue": null, |
|
"identifiers": {}, |
|
"abstract": "Multi-document summarization is an important research task in text summarization. It helps people to reduce much time in reading articles of similar contents but with the same topics. In this study, we propose an ensemble model based on genetic algorithms. Two ensemble summarization models are thus", |
|
"pdf_parse": { |
|
"paper_id": "O18-1008", |
|
"_pdf_hash": "", |
|
"abstract": [ |
|
{ |
|
"text": "Multi-document summarization is an important research task in text summarization. It helps people to reduce much time in reading articles of similar contents but with the same topics. In this study, we propose an ensemble model based on genetic algorithms. Two ensemble summarization models are thus", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Abstract", |
|
"sec_num": null |
|
} |
|
], |
|
"body_text": [ |
|
{ |
|
"text": "constructed, one for four network summarization models, and the other for four probabilistic topic network models. These two ensemble models use genetic algorithms to find the optimal weights. We use the datasets of DUC 2004 to DUC 2007 for performance evaluation. The experimental results show that these two ensemble models can achieve the best performance in ROUGE-1, ROUGE-2, and ROUGE-SU4 than other standalone network models and standalone probabilistic topic network models. ", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "EQUATION", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [ |
|
{ |
|
"start": 0, |
|
"end": 8, |
|
"text": "EQUATION", |
|
"ref_id": "EQREF", |
|
"raw_str": "( ) = + (1 \u2212 ) \u2211 ( ) deg ( ) \u2208 [ ] (2) \u5176\u4e2dN\u662f\u8a9e\u53e5\u95dc\u4fc2\u5716\u7bc0\u9ede\u7e3d\u6578\uff0cd\u662f\u963b\u5c3c\u56e0\u5b50\uff0c\u901a\u5e38\u57280.1-0.2\u4e4b\u9593\u3002 ( )\u662f\u7bc0\u9ede \u7684 LexRank\u5411\u5fc3\u6027\uff0c [ ]\u662f \u76f8\u9130\u7684\u7bc0\u9ede\u96c6\u5408\uff0c ( )\u662f\u7bc0\u9ede \u7684Degree Centrality\u5206\u6578\u3002 2008\u5e74Yeh \u7b49\u4eba\u63d0\u51fa\u53e6\u4e00\u500b\u7db2\u8def\u6458\u8981\u6a21\u578biSpreadRank [14]\u3002iSpreadRank\u5229\u7528\u4e86\u64f4 \u6563 \u6d3b \u5316 \u7406 \u8ad6 \uff0c \u8003 \u616e \u7bc0\u9ede \u7684 \u9023 \u7d50 \u6578 \u91cf \uff0c \u4e26 \u4e14\u8003 \u616e \u9019 \u4e9b \u7bc0 \u9ede \u5f7c \u6b64 \u4e4b\u9593 \u7684 \u5f71 \u97ff \u6027 \u3002 \u5728 iSpreadRank\u4e2d\uff0c\u9996\u5148\u6703\u5c07\u8a9e\u53e5\u76f8\u4f3c\u5ea6\u7db2\u8def\u8f49\u6210\u4e00\u500bSentence-by-Sentence\u77e9\u9663A\u3002 A = \ufffd 1,1 \u22ef 1, \u22ee \u22f1 \u22ee ,1 \u22ef , \ufffd", |
|
"eq_num": "(3)" |
|
} |
|
], |
|
"section": "", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "EQUATION", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [ |
|
{ |
|
"start": 0, |
|
"end": 8, |
|
"text": "EQUATION", |
|
"ref_id": "EQREF", |
|
"raw_str": "\u5176\u4e2d , = 0\uff0c , \u4ee3\u8868\u5169\u8a9e\u53e5\u7684\u76f8\u4f3c\u5ea6\u3002\u63a5\u8457\u4f7f\u7528\u64f4\u6563\u6d3b\u5316\u7406\u8ad6\u4f86\u64f4\u6563\u8a9e\u53e5\u91cd\u8981\u6027\u7d66\u5176 \u4ed6\u8a9e\u53e5\u3002\u7db2\u8def\u4e2d\u7684\u6bcf\u500b\u7bc0\u9ede\u90fd\u6709\u4e00\u500b\u6d3b\u5316\u7d1a\u5225\u3002\u5728\u96e2\u6563\u6642\u9593\u5167iSpreadRank\u53cd\u8986\u5730\u66f4\u65b0\u6240 \u6709\u7bc0\u9ede\u7684\u5f71\u97ff\u6027\uff0c\u76f4\u5230\u7d42\u6b62\u689d\u4ef6\u88ab\u6eff\u8db3\u3002\u5728\u6bcf\u6b21\u8fed\u4ee3\u4e2d\uff0c\u6240\u6709\u7bc0\u9ede\u5728\u6642\u9593\u9edet \u7684 iSpreadRank Centrality ( )\u8a08\u7b97\u65b9\u5f0f\u5982\u4e0b\uff1a ( ) = (0) + ( \u2212 1), =", |
|
"eq_num": "(4)" |
|
} |
|
], |
|
"section": "", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "EQUATION", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [ |
|
{ |
|
"start": 0, |
|
"end": 8, |
|
"text": "EQUATION", |
|
"ref_id": "EQREF", |
|
"raw_str": "\u5176\u4e2dX (0)\u662f\u4e00\u500b \u00d7 1\u7684\u5411\u91cf\uff0c\u4ee3\u8868\u6bcf\u500b\u8a9e\u53e5\u7684\u521d\u59cb\u5411\u5fc3\u6027\u5206\u6578\u3002 \u70ba\u4e00\u64f4\u6563\u56e0\u5b50\uff0c\u8a2d\u70ba 0.7\uff0c\u63a7\u5236\u7bc0\u9ede\u5f71\u97ff\u6027\u7684\u7a0b\u5ea6\u3002R\u662f\u4e00\u96a8\u6a5f\u77e9\u9663 (Stochastic Matrix)\uff0c\u5176\u4e2d , = , \u2211 , : = \ufffd 1,1 \u22ef 1, \u22ee \u22f1 \u22ee ,1 \u22ef , \ufffd (5) \u64f4\u6563\u904e\u7a0b\u7684\u7d42\u6b62\u689d\u4ef6\u8a2d\u5b9a\u70ba\u6642\u9593t\u8207\u6642\u9593 \u2212 1\u7684\u7bc0\u9ede\u5f71\u97ff\u6027\u5dee\u7570\u7e3d\u548c\u662f\u5426\u5c0f\u65bc\u4e00\u500b \u9580\u6abb\u503c\u03f5\u3002\u82e5\u5c0f\u65bc\u5247\u7d50\u675f\u64f4\u6563\u904e\u7a0b\u3002\u8a08\u7b97\u65b9\u5f0f\u5982\u4e0b\uff0c\u5728[14]\u4e2d \u03f5 = 0.0001\uff1a \u2211 | ( ) \u2212 ( \u2212 1)| \u2264 \u03f5", |
|
"eq_num": "(6" |
|
} |
|
], |
|
"section": "", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "EQUATION", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [ |
|
{ |
|
"start": 0, |
|
"end": 8, |
|
"text": "EQUATION", |
|
"ref_id": "EQREF", |
|
"raw_str": "GA\u4f9d\u64da\u4ea4\u914d\u7387\u6c7a\u5b9a\u662f\u5426\u9032\u884c\u4ea4\u914d\u3002\u672c\u7814\u7a76\u8a2d\u5b9a\u4ea4\u914d\u7387\u70ba0.5\uff0c\u9032\u884cK\u6b21\u4ea4\u914d\uff0c\u4ee5\u55ae\u9ede \u4ea4\u914d\u6cd5\u9032\u884c\u3002\u4ea4\u914d\u6642\u6703\u96a8\u6a5f\u90782\u7d44\u67d3\u8272\u9ad4\uff0c\u4e26\u96a8\u6a5f\u6c7a\u5b9a1\u500b\u5207\u65b7\u9ede\uff0c\u5c07\u90192\u7d44\u67d3\u8272\u9ad4\u5207 \u57163\u3001\u57fa\u56e0\u6f14\u7b97\u6cd5\u4e2d\u7684\u67d3\u8272\u9ad4 Chromosome 1 w 1,1 w 1,2 \u2026 w 1,N Chromosome K \u2026 \u2026 w K,1 w K,2 \u2026 w K,N \u57164\u3001\u67d3\u8272\u9ad4\u7684\u55ae\u9ede\u4ea4\u914d\u65b9\u5f0f Chromosome i w i,1 w i,2 \u2026 w i,N Chromosome j w j,1 w j,2 \u2026 w j,N", |
|
"eq_num": "\u6210\u5169\u90e8\u5206\uff0c\u518d\u5c07\u5207\u958b\u7684\u90e8\u5206\u91cd\u65b0\u7d44\u5408\u6210\u4e00\u5c0d\u65b0\u7684\u67d3\u8272\u9ad4\u3002\u4ea4\u914d\u7684\u65b9\u5f0f\u5982\u57164\u6240\u793a\u3002 5" |
|
} |
|
], |
|
"section": "", |
|
"sec_num": null |
|
} |
|
], |
|
"back_matter": [ |
|
{ |
|
"text": "\u516d\u3001 \u53c3\u8003\u6587\u737b ", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "\u90fd\u80fd\u5920\u5728ROUGE-1\uff0cROUGE-2 \u548cROUGE-SU4\u9019\u4e9b\u8a55\u5206\u9805\u76ee\u4e0a\u5f97\u5230\u6700\u597d\u7684\u8868\u73fe\u3002", |
|
"sec_num": null |
|
} |
|
], |
|
"bib_entries": { |
|
"BIBREF0": { |
|
"ref_id": "b0", |
|
"title": "LexRank: Graph-based Lexical Centrality As Salience in Text Summarization", |
|
"authors": [ |
|
{ |
|
"first": "G", |
|
"middle": [], |
|
"last": "Erkan", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "D", |
|
"middle": [ |
|
"R" |
|
], |
|
"last": "Radev", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2004, |
|
"venue": "Journal of Artificial Intelligence Research", |
|
"volume": "22", |
|
"issue": "1", |
|
"pages": "457--479", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "G. Erkan and D. R. Radev, \"LexRank: Graph-based Lexical Centrality As Salience in Text Summarization,\" Journal of Artificial Intelligence Research, vol. 22, no. 1, pp. 457-479, Jul. 2004.", |
|
"links": null |
|
}, |
|
"BIBREF1": { |
|
"ref_id": "b1", |
|
"title": "Generic Text Summarization Using Relevance Measure and Latent Semantic Analysis", |
|
"authors": [ |
|
{ |
|
"first": "Y", |
|
"middle": [], |
|
"last": "Gong", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "X", |
|
"middle": [], |
|
"last": "Liu", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2001, |
|
"venue": "Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '01)", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "19--25", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Y. Gong and X. Liu, \"Generic Text Summarization Using Relevance Measure and Latent Semantic Analysis,\" in Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '01), 2001, pp. 19-25.", |
|
"links": null |
|
}, |
|
"BIBREF2": { |
|
"ref_id": "b2", |
|
"title": "Dimensionality Reduction Aids Term Cooccurrence based Multi-document Summarization", |
|
"authors": [ |
|
{ |
|
"first": "B", |
|
"middle": [], |
|
"last": "Hachey", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "G", |
|
"middle": [], |
|
"last": "Murray", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "D", |
|
"middle": [], |
|
"last": "Reitter", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2006, |
|
"venue": "Proceedings of the Workshop on Task-Focused Summarization and Question Answering", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "1--7", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "B. Hachey, G. Murray, and D. Reitter, \"Dimensionality Reduction Aids Term Co- occurrence based Multi-document Summarization,\" in Proceedings of the Workshop on Task-Focused Summarization and Question Answering (SumQA '06), 2006, pp. 1-7.", |
|
"links": null |
|
}, |
|
"BIBREF3": { |
|
"ref_id": "b3", |
|
"title": "ROUGE: A Package for Automatic Evaluation of Summaries", |
|
"authors": [ |
|
{ |
|
"first": "C.-Y.", |
|
"middle": [], |
|
"last": "Lin", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2004, |
|
"venue": "Text Summarization Branches Out: Proceedings of the ACL-04 Workshop", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "74--81", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "C.-Y. Lin, \"ROUGE: A Package for Automatic Evaluation of Summaries,\" in Text Summarization Branches Out: Proceedings of the ACL-04 Workshop, 2004, pp. 74-81.", |
|
"links": null |
|
}, |
|
"BIBREF4": { |
|
"ref_id": "b4", |
|
"title": "Automatic Summarization", |
|
"authors": [ |
|
{ |
|
"first": "I", |
|
"middle": [], |
|
"last": "Mani", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2001, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "I. Mani, Automatic Summarization. John Benjamins Publishing Co., 2001.", |
|
"links": null |
|
}, |
|
"BIBREF5": { |
|
"ref_id": "b5", |
|
"title": "Text Summarization of Turkish Texts Using Latent Semantic Analysis", |
|
"authors": [ |
|
{ |
|
"first": "M", |
|
"middle": [ |
|
"G" |
|
], |
|
"last": "Ozsoy", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "I", |
|
"middle": [], |
|
"last": "Cicekli", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "F", |
|
"middle": [ |
|
"N" |
|
], |
|
"last": "Alpaslan", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2010, |
|
"venue": "Proceedings of the 23rd International Conference on Computational Linguistics (COLING '10)", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "869--876", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "M. G. Ozsoy, I. Cicekli, and F. N. Alpaslan, \"Text Summarization of Turkish Texts Using Latent Semantic Analysis,\" in Proceedings of the 23rd International Conference on Computational Linguistics (COLING '10), 2010, pp. 869-876.", |
|
"links": null |
|
}, |
|
"BIBREF6": { |
|
"ref_id": "b6", |
|
"title": "Centroid-based Summarization of Multiple Documents: Sentence Extraction, Utility-based Evaluation, and User Studies", |
|
"authors": [ |
|
{ |
|
"first": "D", |
|
"middle": [ |
|
"R" |
|
], |
|
"last": "Radev", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "H", |
|
"middle": [], |
|
"last": "Jing", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "M", |
|
"middle": [], |
|
"last": "Budzikowska", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2000, |
|
"venue": "Proceedings of the 2000 NAACL-ANLP Workshop on Automatic Summarization", |
|
"volume": "4", |
|
"issue": "", |
|
"pages": "21--30", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "D. R. Radev, H. Jing, and M. Budzikowska, \"Centroid-based Summarization of Multiple Documents: Sentence Extraction, Utility-based Evaluation, and User Studies,\" in Proceedings of the 2000 NAACL-ANLP Workshop on Automatic Summarization, vol. 4, 2000, pp. 21-30.", |
|
"links": null |
|
}, |
|
"BIBREF7": { |
|
"ref_id": "b7", |
|
"title": "Using Latent Semantic Analysis in Text Summarization and Summary Evaluation", |
|
"authors": [ |
|
{ |
|
"first": "J", |
|
"middle": [], |
|
"last": "Steinberger", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "K", |
|
"middle": [], |
|
"last": "Je\u017eek", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2004, |
|
"venue": "Proceedings of the 5th International Conference on Information Systems Implementation and Modelling", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "93--100", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "J. Steinberger and K. Je\u017eek, \"Using Latent Semantic Analysis in Text Summarization and Summary Evaluation,\" in Proceedings of the 5th International Conference on Information Systems Implementation and Modelling, Apr. 2004, pp. 93-100.", |
|
"links": null |
|
}, |
|
"BIBREF8": { |
|
"ref_id": "b8", |
|
"title": "Automatic Text Summarization", |
|
"authors": [ |
|
{ |
|
"first": "J.-M", |
|
"middle": [], |
|
"last": "Torres-Moreno", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2014, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "J.-M. Torres-Moreno, Automatic Text Summarization, J.-C. Pomerol, Ed. John Wiley & Sons, Inc., 2014.", |
|
"links": null |
|
}, |
|
"BIBREF9": { |
|
"ref_id": "b9", |
|
"title": "A New Approach for Multi-document Summarization Based on Latent Semantic Analysis", |
|
"authors": [ |
|
{ |
|
"first": "S", |
|
"middle": [], |
|
"last": "Xiong", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Y", |
|
"middle": [], |
|
"last": "Luo", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2014, |
|
"venue": "Proceedings of the 2014 7th International Symposium on Computational Intelligence and Design (ISCID '14)", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "177--180", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "S. Xiong and Y. Luo, \"A New Approach for Multi-document Summarization Based on Latent Semantic Analysis,\" in Proceedings of the 2014 7th International Symposium on Computational Intelligence and Design (ISCID '14), 2014, pp. 177-180.", |
|
"links": null |
|
}, |
|
"BIBREF10": { |
|
"ref_id": "b10", |
|
"title": "Multi-document Summarization using Probabilistic Topic-based Network Models", |
|
"authors": [ |
|
{ |
|
"first": "C.-Z", |
|
"middle": [], |
|
"last": "Yang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "J.-S", |
|
"middle": [], |
|
"last": "Fan", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Y.-F", |
|
"middle": [], |
|
"last": "Liu", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2016, |
|
"venue": "Journal of Information Science and Engineering", |
|
"volume": "32", |
|
"issue": "6", |
|
"pages": "1613--1634", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "C.-Z. Yang, J.-S. Fan, and Y.-F. Liu, \"Multi-document Summarization using Probabilistic Topic-based Network Models,\" Journal of Information Science and Engineering, vol. 32, no. 6, pp. 1613-1634, Nov. 2016.", |
|
"links": null |
|
}, |
|
"BIBREF11": { |
|
"ref_id": "b11", |
|
"title": "iSpreadRank: Ranking Sentences for Extractionbased Summarization Using Feature Weight Propagation in the Sentence Similarity Network", |
|
"authors": [ |
|
{ |
|
"first": "J.-Y", |
|
"middle": [], |
|
"last": "Yeh", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "H.-R", |
|
"middle": [], |
|
"last": "Ke", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "W.-P", |
|
"middle": [], |
|
"last": "Yang", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2008, |
|
"venue": "Expert Systems with Applications", |
|
"volume": "35", |
|
"issue": "3", |
|
"pages": "1451--1462", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "J.-Y. Yeh, H.-R. Ke, and W.-P. Yang, \"iSpreadRank: Ranking Sentences for Extraction- based Summarization Using Feature Weight Propagation in the Sentence Similarity Network,\" Expert Systems with Applications, vol. 35, no. 3, pp. 1451-1462, Oct. 2008.", |
|
"links": null |
|
}, |
|
"BIBREF12": { |
|
"ref_id": "b12", |
|
"title": "Extraction-based News Summarization Using Sentence Centrality in the Sentence Similarity Network", |
|
"authors": [ |
|
{ |
|
"first": "J.-Y", |
|
"middle": [], |
|
"last": "Yeh", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "W.-P", |
|
"middle": [], |
|
"last": "Yang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "H.-R", |
|
"middle": [], |
|
"last": "Ke", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "P.-C", |
|
"middle": [], |
|
"last": "Cheng", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2014, |
|
"venue": "Journal of Information Management", |
|
"volume": "21", |
|
"issue": "3", |
|
"pages": "271--304", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "J.-Y. Yeh, W.-P. Yang, H.-R. Ke, and P.-C. Cheng, \"Extraction-based News Summarization Using Sentence Centrality in the Sentence Similarity Network,\" Journal of Information Management, vol. 21, no. 3, pp. 271-304, 2014.", |
|
"links": null |
|
} |
|
}, |
|
"ref_entries": { |
|
"TABREF0": { |
|
"num": null, |
|
"text": "\u95dc\u9375\u5b57\uff1a\u591a\u6587\u4ef6\u6458\u8981\uff0c\u7d44\u5408\u6458\u8981\u6a21\u578b\uff0c\u57fa\u56e0\u6f14\u7b97\u6cd5\uff0c\u6548\u80fd\u8a55\u4f30 Keyword: Multi-document summarization, ensemble summarization models, genetic algorithms, performance evaluation \u4e00\u3001 \u7dd2\u8ad6 \u6587\u4ef6\u6458\u8981 (Text Summarization) \u6280\u8853\u80fd\u5f9e\u6587\u4ef6\u4e2d\u64f7\u53d6\u51fa\u91cd\u8981\u8cc7\u8a0a\u5f59\u6574\u6210\u6458\u8981\uff0c\u662f\u76f8 \u7576\u53d7\u5230\u91cd\u8996\u7684\u7814\u7a76[7,11]\u3002\u4f9d\u7167\u8655\u7406\u7684\u6587\u4ef6\u6578\u91cf\uff0c\u6587\u4ef6\u6458\u8981\u6280\u8853\u53ef\u5206\u70ba\u55ae\u6587\u4ef6\u6458\u8981(Single Document Summarization)\u6280\u8853[4]\u8207\u591a\u6587\u4ef6\u6458\u8981(Multi-document Summarization) \u6280\u8853 [1,2,3,5,9,13,14,15]\u3002\u8fd1\u5e74\u4f86\u8a31\u591a\u7814\u7a76\u90fd\u5728\u7814\u8a0e\u591a\u6587\u4ef6\u6458\u8981\u6280\u8853\u7684\u767c\u5c55\u3002\u900f\u904e\u5c07\u8a31\u591a\u76f8\u95dc \u7684\u6587\u4ef6\u9032\u884c\u5206\u6790\uff0c\u7522\u751f\u7cbe\u7c21\u7684\u6458\u8981\uff0c\u80fd\u5e6b\u52a9\u4eba\u5011\u5feb\u901f\u4e86\u89e3\u91cd\u8981\u8cc7\u8a0a\u3002\u5728\u904e\u5f80\u591a\u6587\u4ef6\u6458\u8981 \u7814\u7a76\u4e2d\uff0c\u5df2\u63d0\u51fa\u8a31\u591a\u65b9\u6cd5\u3002\u4f8b\u5982MEAD \u4f7f\u7528Centroid-based Summarization \u7684\u6280\u8853\uff0c\u4f86 \u8a08\u7b97\u8a9e\u53e5\u7684\u91cd\u8981\u6027[9]\u3002Xiong\u8207Luo\u63d0\u51fa\u4ee5Latent Semantic Analysis (LSA)\u7684\u6280\u8853\u4f86\u63d0\u5347", |
|
"content": "<table><tr><td>\u7d44\u5408\u5f0f\u591a\u6587\u4ef6\u6458\u8981\u6a21\u578b\u5247\u6c92\u6709\u8003\u616e\u4f7f\u7528\u8005\u9700\u6c42\uff0c\u662f\u901a\u7528\u578b\u7684\u591a\u6587\u4ef6\u6458\u8981\u65b9\u5f0f\u3002 \u5011\u5229\u7528\u7db2\u8def\u6a21\u578b\u8a08\u7b97\u8a9e\u53e5\u91cd\u8981\u6027\u3002\u5728\u7db2\u8def\u6a21\u578b\u4e2d\uff0c\u6bcf\u500b\u7bc0\u9ede\u4ee3\u8868\u4e00\u500b\u8a9e\u53e5\u3002\u7bc0\u9ede\u4e4b\u9593\u7684</td></tr><tr><td>\u70ba\u4e86\u8a55\u4f30\u6240\u63d0\u51fa\u7684\u7d44\u5408\u5f0f\u591a\u6587\u4ef6\u6458\u8981\u6a21\u578b\uff0c\u6211\u5011\u4f7f\u7528DUC (Document Understanding \u9023\u7d50\uff0c\u5247\u7531\u8a9e\u53e5TF-IDF \u5411\u91cf\u7684Cosine Similarity \u4f86\u6c7a\u5b9a\u3002\u5982\u679c\u76f8\u4f3c\u5ea6\u8d85\u904e\u4e00\u500b\u9580\u6abb\u503c\uff0c</td></tr><tr><td>Conference) 2004\u5e74\u81f32007\u5e74\u56db\u5e74\u7684\u8cc7\u6599\u96c6\u9032\u884c\u5be6\u9a57\u3002\u5728\u4ee5\u56db\u500b\u7db2\u8def\u6458\u8981\u6a21\u578b(Degree \u5247\u5169\u500b\u8a9e\u53e5\u7bc0\u9ede\u4e4b\u9593\u5b58\u5728\u9023\u7d50\u95dc\u4fc2\uff0c\u5efa\u69cb\u51fa\u6587\u7ae0\u8a9e\u53e5\u4e4b\u9593\u7684\u95dc\u4fc2\u7db2\u8def\u3002Degree Centrality</td></tr><tr><td>Centrality [3]\uff0cNormalized Similarity-based Degree Centrality [15]\uff0cPageRank Centrality [3]\uff0c \u65b9\u6cd5\u6703\u8a08\u7b97\u6bcf\u500b\u7bc0\u9ede\u7684\u5c0d\u5916\u9023\u7d50\u6578\uff0c\u5c0d\u5916\u9023\u7d50\u6578\u8d8a\u591a\u7684\u7bc0\u9ede\u4ee3\u8868\u8d8a\u91cd\u8981\u3002\u8a08\u7b97\u65b9\u5f0f\u5982\u5f0f</td></tr><tr><td>iSpreadRank Centrality [14])\u69cb\u6210\u7684\u7d44\u5408\u6458\u8981\u6a21\u578b\u4e2d\uff0c\u7121\u8ad6\u662f\u5728ROUGE-1\uff0cROUGE-2\u6216 (1)\uff0c\u5176\u4e2d\u03b1\u70ba\u76f8\u4f3c\u5ea6\u9580\u6abb\u503c\uff0c \u662f\u8a9e\u53e5\uff0cdeg( )\u662f \u7684Degree Centrality\uff1a</td></tr><tr><td>ROUGE-SU4\u9019\u4e9b\u8a55\u5206\u9805\u76ee\u4e0a\uff0c\u76f8\u8f03\u65bc\u500b\u5225\u55ae\u4e00\u6458\u8981\u6a21\u578b\u90fd\u80fd\u5920\u5f97\u5230\u6700\u597d\u7684\u8868\u73fe\u3002\u5728\u4ee5 deg( ) = \u2211 1 : \u2260 ( , )\u2265 (1)</td></tr><tr><td>\u56db\u500b\u6a5f\u7387\u4e3b\u984c\u7db2\u8def\u6458\u8981\u6a21\u578b(PL-Degree\uff0cPL-NSDC\uff0cPL-PageRank\uff0cPL-iSpreadRank)[13] \u4f46\u662f\u7576\u4e00\u4e9b\u4e0d\u91cd\u8981\u7684\u7bc0\u9ede\u56e0\u5f7c\u6b64\u9023\u7d50\u800c\u6709\u9ad8\u7684\u9023\u7d50\u6578\u6642\uff0cDegree Centrality\u6703\u5c07\u9019\u4e9b\u4e0d</td></tr><tr><td>\u69cb\u6210\u7684\u7d44\u5408\u6458\u8981\u6a21\u578b\u4e2d\uff0c\u5728ROUGE-1\uff0cROUGE-2\u6216ROUGE-SU4\u9019\u4e9b\u8a55\u5206\u9805\u76ee\u4e0a\uff0c\u76f8\u8f03 \u91cd\u8981\u7684\u8a9e\u53e5\u4e5f\u7d0d\u5165\u6458\u8981\uff0c\u964d\u4f4e\u6458\u8981\u7d50\u679c\u7684\u54c1\u8cea\u3002\u56e0\u6b64Erkan\u7b49\u4eba\u5229\u7528\u7db2\u8def\u6a21\u578bPageRank</td></tr><tr><td>\u65bc\u5404\u5225\u6a5f\u7387\u4e3b\u984c\u7db2\u8def\u6458\u8981\u6a21\u578b\uff0c\u4e5f\u80fd\u5920\u5f97\u5230\u6700\u597d\u7684\u8868\u73fe\u3002 \u4f86\u8a08\u7b97\u51fa\u8a9e\u53e5\u7684\u91cd\u8981\u6027\u3002\u56e0\u6b64\u5c0d\u65bc \u7684PageRank\u5206\u6578 ( )\uff0c\u8a08\u7b97\u65b9\u5f0f\u5982\u4e0b\uff1a</td></tr><tr><td>\u672c\u8ad6\u6587\u5176\u9918\u5167\u5bb9\u5b89\u6392\u5982\u4e0b\uff1a\u7b2c\u4e8c\u7bc0\u5c07\u4ecb\u7d39\u591a\u6587\u4ef6\u6458\u8981\u7684\u76f8\u95dc\u7814\u7a76\u3002\u7b2c\u4e09\u7bc0\u5c07\u8aaa\u660e\u57fa</td></tr><tr><td>\u65bc\u57fa\u56e0\u6f14\u7b97\u6cd5\u7684\u7d44\u5408\u5f0f\u591a\u6587\u4ef6\u6458\u8981\u6a21\u578b\u7684\u8a2d\u8a08\u3002\u7b2c\u56db\u7bc0\u5c07\u8aaa\u660e\u4ee5DUC2004\u5e74\u81f32007\u5e74</td></tr><tr><td>\u56db\u500b\u8cc7\u6599\u96c6\u9032\u884c\u5be6\u9a57\u7684\u7d50\u679c\u3002\u6700\u5f8c\uff0c\u7b2c\u4e94\u7bc0\u662f\u672c\u8ad6\u6587\u7684\u7d50\u8ad6\u3002</td></tr><tr><td>\u4e8c\u3001 \u76f8\u95dc\u7814\u7a76</td></tr><tr><td>\u5728\u904e\u5f80\u591a\u6587\u4ef6\u6458\u8981\u6280\u8853\u76f8\u95dc\u7814\u7a76\u4e0a\uff0cRadev\u7b49\u4eba\u57282000\u5e74\u63d0\u51faMEAD\u591a\u6587\u4ef6\u6458\u8981\u5668</td></tr><tr><td>[9]\u3002\u4ed6\u5011\u4f7f\u7528Centroid-based Summarization (CBS) \u8cea\u5fc3\u8a08\u7b97\u6280\u8853\uff0c\u5229\u7528\u4e00\u500b\u4e3b\u984c\u5075\u6e2c\u8ffd</td></tr><tr><td>\u591a\u6587\u4ef6\u6458\u8981\u7684\u6548\u80fd[12]\u3002Erkan\u8207Radev\u63d0\u51faLexRank[3]\uff0c\u4ee5PageRank\u7684\u7db2\u8def\u6a21\u578b\u8a08\u7b97\u8a9e \u8e64(Topic Detection and Tracking, TDT) \u7684\u96c6\u7fa4\u8a08\u7b97\u65b9\u6cd5\u627e\u51fa\u6587\u4ef6\u96c6\u7684\u8cea\u5fc3\u3002\u4ed6\u5011\u5c07</td></tr><tr><td>\u53e5\u91cd\u8981\u6027\u3002Yang\u7b49\u4eba\u4ee5Probabilistic Latent Semantic Analysis (PLSA)\u8a08\u7b97\u8a9e\u53e5\u4e3b\u984c\u4e26\u7d50 MEAD\u7684\u8cea\u5fc3\u503c\u8207Positional value \u548cFirst-sentence overlap\u4e09\u7a2e\u7279\u5fb5\u8403\u53d6\u51fa\u7684\u6458\u8981\u7d93\u904e\u5be6</td></tr><tr><td>\u5408\u7db2\u8def\u6a21\u578b\u4f86\u8a08\u7b97\u8a9e\u53e5\u91cd\u8981\u6027[13]\u3002 \u9a57\u6bd4\u8f03\u5f8c\uff0c\u5be6\u9a57\u7d50\u679c\u986f\u793a\u8cea\u5fc3\u503c\u7684\u6548\u80fd\u6700\u597d\u3002</td></tr><tr><td>\u7136\u800c\u904e\u5f80\u7814\u7a76\u5927\u591a\u53ea\u96c6\u4e2d\u8a0e\u8ad6\u5728\u591a\u6587\u4ef6\u6458\u8981\u6a21\u578b\u4e2d\u5982\u4f55\u4f7f\u7528\u67d0\u4e00\u985e\u578b\u7279\u5fb5\u4e2d\u54ea\u4e00 \u6f5b\u5728\u8a9e\u7fa9\u5206\u6790(Latent Semantic Analysis, LSA)\u4e5f\u66fe\u88ab\u4f7f\u7528\u5728\u591a\u6587\u4ef6\u6458\u8981\u6280\u8853\u4e2d\u3002\u4f8b</td></tr><tr><td>\u7a2e\u7279\u5fb5\u80fd\u88ab\u4f7f\u7528\u4f86\u5206\u6790\u9019\u4e9b\u6587\u7ae0\u7684\u8a9e\u53e5\u91cd\u8981\u6027\uff0c\u6c92\u6709\u8003\u616e\u5982\u4f55\u7d9c\u5408\u9019\u4e00\u985e\u578b\u7279\u5fb5\u4e2d\u7684\u591a \u5982Ozsoy\u7b49\u4eba\u65bc2010\u5e74\u63d0\u51fa\u4e8c\u7a2e\u57fa\u65bcLSA\u7684\u65b9\u6cd5\u4f86\u6539\u9032Steinberger\u8207Jezek\u7684\u65b9\u6cd5[10]\uff0c\u8655</td></tr><tr><td>\u7a2e\u7279\u5fb5\u4f86\u5206\u6790\u8a9e\u53e5\u91cd\u8981\u6027\u3002\u56e0\u6b64\u5728\u672c\u7814\u7a76\u4e2d\uff0c\u6211\u5011\u63d0\u51fa\u4e00\u500b\u57fa\u65bc\u57fa\u56e0\u6f14\u7b97\u6cd5(Genetic \u7406\u571f\u8033\u5176\u6587\u591a\u6587\u4ef6\u6458\u8981[8]\u3002\u4ed6\u5011\u767c\u73fe\u6240\u63d0\u51fa\u7684\u65b9\u6cd5\u4e2dCross\u4f5c\u6cd5\u80fd\u5920\u5f97\u5230\u5f88\u597d\u7684\u6548\u679c\uff0c</td></tr><tr><td>Algorithms)\u7684\u7d44\u5408\u5f0f\u591a\u6587\u4ef6\u6458\u8981\u6a21\u578b\uff0c\u4ee5\u63d0\u5347\u591a\u6587\u4ef6\u6458\u8981\u7684\u6548\u80fd\u8868\u73fe\u3002\u5728\u904e\u5f80\u591a\u6587\u4ef6\u6458 \u5728\u5be6\u9a57\u4e2d\u6bd4\u5176\u4ed6LSA\u4f5c\u6cd5\u7684\u6458\u8981\u6a21\u578b\u90fd\u597d\u3002Hachey\u7b49\u4eba\u65bc2006\u5e74\u8a0e\u8ad6SVD\u5c0d\u591a\u6587\u4ef6\u6458\u8981</td></tr><tr><td>\u8981\u7814\u7a76\u4e2d\uff0cChali \u7b49\u4eba\u4ee5SVM (Support Vector Machines) \u4e5f\u66fe\u63d0\u51fa\u4e00\u500b\u7d44\u5408\u5f0f\u7684\u6458\u8981\u6a21 \u7684\u6548\u679c[5]\u3002\u4ed6\u5011\u767c\u73feSVD\u52a0\u4e0a\u5b57\u8a5e\u5171\u73fe\u7279\u5fb5\u5f8c\uff0c\u96d6\u7136\u6458\u8981\u6548\u679c\u8207TF-IDF\u7684\u4f5c\u6cd5\u76f8\u6bd4\u4e4b</td></tr><tr><td>\u578b[2]\u3002\u7136\u800c\u9019\u500bSVM\u7d44\u5408\u5f0f\u6458\u8981\u6a21\u578b\u5247\u662f\u91dd\u5c0d\u7279\u5b9a\u65b9\u5f0f\u7684\u4f7f\u7528\u8005\u9700\u6c42\u4f86\u9032\u884c\u591a\u6587\u4ef6\u6458 \u4e0b\u4e0d\u5206\u8ed2\u8f0a\uff0c\u4f46\u662f\u6bd4\u55ae\u7d14\u4f7f\u7528\u5b57\u8a5e\u5171\u73fe\u7279\u5fb5\u7684\u6548\u679c\u8981\u597d\u3002</td></tr><tr><td>\u8981\uff0c\u4e26\u4e0d\u662f\u901a\u7528\u578b\u591a\u6587\u4ef6\u6458\u8981(Generic Multi-document Summarization)\u3002\u672c\u7814\u7a76\u6240\u63d0\u51fa\u7684 Erkan\u8207Radev\u65bc2004\u5e74\u63d0\u51faDegree Centrality \u8207LexRank\u5169\u7a2e\u7db2\u8def\u6458\u8981\u6a21\u578b[3]\u3002\u4ed6</td></tr></table>", |
|
"type_str": "table", |
|
"html": null |
|
} |
|
} |
|
} |
|
} |