Benjamin Aw
Add updated pkl file v3
6fa4bc9
{
"paper_id": "R15-1023",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T14:56:38.695900Z"
},
"title": "Towards a Lexicon-grammar based Framework for NLP an Opinion Mining Application",
"authors": [
{
"first": "Annibale",
"middle": [],
"last": "Elia",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Salerno",
"location": {}
},
"email": "[email protected]"
},
{
"first": "Serena",
"middle": [],
"last": "Pelosi",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Salerno",
"location": {}
},
"email": "[email protected]"
},
{
"first": "Alessandro",
"middle": [],
"last": "Maisto",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Salerno",
"location": {}
},
"email": "[email protected]"
},
{
"first": "Raffaele",
"middle": [],
"last": "Guarasci",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Salerno",
"location": {}
},
"email": "[email protected]"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "The present research exploits the large amount of linguistic resources developed into the Lexicon-grammar paradigm in the domain of the Opinion Mining. Grounded on the Semantic Predicates theory, the proposed system is able to automatically match the syntactic structures selected by special classes of verbs, indicating positive or negative Sentiment, Opinion or Physical acts, with the semantic frames evoked by the same lexical items. This methods has been tested on a large dataset composed of short texts, such as tweets and news headings.",
"pdf_parse": {
"paper_id": "R15-1023",
"_pdf_hash": "",
"abstract": [
{
"text": "The present research exploits the large amount of linguistic resources developed into the Lexicon-grammar paradigm in the domain of the Opinion Mining. Grounded on the Semantic Predicates theory, the proposed system is able to automatically match the syntactic structures selected by special classes of verbs, indicating positive or negative Sentiment, Opinion or Physical acts, with the semantic frames evoked by the same lexical items. This methods has been tested on a large dataset composed of short texts, such as tweets and news headings.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "In our research we propose a computational use of the Lexicon-grammar (LG) theories in the domain of the Opinion Mining. We take advantage of both the huge amount of linguistic facts, accurately formalized and described in the LG paradigm, and from the possibility to apply and test them on big data. The purpose is to build a fine grained Information Extraction tool able to locate meaningful information in raw texts and to characterize them with thorough semantic descriptions. According with the Semantic Predicates theory (Gross, 1981) , it has been possible to perform a matching between the definitional syntactic structures, attributed to each class of verbs, and the semantic information we attached in the database to every lexical entry. This way we could create a strict connection between the arguments, selected by a given Predicate listed in our tables, and the actants involved into the same verb's Semantic Frame (Fillmore, 1976; Fillmore and Baker, 2001; Fillmore, 2006) . Thanks to our LG-based linguistic rules, anchored on the Semantic Predicates, we started with this research the development of an NLP framework that, on the base of sophisticated syntactic and semantic analyses, extracts real text occurrences and labels them with the semantic roles involved in every matched sentence. This ambitious work, that in this preliminary stage focused just on the predicates indicating sentiments, opinions and physical acts, intends, in future works, to become a larger development of an LG-based Italian cross-platform open library for various kind of linguistic analyses. We excluded from this work the Transfer, the Spatial and the also the Psychological Predicates, because they have been already tested on different kinds of raw data with satisfactory results (Vietri, 2014; Elia et al., 2013; Maisto and Pelosi, 2014b) .",
"cite_spans": [
{
"start": 527,
"end": 540,
"text": "(Gross, 1981)",
"ref_id": "BIBREF22"
},
{
"start": 930,
"end": 946,
"text": "(Fillmore, 1976;",
"ref_id": "BIBREF17"
},
{
"start": 947,
"end": 972,
"text": "Fillmore and Baker, 2001;",
"ref_id": "BIBREF15"
},
{
"start": 973,
"end": 988,
"text": "Fillmore, 2006)",
"ref_id": "BIBREF18"
},
{
"start": 1784,
"end": 1798,
"text": "(Vietri, 2014;",
"ref_id": "BIBREF50"
},
{
"start": 1799,
"end": 1817,
"text": "Elia et al., 2013;",
"ref_id": "BIBREF12"
},
{
"start": 1818,
"end": 1843,
"text": "Maisto and Pelosi, 2014b)",
"ref_id": "BIBREF31"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "The Lexicon-grammar (LG), the method and the practice of formal description of the natural language, introduced important changes in the way in which the relationship between lexicon and syntax was conceived. (Gross, 1971; Gross, 1975) . In the LG theoretical framework the minimum discourse units endowed with meaning are the whole nuclear sentences, generally anchored on the verbs, which hold together the relationships between the selected arguments. That means that the sentence structure is already contained in the operator (Harris, 1971; Harris, 1976) . We chose this paradigm because of its compatibility with the purposes of the computational linguistics, that, in order to reach high performances in results, requires a large amount of linguistic data, as much as possible, exhaustive, reproducible and well organized. The collection of the linguistic information is constantly registered into LG tables, binary matrices that cross-check the lexical entries with transformational, distributional and structural properties (see Table 1 ). The LG classification and description of the Italian verbs 1 (Elia et al., 1981; Elia, 1984; D'Agostino, 1992) is grounded on the differentiation of three different macro-classes: transitive verbs; intransitive verbs and verbs that select completive clauses as complement. Every LG class has its own definitional structure, that corresponds with the syntactic structure of the nuclear sentence selected by a given number of verbs 2 . All the lexical entries are, then, differentiated from one another in each class, by taking into account all the transformational, distributional and structural properties accepted or rejected by every item. The formal notation used in the LG framework can be summarized in the following way: N, that always indicates a nominal group, is followed by a number, which specifies its nature. (N0 stands for the sentence formal subject, N1 for the first complement and N2 for the second complement); V stands for the verbs; Prep for the prepositions and Che F suggests the presence of completive or subjective clauses.",
"cite_spans": [
{
"start": 209,
"end": 222,
"text": "(Gross, 1971;",
"ref_id": "BIBREF20"
},
{
"start": 223,
"end": 235,
"text": "Gross, 1975)",
"ref_id": "BIBREF21"
},
{
"start": 531,
"end": 545,
"text": "(Harris, 1971;",
"ref_id": "BIBREF23"
},
{
"start": 546,
"end": 559,
"text": "Harris, 1976)",
"ref_id": "BIBREF24"
},
{
"start": 1110,
"end": 1129,
"text": "(Elia et al., 1981;",
"ref_id": "BIBREF10"
},
{
"start": 1130,
"end": 1141,
"text": "Elia, 1984;",
"ref_id": "BIBREF13"
},
{
"start": 1142,
"end": 1159,
"text": "D'Agostino, 1992)",
"ref_id": "BIBREF7"
}
],
"ref_spans": [
{
"start": 1038,
"end": 1045,
"text": "Table 1",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Theoretical Background",
"sec_num": "2"
},
{
"text": "The whole set of syntactical structure of a given language (Sy) is linkable to the entire collection of the semantic items of the same language (Se) by means of specific interpretation rules. This is the basic assumption on which has been build the Semantic Predicates theory into the LG framework, that postulates a parallelism between the Sy actants and the Se aurguments (Gross, 1981) . As an example, in [1] [1] Quello slogan [N0/h] offende [V/O] le donne [N1/t] \"That slogan offends the women\" the verb offendere \"to offend\", belonging to the LG class 20UM (N0 V N1hum), will be associated to a Predicate with two variables, described by the function O (h,t), through the following rules of interpretations (see Section 3 for the other semantic functions for the annotation of Semantic Predi-cates of different nature):",
"cite_spans": [
{
"start": 374,
"end": 387,
"text": "(Gross, 1981)",
"ref_id": "BIBREF22"
},
{
"start": 408,
"end": 411,
"text": "[1]",
"ref_id": null
},
{
"start": 430,
"end": 436,
"text": "[N0/h]",
"ref_id": null
},
{
"start": 445,
"end": 450,
"text": "[V/O]",
"ref_id": null
},
{
"start": 460,
"end": 466,
"text": "[N1/t]",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Predicates",
"sec_num": "2.1"
},
{
"text": "1. the Opinion Holder (h in the Se) corresponds to the formal subject (N0 in Sy);",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Predicates",
"sec_num": "2.1"
},
{
"text": "2. the opinion Target (t in the Se) is the human complement (N1 in Sy).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Predicates",
"sec_num": "2.1"
},
{
"text": "As shown in [2], the syntactic transformations in which the same Predicate is involved do not modify the role played by its arguments, that, in order to be semantically labeled in a correct way, must be always led back to their original form [3].",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Predicates",
"sec_num": "2.1"
},
{
"text": "[2] Il fuoriclasse\u00e8 stato offeso da un politico messicano \"The champion has been offended by a Mexican politician\"",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Predicates",
"sec_num": "2.1"
},
{
"text": "[3] Un politico messicano [N0/h] ha offeso [V/O] Il fuoriclasse [N1/t] \"a Mexican politician offended the champion\" Special kinds of Semantic Predicates have been already used in NLP applications into a lexicongrammar context; we mention (Vietri, 2014; ) that formalized and tested the Transfer Predicates on the Italian Civil Code; (Elia et al., 2013 ) that focused on the Spatial Predicates and (Maisto and Pelosi, 2014b) that exploited the Psychological Semantic Predicates for Sentiment Analysis purposes.",
"cite_spans": [
{
"start": 26,
"end": 32,
"text": "[N0/h]",
"ref_id": null
},
{
"start": 43,
"end": 48,
"text": "[V/O]",
"ref_id": null
},
{
"start": 64,
"end": 70,
"text": "[N1/t]",
"ref_id": null
},
{
"start": 238,
"end": 252,
"text": "(Vietri, 2014;",
"ref_id": "BIBREF50"
},
{
"start": 333,
"end": 351,
"text": "(Elia et al., 2013",
"ref_id": "BIBREF12"
},
{
"start": 397,
"end": 423,
"text": "(Maisto and Pelosi, 2014b)",
"ref_id": "BIBREF31"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Predicates",
"sec_num": "2.1"
},
{
"text": "\"Some words exist in order to provide access to knowledge of such frames to the participants in the communication process, and simultaneously serve to perform a categorization which takes such framing for granted\" (Fillmore, 2006) . With these words it has been depicted the Frame Semantics, which describes the sentences on the base of predicators able to bring to mind the semantic frames (inference structures, linked through linguistic convention to the lexical items meaning) and the frame elements (participants and props in the frame) involved in these frames (Fillmore, 1976; Fillmore and Baker, 2001; Fillmore, 2006) . A frame semantic description starts from the identification of the lexical items that carry out a given meaning and, then, explores the ways in which the frame elements and their constellations are realized around the structures that have such items as head (Fillmore et al., 2002) . Based on these principles, the FrameNet research project produced a lexicon of English for both human use and NLP applications (Baker et al., 1998; Fillmore et al., 2002; Ruppenhofer et al., 2006) . Its purpose is to provide a large amount of semantically and syntactically annotated sentences endowed with information about the valences (combinatorial possibilities) of the items derived from annotated contemporary English corpus. Among the semantic domains covered there are also emotion and cognition (Baker et al., 1998) . For the Italian language, it has been developed LexIt, a tool that, following the FrameNet approach, automatically explores syntactic and semantic properties of Italian predicates in terms of distributional profiles. It performs frame semantic analyses using both La Repubblica corpus and the Wikipedia taxonomy (Lenci et al., 2012) .",
"cite_spans": [
{
"start": 214,
"end": 230,
"text": "(Fillmore, 2006)",
"ref_id": "BIBREF18"
},
{
"start": 567,
"end": 583,
"text": "(Fillmore, 1976;",
"ref_id": "BIBREF17"
},
{
"start": 584,
"end": 609,
"text": "Fillmore and Baker, 2001;",
"ref_id": "BIBREF15"
},
{
"start": 610,
"end": 625,
"text": "Fillmore, 2006)",
"ref_id": "BIBREF18"
},
{
"start": 886,
"end": 909,
"text": "(Fillmore et al., 2002)",
"ref_id": "BIBREF16"
},
{
"start": 1039,
"end": 1059,
"text": "(Baker et al., 1998;",
"ref_id": "BIBREF3"
},
{
"start": 1060,
"end": 1082,
"text": "Fillmore et al., 2002;",
"ref_id": "BIBREF16"
},
{
"start": 1083,
"end": 1108,
"text": "Ruppenhofer et al., 2006)",
"ref_id": "BIBREF40"
},
{
"start": 1417,
"end": 1437,
"text": "(Baker et al., 1998)",
"ref_id": "BIBREF3"
},
{
"start": 1752,
"end": 1772,
"text": "(Lenci et al., 2012)",
"ref_id": "BIBREF28"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Frame Semantics",
"sec_num": "2.2"
},
{
"text": "Sentiment Analysis, also called opinion mining, subjectivity analysis, or appraisal extraction, consists in the computational treatment of opinions, and emotions freely expressed in texts. It represents a really active NLP field that includes as specific research challenges the Sentiment and Subjectivity Classification, the Feature-based Sentiment Analysis, Sentiment analysis of comparative sentences, the Opinion search and retrieval, or the Opinion spam detecting and, in the end, the Opinion Holder and Target extraction. This research fields have a large impact on many commercial, Government and Business Intelligence application.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Case Study: Opinion Mining and Sentiment Analysis",
"sec_num": "2.3"
},
{
"text": "The most used approaches in the Sentiment Analysis include, among others, the lexicon-based methods, that always start from the following assumption: the text sentiment orientation comes from the semantic orientations of words and phrases contained in it. The most commonly used SO indicators are adjectives or adjective phrases (Hatzivassiloglou and McKeown, 1997; Hu and Liu, 2004; Taboada et al., 2006) , but recently became really common the use of adverbs (Benamara et al., 2007) ), nouns (Vermeij, 2005; Riloff et al., 2003) ) and verbs as well (Neviarouskaya et al., 2009) . Among the most popular lexicons for the Sentiment Analysis we account: the General In- quirer (Stone et al., 1966) , the Hatzivassiloglou Lexicon (Hatzivassiloglou and McKeown, 1997) , WordNet-Affect (Strapparava et al., 2004) , the Wilson Lexicon (Wiebe et al., 2004) , Senti-WordNet (Esuli and Sebastiani, 2006) , the Appraisal Lexicon (Argamon et al., 2009) , the Maryland dictionary (Mohammad et al., 2009) Senti-Ful (Neviarouskaya et al., 2011) , the SO-CAL dictionary (Taboada et al., 2011) , Q-WordNet (Agerri and Garc\u00eda-Serrano, 2010), Velikovich Web-generated lexicon (Velikovich et al., 2010) . and the SentiSense (de Albornoz et al., 2012).",
"cite_spans": [
{
"start": 329,
"end": 365,
"text": "(Hatzivassiloglou and McKeown, 1997;",
"ref_id": "BIBREF25"
},
{
"start": 366,
"end": 383,
"text": "Hu and Liu, 2004;",
"ref_id": "BIBREF26"
},
{
"start": 384,
"end": 405,
"text": "Taboada et al., 2006)",
"ref_id": "BIBREF46"
},
{
"start": 461,
"end": 484,
"text": "(Benamara et al., 2007)",
"ref_id": "BIBREF4"
},
{
"start": 494,
"end": 509,
"text": "(Vermeij, 2005;",
"ref_id": "BIBREF49"
},
{
"start": 510,
"end": 530,
"text": "Riloff et al., 2003)",
"ref_id": "BIBREF39"
},
{
"start": 551,
"end": 579,
"text": "(Neviarouskaya et al., 2009)",
"ref_id": "BIBREF34"
},
{
"start": 676,
"end": 696,
"text": "(Stone et al., 1966)",
"ref_id": "BIBREF43"
},
{
"start": 728,
"end": 764,
"text": "(Hatzivassiloglou and McKeown, 1997)",
"ref_id": "BIBREF25"
},
{
"start": 782,
"end": 808,
"text": "(Strapparava et al., 2004)",
"ref_id": "BIBREF44"
},
{
"start": 830,
"end": 850,
"text": "(Wiebe et al., 2004)",
"ref_id": "BIBREF51"
},
{
"start": 867,
"end": 895,
"text": "(Esuli and Sebastiani, 2006)",
"ref_id": "BIBREF14"
},
{
"start": 920,
"end": 942,
"text": "(Argamon et al., 2009)",
"ref_id": "BIBREF1"
},
{
"start": 969,
"end": 992,
"text": "(Mohammad et al., 2009)",
"ref_id": "BIBREF33"
},
{
"start": 1003,
"end": 1031,
"text": "(Neviarouskaya et al., 2011)",
"ref_id": "BIBREF35"
},
{
"start": 1056,
"end": 1078,
"text": "(Taboada et al., 2011)",
"ref_id": "BIBREF47"
},
{
"start": 1159,
"end": 1184,
"text": "(Velikovich et al., 2010)",
"ref_id": "BIBREF48"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Case Study: Opinion Mining and Sentiment Analysis",
"sec_num": "2.3"
},
{
"text": "The starting point of our research are 66 Lexicongrammar tables of the Italian verbs, developed at the Department of Communication Science of the University of Salerno. Among the 3000 lexical entries listed in such matrices, we manually extracted about 1000 verbs endowed with a defined semantic orientation. Furthermore, on this base, we manually built a set of electronic dictionaries enriched with both the properties listed in the LG tables (Table 1 ) and the Semantic details associated with each lexical item (Table 2) . In detail, 28",
"cite_spans": [],
"ref_spans": [
{
"start": 445,
"end": 453,
"text": "(Table 1",
"ref_id": "TABREF1"
},
{
"start": 515,
"end": 524,
"text": "(Table 2)",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "Methodology",
"sec_num": "3"
},
{
"text": "LG classes contained at least one opinionated item.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Methodology",
"sec_num": "3"
},
{
"text": "The examples in Tables 1 and 2 concern a small group of verbs belonging to the Lexicon-grammar class 45. This class includes all the verbs that can entry into a syntactic structure such as N0 V di N1, in which the \"subject\" (N0) selected by the verb (V) is generally a human noun (Nhum) and the complement (N1) is a completive (Ch F) or infinitive (V-inf comp) clause, usually introduced by the preposition \"di\" (see Table1) . As shown in Table 2 , our databases contain also semantic information concerning the nature, the semantic orientation and the strength of the Predi-cates under consideration. Differently from the most used Italian tagsets (Bosco et al., 2009) , in order to avoid high computational costs, our lexical databases are provided with basic semantic description. In detail, the tagset used in this work is the following:",
"cite_spans": [
{
"start": 649,
"end": 669,
"text": "(Bosco et al., 2009)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [
{
"start": 417,
"end": 424,
"text": "Table1)",
"ref_id": "TABREF1"
},
{
"start": 439,
"end": 446,
"text": "Table 2",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "Methodology",
"sec_num": "3"
},
{
"text": "1. Type Sentiment. It refers to the expression of any given frame of mind or affective state. The \"sentiment\" words can be put in connection with some WordNet Affect categories (Strapparava et al., 2004) , such as emotion, mood, hedonic signal. Examples are sdegnarsi \"to be indignant\" (class 10); odiare \"to hate\" (class 20); affezionarsi \"to grow fond\" (class 44B); flirtare \"to flirt\" (class 9); disprezzare \"to despise\" (class 20); gioire \"to rejoice\" (class 45). Predicates of that kind evoke as frame elements an experiencer (e), that feels the emotion or other internal states, and a causer (c), an event or a person that instigates such states (Gildea and Jurafsky, 2002; Swier and Stevenson, 2004; Palmer et al., 2005) . This semantic frame summarizes the FrameNet ones connected to emotions, such as Cause to experience, Sensation Emotions, Cause emotion, Emotions of mental activity, Emotion active, etc... In this work, they are described by a function of that sort: S(e,c) Opinion. The type \"Opinion\", instead, is the expression of positive or negative viewpoints, beliefs or judgments, that can be personal or shared by most people. It comprises, among the WN-affect categories, trait, cognitive state, behavior, attitude. OP examples are ignorare \"to neglect\" (class 20); premiare \"to reward\" (class 20); difendere \"to defend\" (class 27); esaltare \"to exalt\" (class 22); dubitare \"to doubt\" (class 45); condannare \"to condemn\" (class 49); deridere \"to make fun of\" (class 50). The frame elements they evoke are an opinion holder (h), that states an opinion about an object or an event, and an opinion target (t), that represents the event or the object on which the opinion is expressed about (Kim and Hovy, 2006; Liu, 2012) . Into the FrameNet frame Opinion and Judgment, the opinion holder is called Cognizer, but we preferred to use a word which is more common in the Sentiment Analysis and in the Opinion Mining literature. O(h,t) is the function by which they are semantically described.",
"cite_spans": [
{
"start": 177,
"end": 203,
"text": "(Strapparava et al., 2004)",
"ref_id": "BIBREF44"
},
{
"start": 652,
"end": 679,
"text": "(Gildea and Jurafsky, 2002;",
"ref_id": "BIBREF19"
},
{
"start": 680,
"end": 706,
"text": "Swier and Stevenson, 2004;",
"ref_id": "BIBREF45"
},
{
"start": 707,
"end": 727,
"text": "Palmer et al., 2005)",
"ref_id": "BIBREF37"
},
{
"start": 1708,
"end": 1728,
"text": "(Kim and Hovy, 2006;",
"ref_id": "BIBREF27"
},
{
"start": 1729,
"end": 1739,
"text": "Liu, 2012)",
"ref_id": "BIBREF29"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Methodology",
"sec_num": "3"
},
{
"text": "Physical act. The type \"Physical act\" comprises verbs like baciare \"to kiss\" (class 18); suicidarsi \"to commit suicide\" (class 2); vomitare \"to vomit\" (class 2A); sparare \"to shoot\" (class 4); schiaffeggiare \"to slap\" (class 20); palpeggiare \"to grope\" (class 18). For this group of predicates the selected frame elements ara a patient (z) that is the victim (for the negative actions) or the beneficiary (for the positive ones) of the physical act carried out by an agent (a) (Carreras and M\u00e0rquez, 2005; M\u00e0rquez et al., 2008) . It includes a large number of FrameNet frames, such as Cause bodily experience, Cause harm Killing, Rape, Sex, Shoot projectiles, Violence, etc... The meaning of the sentences in which occur predicates of that kind is summarized in the function P(z,a).",
"cite_spans": [
{
"start": 477,
"end": 505,
"text": "(Carreras and M\u00e0rquez, 2005;",
"ref_id": "BIBREF6"
},
{
"start": 506,
"end": 527,
"text": "M\u00e0rquez et al., 2008)",
"ref_id": "BIBREF32"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Methodology",
"sec_num": "3"
},
{
"text": "To perform the Orientation and the Intensity attribution, we manually explored the Italian LG tables of verbs and weighted the Prior Polarity (Osgood, 1952) of the words endowed with a positive or negative SO. We created two separate scales for the evaluation of the strength (intense/weak) and of the polar-",
"cite_spans": [
{
"start": 142,
"end": 156,
"text": "(Osgood, 1952)",
"ref_id": "BIBREF36"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Semantic Orientation and Intensity.",
"sec_num": null
},
{
"text": "LG Class Type Orientation Intensity Influence profittare 45 op neg -N0 ridersene 45 op neg weak N1 risentirsi 45 sent neg -N0 strafottersene 45 op neg strong N1 vergognarsi 45 sent neg strong N0 [4] Renzi [N0/e] si vergogna [V/S] di parlare di energia in Europa [N1/c] \"Renzi feels ashamed of talking about energy in Europe\"",
"cite_spans": [
{
"start": 247,
"end": 252,
"text": "[V/S]",
"ref_id": null
},
{
"start": 285,
"end": 291,
"text": "[N1/c]",
"ref_id": null
}
],
"ref_spans": [
{
"start": 3,
"end": 195,
"text": "Class Type Orientation Intensity Influence profittare 45 op neg -N0 ridersene 45 op neg weak N1 risentirsi 45 sent neg -N0 strafottersene 45 op neg strong N1 vergognarsi",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Verb",
"sec_num": null
},
{
"text": "in which the syntactic structure of the verb, vergognarsi \"to feel ashamed\", N0 V (*di) Ch F, is matched, by means of interpretation rules to the semantic function S(e,c), that put in relation an experiencer (e) and a causer (c) thanks to a Sentiment Semantic Predicate (S). Moreover, we provided our LG databases with the specification of the arguments (N0, N1, N2, etc...) that are semantically influenced by the semantic orientation of the verbs. The purpose is to correctly identify them as features of the opinionated sentences and to work on their base also into feature-based sentiment analysis tasks.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Verb",
"sec_num": null
},
{
"text": "The reliability of the LG method on the Semantic Role Labeling in the Opinion Mining and the Emotion Detection tasks has been tested on three different datasets, two of which have been extracted from social network or web resources. In detail, the first two datasets came from Twitter, the third was a free web news headings dataset provided by DataMediaHub (www. datamediahub.it) and Human Highway (www.humanhighway.it). The tweets have been downloaded using the two hashtags #Mattarellapresidente, that groups together the user comments on the election of the Italian President Mattarella and #Masterchefit, that collects the comments on the homonymous Italian TV show. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Datasets",
"sec_num": "4.1"
},
{
"text": "The LG based approach includes the following basic steps:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "System and Tools",
"sec_num": "4.2"
},
{
"text": "1. a preprocessing pipeline, that includes two phases:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "System and Tools",
"sec_num": "4.2"
},
{
"text": "(a) a cleaning up phase, carried out with Python routines, that aims to distinguish in the datasets linguistic elements from structural elements (e.g. markup informations, web specific elements);",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "System and Tools",
"sec_num": "4.2"
},
{
"text": "(b) an automatic linguistic analysis phase, with the goal to linguistically standardize relevant elements obtained from the cleaned datasets; in this phase texts are tokenized, lemmatized and POS tagged using TreeTagger (Schmid, 1994; Schmid et al., 2007) and, then, parsed using DeSR, a dependency-based parser (Attardi et al., 2009) ; 2. a Lexicon-grammar based automatic analysis, in which the raw data are semantically labeled according with the syntactic/semantic rules of interpretation connected with each LG verb class; ",
"cite_spans": [
{
"start": 220,
"end": 234,
"text": "(Schmid, 1994;",
"ref_id": "BIBREF42"
},
{
"start": 235,
"end": 255,
"text": "Schmid et al., 2007)",
"ref_id": "BIBREF41"
},
{
"start": 312,
"end": 334,
"text": "(Attardi et al., 2009)",
"ref_id": "BIBREF2"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "System and Tools",
"sec_num": "4.2"
},
{
"text": "The corpus described in section 4.1, that counts 127,044 short texts, has been analyzed and semantically and syntactically annotated. The representative sample on which the human evaluation has been performed, instead, has 42,348 texts. The evaluation of the performances of our tool proved the effectiveness of the Lexicon-grammar approach. The average F-scores achieved in the different datasets are 0.71 in the Twitter and 0.76 in the Heading corpus. Although such results, in this preliminary stage of the research, can be considered satisfactory, they shown that applying a lexicon-grammar method through a dependency parser is not the greatest solution for our purposes. The main goal of this work was, in fact, to demonstrate the validity and the reliability a LG based framework for NLP, but, in order to improve our performances, in future works we aim to build from scratch a syntactic parser completely inspired on the Lexicongrammar theories, able to take into account not only the definitional syntactic structures of the LG verb classes, but also capable to handle every lemma's idiosyncrasies and any one of the properties systematically recorded into the LG tables. In the end, it must be pointed out that this research represents just an aspect of a broader Sentiment Analysis framework, which involves not only the verbs in its lexicon, but also other, simple and compound, parts of speech, including special kinds of opinionated idioms (Maisto and Pelosi, 2014b; Maisto and Pelosi, 2014a) . The novel aspect introduced in this work concerns, above all, the lexicon-grammar idea that in the lexicon are already contained syntactic clues.",
"cite_spans": [
{
"start": 1455,
"end": 1481,
"text": "(Maisto and Pelosi, 2014b;",
"ref_id": "BIBREF31"
},
{
"start": 1482,
"end": 1507,
"text": "Maisto and Pelosi, 2014a)",
"ref_id": "BIBREF30"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Results and Open Issues",
"sec_num": "4.3"
},
{
"text": "This paper has introduced the possibility to apply and test the Lexicon-grammar theories and lexical resources on large corpora for different kinds of information extraction and content analysis purposes. In detail, this research focused on the automatic extraction from raw data of sentences regarding Sentiments, Opinions and Physical Acts and on the semantic annotation of the roles involved in each one of the mentioned frames. Both the extraction and the analysis are anchored on a lexicon of Semantic Predicates, able to evoke, at the same time, the syntactic structures of their arguments in real text occurrences and the nature of the roles that those arguments play into specific semantic frames. Furthermore, thanks to the tags which the Predicates are provided with, it has been possible to annotate the same sentences with information regarding their semantic orientation and intensity. The aim of the research was to demonstrate the re-liability of a Lexicon-grammar based framework for many kinds of NLP purposes. We started the experimentation on a corpus of tweets and news headlines, with satisfactory results.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "5"
},
{
"text": "freely available at the address http://dsc.unisa. it/composti/tavole/combo/tavole.asp 2 e.g. V for piovere \"to rain\" and all the verbs of the class 1; N0 V for bruciare \"to burn\" and the other verbs of the class 3; N0 V da N1 for provenire\"to come from\" and the verbs belonging to the class 6; etc...",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Qwordnet: Extracting polarity from wordnet senses",
"authors": [
{
"first": "Rodrigo",
"middle": [],
"last": "Agerri",
"suffix": ""
},
{
"first": "Ana",
"middle": [],
"last": "Garc\u00eda-Serrano",
"suffix": ""
}
],
"year": 2010,
"venue": "LREC",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rodrigo Agerri and Ana Garc\u00eda-Serrano. 2010. Q- wordnet: Extracting polarity from wordnet senses. In LREC.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Automatically determining attitude type and force for sentiment analysis",
"authors": [
{
"first": "Shlomo",
"middle": [],
"last": "Argamon",
"suffix": ""
},
{
"first": "Kenneth",
"middle": [],
"last": "Bloom",
"suffix": ""
},
{
"first": "Andrea",
"middle": [],
"last": "Esuli",
"suffix": ""
},
{
"first": "Fabrizio",
"middle": [],
"last": "Sebastiani",
"suffix": ""
}
],
"year": 2009,
"venue": "",
"volume": "",
"issue": "",
"pages": "218--231",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shlomo Argamon, Kenneth Bloom, Andrea Esuli, and Fabrizio Sebastiani. 2009. Automatically determin- ing attitude type and force for sentiment analysis. pages 218-231.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Accurate dependency parsing with a stacked multilayer perceptron",
"authors": [
{
"first": "Giuseppe",
"middle": [],
"last": "Attardi",
"suffix": ""
},
{
"first": "Felice",
"middle": [],
"last": "Dellorletta",
"suffix": ""
},
{
"first": "Maria",
"middle": [],
"last": "Simi",
"suffix": ""
},
{
"first": "Joseph",
"middle": [],
"last": "Turian",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of EVALITA, 9",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Giuseppe Attardi, Felice DellOrletta, Maria Simi, and Joseph Turian. 2009. Accurate dependency parsing with a stacked multilayer perceptron. Proceedings of EVALITA, 9.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "The berkeley framenet project",
"authors": [
{
"first": "F",
"middle": [],
"last": "Collin",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Baker",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Charles",
"suffix": ""
},
{
"first": "John B",
"middle": [],
"last": "Fillmore",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Lowe",
"suffix": ""
}
],
"year": 1998,
"venue": "Proceedings of the 17th international conference on Computational linguistics",
"volume": "1",
"issue": "",
"pages": "86--90",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Collin F Baker, Charles J Fillmore, and John B Lowe. 1998. The berkeley framenet project. In Proceed- ings of the 17th international conference on Compu- tational linguistics-Volume 1, pages 86-90. Associ- ation for Computational Linguistics.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Sentiment analysis: Adjectives and adverbs are better than adjectives alone",
"authors": [
{
"first": "Farah",
"middle": [],
"last": "Benamara",
"suffix": ""
},
{
"first": "Carmine",
"middle": [],
"last": "Cesarano",
"suffix": ""
},
{
"first": "Antonio",
"middle": [],
"last": "Picariello",
"suffix": ""
},
{
"first": "Diego",
"middle": [
"Reforgiato"
],
"last": "Recupero",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Venkatramana",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Subrahmanian",
"suffix": ""
}
],
"year": 2007,
"venue": "ICWSM",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Farah Benamara, Carmine Cesarano, Antonio Pi- cariello, Diego Reforgiato Recupero, and Venkatra- mana S Subrahmanian. 2007. Sentiment analy- sis: Adjectives and adverbs are better than adjectives alone. In ICWSM.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Evalita09 parsing task: comparing dependency parsers and treebanks",
"authors": [
{
"first": "Cristina",
"middle": [],
"last": "Bosco",
"suffix": ""
},
{
"first": "Simonetta",
"middle": [],
"last": "Montemagni",
"suffix": ""
},
{
"first": "Alessandro",
"middle": [],
"last": "Mazzei",
"suffix": ""
},
{
"first": "Vincenzo",
"middle": [],
"last": "Lombardo",
"suffix": ""
},
{
"first": "Felice",
"middle": [],
"last": "Dellorletta",
"suffix": ""
},
{
"first": "Alessandro",
"middle": [],
"last": "Lenci",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of EVALITA",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Cristina Bosco, Simonetta Montemagni, Alessandro Mazzei, Vincenzo Lombardo, Felice DellOrletta, and Alessandro Lenci. 2009. Evalita09 parsing task: comparing dependency parsers and treebanks. Proceedings of EVALITA, 9.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Introduction to the conll-2005 shared task: Semantic role labeling",
"authors": [
{
"first": "Xavier",
"middle": [],
"last": "Carreras",
"suffix": ""
},
{
"first": "Llu\u00eds",
"middle": [],
"last": "M\u00e0rquez",
"suffix": ""
}
],
"year": 2005,
"venue": "Proceedings of the Ninth Conference on Computational Natural Language Learning",
"volume": "",
"issue": "",
"pages": "152--164",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xavier Carreras and Llu\u00eds M\u00e0rquez. 2005. Introduc- tion to the conll-2005 shared task: Semantic role la- beling. In Proceedings of the Ninth Conference on Computational Natural Language Learning, pages 152-164. Association for Computational Linguis- tics.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Analisi del discorso: metodi descrittivi dell'italiano d'uso. Loffredo",
"authors": [
{
"first": "D'",
"middle": [],
"last": "Emilio",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Agostino",
"suffix": ""
}
],
"year": 1992,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Emilio D'Agostino. 1992. Analisi del discorso: metodi descrittivi dell'italiano d'uso. Loffredo.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Sentisense: An easily scalable concept-based affective lexicon for sentiment analysis",
"authors": [
{
"first": "Jorge",
"middle": [],
"last": "Carrillo De Albornoz",
"suffix": ""
},
{
"first": "Laura",
"middle": [],
"last": "Plaza",
"suffix": ""
},
{
"first": "Pablo",
"middle": [],
"last": "Gerv\u00e1s",
"suffix": ""
}
],
"year": 2012,
"venue": "LREC",
"volume": "",
"issue": "",
"pages": "3562--3567",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jorge Carrillo de Albornoz, Laura Plaza, and Pablo Gerv\u00e1s. 2012. Sentisense: An easily scalable concept-based affective lexicon for sentiment anal- ysis. In LREC, pages 3562-3567.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Lexisgrammar & semantic web. INFOtheca",
"authors": [
{
"first": "Annibale",
"middle": [],
"last": "Elia",
"suffix": ""
},
{
"first": "Simonetta",
"middle": [],
"last": "Vietri",
"suffix": ""
}
],
"year": 2010,
"venue": "",
"volume": "11",
"issue": "",
"pages": "15--38",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Annibale Elia and Simonetta Vietri. 2010. Lexis- grammar & semantic web. INFOtheca, 11:15a-38a.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Lessico e Strutture sintattiche. Introduzione alla sintassi del verbo italiano",
"authors": [
{
"first": "Annibale",
"middle": [],
"last": "Elia",
"suffix": ""
},
{
"first": "Maurizio",
"middle": [],
"last": "Martinelli",
"suffix": ""
},
{
"first": "Emilio D'",
"middle": [],
"last": "Agostino",
"suffix": ""
}
],
"year": 1981,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Annibale Elia, Maurizio Martinelli, and Emilio D'Agostino. 1981. Lessico e Strutture sintattiche. Introduzione alla sintassi del verbo italiano. Napoli: Liguori.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Data mining modular software system",
"authors": [
{
"first": "Annibale",
"middle": [],
"last": "Elia",
"suffix": ""
},
{
"first": "Simonetta",
"middle": [],
"last": "Vietri",
"suffix": ""
},
{
"first": "Alberto",
"middle": [],
"last": "Postiglione",
"suffix": ""
},
{
"first": "Mario",
"middle": [],
"last": "Monteleone",
"suffix": ""
},
{
"first": "Federica",
"middle": [],
"last": "Marano",
"suffix": ""
}
],
"year": 2010,
"venue": "SWWS",
"volume": "",
"issue": "",
"pages": "127--133",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Annibale Elia, Simonetta Vietri, Alberto Postiglione, Mario Monteleone, and Federica Marano. 2010. Data mining modular software system. In SWWS, pages 127-133.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "A linguistic-based method for automatically extracting spatial relations from large non-structured data",
"authors": [
{
"first": "Annibale",
"middle": [],
"last": "Elia",
"suffix": ""
},
{
"first": "Daniela",
"middle": [],
"last": "Guglielmo",
"suffix": ""
},
{
"first": "Alessandro",
"middle": [],
"last": "Maisto",
"suffix": ""
},
{
"first": "Serena",
"middle": [],
"last": "Pelosi",
"suffix": ""
}
],
"year": 2013,
"venue": "Algorithms and Architectures for Parallel Processing",
"volume": "",
"issue": "",
"pages": "193--200",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Annibale Elia, Daniela Guglielmo, Alessandro Maisto, and Serena Pelosi. 2013. A linguistic-based method for automatically extracting spatial relations from large non-structured data. In Algorithms and Ar- chitectures for Parallel Processing, pages 193-200. Springer.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Le verbe italien. Les compl\u00e9tives dans les phrases\u00e0 un compl\u00e9ment",
"authors": [
{
"first": "Annibale",
"middle": [],
"last": "Elia",
"suffix": ""
}
],
"year": 1984,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Annibale Elia. 1984. Le verbe italien. Les compl\u00e9tives dans les phrases\u00e0 un compl\u00e9ment.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Determining term subjectivity and term orientation for opinion mining",
"authors": [
{
"first": "Andrea",
"middle": [],
"last": "Esuli",
"suffix": ""
},
{
"first": "Fabrizio",
"middle": [],
"last": "Sebastiani",
"suffix": ""
}
],
"year": 2006,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Andrea Esuli and Fabrizio Sebastiani. 2006. Deter- mining term subjectivity and term orientation for opinion mining. 6:2006.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Frame semantics for text understanding",
"authors": [
{
"first": "J",
"middle": [],
"last": "Charles",
"suffix": ""
},
{
"first": "Collin",
"middle": [
"F"
],
"last": "Fillmore",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Baker",
"suffix": ""
}
],
"year": 2001,
"venue": "Proceedings of WordNet and Other Lexical Resources Workshop, NAACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Charles J Fillmore and Collin F Baker. 2001. Frame semantics for text understanding. In Proceedings of WordNet and Other Lexical Resources Workshop, NAACL.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "The framenet database and software tools",
"authors": [
{
"first": "J",
"middle": [],
"last": "Charles",
"suffix": ""
},
{
"first": "Collin",
"middle": [
"F"
],
"last": "Fillmore",
"suffix": ""
},
{
"first": "Hiroaki",
"middle": [],
"last": "Baker",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Sato",
"suffix": ""
}
],
"year": 2002,
"venue": "LREC",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Charles J Fillmore, Collin F Baker, and Hiroaki Sato. 2002. The framenet database and software tools. In LREC.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Frame semantics and the nature of language*",
"authors": [
{
"first": "J",
"middle": [],
"last": "Charles",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Fillmore",
"suffix": ""
}
],
"year": 1976,
"venue": "Annals of the New York Academy of Sciences",
"volume": "280",
"issue": "1",
"pages": "20--32",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Charles J Fillmore. 1976. Frame semantics and the na- ture of language*. Annals of the New York Academy of Sciences, 280(1):20-32.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Frame semantics. Cognitive linguistics: Basic readings",
"authors": [
{
"first": "J",
"middle": [],
"last": "Charles",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Fillmore",
"suffix": ""
}
],
"year": 2006,
"venue": "",
"volume": "34",
"issue": "",
"pages": "373--400",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Charles J Fillmore. 2006. Frame semantics. Cognitive linguistics: Basic readings, 34:373-400.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Automatic labeling of semantic roles",
"authors": [
{
"first": "Daniel",
"middle": [],
"last": "Gildea",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Jurafsky",
"suffix": ""
}
],
"year": 2002,
"venue": "",
"volume": "28",
"issue": "",
"pages": "245--288",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Daniel Gildea and Daniel Jurafsky. 2002. Automatic labeling of semantic roles. Computational linguis- tics, 28(3):245-288.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Transformational Analysis of French Verbal Constructions",
"authors": [
{
"first": "Maurice",
"middle": [],
"last": "Gross",
"suffix": ""
}
],
"year": 1971,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Maurice Gross. 1971. Transformational Analysis of French Verbal Constructions. University of Penn- sylvania.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "M\u00e9thodes en syntaxe",
"authors": [
{
"first": "Maurice",
"middle": [],
"last": "Gross",
"suffix": ""
}
],
"year": 1975,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Maurice Gross. 1975. M\u00e9thodes en syntaxe. Hermann.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Les bases empiriques de la notion de pr\u00e9dicat s\u00e9mantique",
"authors": [
{
"first": "Maurice",
"middle": [],
"last": "Gross",
"suffix": ""
}
],
"year": 1981,
"venue": "Langages",
"volume": "",
"issue": "",
"pages": "7--52",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Maurice Gross. 1981. Les bases empiriques de la no- tion de pr\u00e9dicat s\u00e9mantique. Langages, pages 7-52.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Structures math\u00e9matiques du langage",
"authors": [
{
"first": "Harris",
"middle": [],
"last": "Zellig Sabbettai",
"suffix": ""
}
],
"year": 1971,
"venue": "",
"volume": "3",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zellig Sabbettai Harris. 1971. Structures math\u00e9matiques du langage, volume 3. Dunod.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Notes du cours de syntaxe, traduction fran\u00e7aise par maurice gross",
"authors": [
{
"first": "Harris",
"middle": [],
"last": "Zellig Sabbeta\u00ef",
"suffix": ""
}
],
"year": 1976,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zellig Sabbeta\u00ef Harris. 1976. Notes du cours de syn- taxe, traduction fran\u00e7aise par maurice gross. Paris: Le Seuil.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Predicting the semantic orientation of adjectives",
"authors": [
{
"first": "Vasileios",
"middle": [],
"last": "Hatzivassiloglou",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Kathleen R Mckeown",
"suffix": ""
}
],
"year": 1997,
"venue": "Proceedings of the 35th annual meeting of the association for computational linguistics and eighth conference of the european chapter of the association for computational linguistics",
"volume": "",
"issue": "",
"pages": "174--181",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Vasileios Hatzivassiloglou and Kathleen R McKeown. 1997. Predicting the semantic orientation of adjec- tives. In Proceedings of the 35th annual meeting of the association for computational linguistics and eighth conference of the european chapter of the as- sociation for computational linguistics, pages 174- 181. Association for Computational Linguistics.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Mining opinion features in customer reviews",
"authors": [
{
"first": "Minqing",
"middle": [],
"last": "Hu",
"suffix": ""
},
{
"first": "Bing",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2004,
"venue": "AAAI",
"volume": "4",
"issue": "",
"pages": "755--760",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Minqing Hu and Bing Liu. 2004. Mining opinion fea- tures in customer reviews. In AAAI, volume 4, pages 755-760.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Extracting opinions, opinion holders, and topics expressed in online news media text",
"authors": [
{
"first": "Min",
"middle": [],
"last": "Soo",
"suffix": ""
},
{
"first": "Eduard",
"middle": [],
"last": "Kim",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Hovy",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceedings of the Workshop on Sentiment and Subjectivity in Text",
"volume": "",
"issue": "",
"pages": "1--8",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Soo-Min Kim and Eduard Hovy. 2006. Extracting opinions, opinion holders, and topics expressed in online news media text. In Proceedings of the Work- shop on Sentiment and Subjectivity in Text, pages 1- 8. Association for Computational Linguistics.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Lexit: A computational resource on italian argument structure",
"authors": [
{
"first": "Alessandro",
"middle": [],
"last": "Lenci",
"suffix": ""
},
{
"first": "Gabriella",
"middle": [],
"last": "Lapesa",
"suffix": ""
},
{
"first": "Giulia",
"middle": [],
"last": "Bonansinga",
"suffix": ""
}
],
"year": 2012,
"venue": "LREC",
"volume": "",
"issue": "",
"pages": "3712--3718",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alessandro Lenci, Gabriella Lapesa, and Giulia Bo- nansinga. 2012. Lexit: A computational resource on italian argument structure. In LREC, pages 3712-3718.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Sentiment analysis and opinion mining",
"authors": [
{
"first": "Bing",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2012,
"venue": "Synthesis Lectures on Human Language Technologies",
"volume": "5",
"issue": "1",
"pages": "1--167",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bing Liu. 2012. Sentiment analysis and opinion min- ing. Synthesis Lectures on Human Language Tech- nologies, 5(1):1-167.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Featurebased customer review summarization",
"authors": [
{
"first": "Alessandro",
"middle": [],
"last": "Maisto",
"suffix": ""
},
{
"first": "Serena",
"middle": [],
"last": "Pelosi",
"suffix": ""
}
],
"year": 2014,
"venue": "On the Move to Meaningful Internet Systems: OTM 2014 Workshops",
"volume": "",
"issue": "",
"pages": "299--308",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alessandro Maisto and Serena Pelosi. 2014a. Feature- based customer review summarization. In On the Move to Meaningful Internet Systems: OTM 2014 Workshops, pages 299-308. Springer.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "A lexicon-based approach to sentiment analysis. the italian module for nooj",
"authors": [
{
"first": "Alessandro",
"middle": [],
"last": "Maisto",
"suffix": ""
},
{
"first": "Serena",
"middle": [],
"last": "Pelosi",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the International Nooj 2014 Conference",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alessandro Maisto and Serena Pelosi. 2014b. A lexicon-based approach to sentiment analysis. the italian module for nooj. In Proceedings of the Inter- national Nooj 2014 Conference, University of Sas- sari, Italy. Cambridge Scholar Publishing.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Semantic role labeling: an introduction to the special issue",
"authors": [
{
"first": "Llu\u00eds",
"middle": [],
"last": "M\u00e0rquez",
"suffix": ""
},
{
"first": "Xavier",
"middle": [],
"last": "Carreras",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Kenneth",
"suffix": ""
},
{
"first": "Suzanne",
"middle": [],
"last": "Litkowski",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Stevenson",
"suffix": ""
}
],
"year": 2008,
"venue": "Computational linguistics",
"volume": "34",
"issue": "",
"pages": "145--159",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Llu\u00eds M\u00e0rquez, Xavier Carreras, Kenneth C Litkowski, and Suzanne Stevenson. 2008. Semantic role label- ing: an introduction to the special issue. Computa- tional linguistics, 34(2):145-159.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Generating high-coverage semantic orientation lexicons from overtly marked words and a thesaurus",
"authors": [
{
"first": "Saif",
"middle": [],
"last": "Mohammad",
"suffix": ""
},
{
"first": "Cody",
"middle": [],
"last": "Dunne",
"suffix": ""
},
{
"first": "Bonnie",
"middle": [],
"last": "Dorr",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing",
"volume": "2",
"issue": "",
"pages": "599--608",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Saif Mohammad, Cody Dunne, and Bonnie Dorr. 2009. Generating high-coverage semantic orienta- tion lexicons from overtly marked words and a the- saurus. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Process- ing: Volume 2-Volume 2, pages 599-608. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "Compositionality principle in recognition of fine-grained emotions from text",
"authors": [
{
"first": "Alena",
"middle": [],
"last": "Neviarouskaya",
"suffix": ""
},
{
"first": "Helmut",
"middle": [],
"last": "Prendinger",
"suffix": ""
},
{
"first": "Mitsuru",
"middle": [],
"last": "Ishizuka",
"suffix": ""
}
],
"year": 2009,
"venue": "ICWSM",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alena Neviarouskaya, Helmut Prendinger, and Mit- suru Ishizuka. 2009. Compositionality principle in recognition of fine-grained emotions from text. In ICWSM.",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "Sentiful: A lexicon for sentiment analysis. Affective Computing",
"authors": [
{
"first": "Alena",
"middle": [],
"last": "Neviarouskaya",
"suffix": ""
},
{
"first": "Helmut",
"middle": [],
"last": "Prendinger",
"suffix": ""
},
{
"first": "Mitsuru",
"middle": [],
"last": "Ishizuka",
"suffix": ""
}
],
"year": 2011,
"venue": "IEEE Transactions on",
"volume": "2",
"issue": "1",
"pages": "22--36",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alena Neviarouskaya, Helmut Prendinger, and Mitsuru Ishizuka. 2011. Sentiful: A lexicon for sentiment analysis. Affective Computing, IEEE Transactions on, 2(1):22-36.",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "The nature and measurement of meaning",
"authors": [
{
"first": "E",
"middle": [],
"last": "Charles",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Osgood",
"suffix": ""
}
],
"year": 1952,
"venue": "Psychological bulletin",
"volume": "49",
"issue": "3",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Charles E Osgood. 1952. The nature and measurement of meaning. Psychological bulletin, 49(3):197.",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "The proposition bank: An annotated corpus of semantic roles",
"authors": [
{
"first": "Martha",
"middle": [],
"last": "Palmer",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Gildea",
"suffix": ""
},
{
"first": "Paul",
"middle": [],
"last": "Kingsbury",
"suffix": ""
}
],
"year": 2005,
"venue": "Computational linguistics",
"volume": "31",
"issue": "1",
"pages": "71--106",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005. The proposition bank: An annotated cor- pus of semantic roles. Computational linguistics, 31(1):71-106.",
"links": null
},
"BIBREF38": {
"ref_id": "b38",
"title": "Opinion mining and sentiment analysis. Foundations and trends in information retrieval",
"authors": [
{
"first": "Bo",
"middle": [],
"last": "Pang",
"suffix": ""
},
{
"first": "Lillian",
"middle": [],
"last": "Lee",
"suffix": ""
}
],
"year": 2008,
"venue": "",
"volume": "2",
"issue": "",
"pages": "1--135",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bo Pang and Lillian Lee. 2008. Opinion mining and sentiment analysis. Foundations and trends in infor- mation retrieval, 2(1-2):1-135.",
"links": null
},
"BIBREF39": {
"ref_id": "b39",
"title": "Learning subjective nouns using extraction pattern bootstrapping",
"authors": [
{
"first": "Ellen",
"middle": [],
"last": "Riloff",
"suffix": ""
},
{
"first": "Janyce",
"middle": [],
"last": "Wiebe",
"suffix": ""
},
{
"first": "Theresa",
"middle": [],
"last": "Wilson",
"suffix": ""
}
],
"year": 2003,
"venue": "Proceedings of the seventh conference on Natural language learning at HLT-NAACL 2003",
"volume": "4",
"issue": "",
"pages": "25--32",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ellen Riloff, Janyce Wiebe, and Theresa Wilson. 2003. Learning subjective nouns using extraction pattern bootstrapping. In Proceedings of the seventh confer- ence on Natural language learning at HLT-NAACL 2003-Volume 4, pages 25-32. Association for Com- putational Linguistics.",
"links": null
},
"BIBREF40": {
"ref_id": "b40",
"title": "Framenet ii: Extended theory and practice",
"authors": [
{
"first": "Josef",
"middle": [],
"last": "Ruppenhofer",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Ellsworth",
"suffix": ""
},
{
"first": "R",
"middle": [
"L"
],
"last": "Miriam",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Petruck",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Christopher",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Johnson",
"suffix": ""
}
],
"year": 2006,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Josef Ruppenhofer, Michael Ellsworth, Miriam RL Petruck, Christopher R Johnson, and Jan Schef- fczyk. 2006. Framenet ii: Extended theory and practice.",
"links": null
},
"BIBREF41": {
"ref_id": "b41",
"title": "The enriched treetagger system",
"authors": [
{
"first": "H",
"middle": [],
"last": "Schmid",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Baroni",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Zanchetta",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Stein",
"suffix": ""
}
],
"year": 2007,
"venue": "proceedings of the EVALITA 2007 workshop",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "H Schmid, M Baroni, E Zanchetta, and A Stein. 2007. The enriched treetagger system. In proceedings of the EVALITA 2007 workshop.",
"links": null
},
"BIBREF42": {
"ref_id": "b42",
"title": "Probabilistic part-of-speech tagging using decision trees",
"authors": [
{
"first": "Helmut",
"middle": [],
"last": "Schmid",
"suffix": ""
}
],
"year": 1994,
"venue": "Proceedings of the international conference on new methods in language processing",
"volume": "12",
"issue": "",
"pages": "44--49",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Helmut Schmid. 1994. Probabilistic part-of-speech tagging using decision trees. In Proceedings of the international conference on new methods in lan- guage processing, volume 12, pages 44-49. Cite- seer.",
"links": null
},
"BIBREF43": {
"ref_id": "b43",
"title": "The general inquirer: A computer approach to content analysis",
"authors": [
{
"first": "J",
"middle": [],
"last": "Philip",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Stone",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Dexter",
"suffix": ""
},
{
"first": "Marshall S",
"middle": [],
"last": "Dunphy",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Smith",
"suffix": ""
}
],
"year": 1966,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Philip J Stone, Dexter C Dunphy, and Marshall S Smith. 1966. The general inquirer: A computer approach to content analysis.",
"links": null
},
"BIBREF44": {
"ref_id": "b44",
"title": "Wordnet affect: an affective extension of wordnet",
"authors": [
{
"first": "Carlo",
"middle": [],
"last": "Strapparava",
"suffix": ""
},
{
"first": "Alessandro",
"middle": [],
"last": "Valitutti",
"suffix": ""
}
],
"year": 2004,
"venue": "LREC",
"volume": "4",
"issue": "",
"pages": "1083--1086",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Carlo Strapparava, Alessandro Valitutti, et al. 2004. Wordnet affect: an affective extension of wordnet. In LREC, volume 4, pages 1083-1086.",
"links": null
},
"BIBREF45": {
"ref_id": "b45",
"title": "Unsupervised semantic role labelling",
"authors": [
{
"first": "S",
"middle": [],
"last": "Robert",
"suffix": ""
},
{
"first": "Suzanne",
"middle": [],
"last": "Swier",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Stevenson",
"suffix": ""
}
],
"year": 2004,
"venue": "Proceedings of EMNLP",
"volume": "95",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Robert S Swier and Suzanne Stevenson. 2004. Unsu- pervised semantic role labelling. In Proceedings of EMNLP, volume 95, page 102.",
"links": null
},
"BIBREF46": {
"ref_id": "b46",
"title": "Methods for creating semantic orientation dictionaries",
"authors": [
{
"first": "Maite",
"middle": [],
"last": "Taboada",
"suffix": ""
},
{
"first": "Caroline",
"middle": [],
"last": "Anthony",
"suffix": ""
},
{
"first": "Kimberly",
"middle": [],
"last": "Voll",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC)",
"volume": "",
"issue": "",
"pages": "427--432",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Maite Taboada, Caroline Anthony, and Kimberly Voll. 2006. Methods for creating semantic orientation dictionaries. In Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC), Genova, Italy, pages 427-432.",
"links": null
},
"BIBREF47": {
"ref_id": "b47",
"title": "Lexiconbased methods for sentiment analysis",
"authors": [
{
"first": "Maite",
"middle": [],
"last": "Taboada",
"suffix": ""
},
{
"first": "Julian",
"middle": [],
"last": "Brooke",
"suffix": ""
},
{
"first": "Milan",
"middle": [],
"last": "Tofiloski",
"suffix": ""
},
{
"first": "Kimberly",
"middle": [],
"last": "Voll",
"suffix": ""
},
{
"first": "Manfred",
"middle": [],
"last": "Stede",
"suffix": ""
}
],
"year": 2011,
"venue": "Computational linguistics",
"volume": "37",
"issue": "2",
"pages": "267--307",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Maite Taboada, Julian Brooke, Milan Tofiloski, Kim- berly Voll, and Manfred Stede. 2011. Lexicon- based methods for sentiment analysis. Computa- tional linguistics, 37(2):267-307.",
"links": null
},
"BIBREF48": {
"ref_id": "b48",
"title": "The viability of web-derived polarity lexicons",
"authors": [
{
"first": "Leonid",
"middle": [],
"last": "Velikovich",
"suffix": ""
},
{
"first": "Sasha",
"middle": [],
"last": "Blair-Goldensohn",
"suffix": ""
},
{
"first": "Kerry",
"middle": [],
"last": "Hannan",
"suffix": ""
},
{
"first": "Ryan",
"middle": [],
"last": "Mcdonald",
"suffix": ""
}
],
"year": 2010,
"venue": "Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "777--785",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Leonid Velikovich, Sasha Blair-Goldensohn, Kerry Hannan, and Ryan McDonald. 2010. The viability of web-derived polarity lexicons. In Human Lan- guage Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pages 777-785. As- sociation for Computational Linguistics.",
"links": null
},
"BIBREF49": {
"ref_id": "b49",
"title": "The orientation of user opinions through adverbs, verbs and nouns",
"authors": [
{
"first": "",
"middle": [],
"last": "Mjm Vermeij",
"suffix": ""
}
],
"year": 2005,
"venue": "3rd Twente Student Conference on IT",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "MJM Vermeij. 2005. The orientation of user opinions through adverbs, verbs and nouns. In 3rd Twente Student Conference on IT, Enschede June. Citeseer.",
"links": null
},
"BIBREF50": {
"ref_id": "b50",
"title": "The italian module for nooj",
"authors": [
{
"first": "Simona",
"middle": [],
"last": "Vietri",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the First Italian Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Simona Vietri. 2014. The italian module for nooj. In In Proceedings of the First Italian Conference on Computational Linguistics, CLiC-it 2014. Pisa Uni- versity Press.",
"links": null
},
"BIBREF51": {
"ref_id": "b51",
"title": "Learning subjective language",
"authors": [
{
"first": "Janyce",
"middle": [],
"last": "Wiebe",
"suffix": ""
},
{
"first": "Theresa",
"middle": [],
"last": "Wilson",
"suffix": ""
},
{
"first": "Rebecca",
"middle": [],
"last": "Bruce",
"suffix": ""
},
{
"first": "Matthew",
"middle": [],
"last": "Bell",
"suffix": ""
},
{
"first": "Melanie",
"middle": [],
"last": "Martin",
"suffix": ""
}
],
"year": 2004,
"venue": "Computational linguistics",
"volume": "30",
"issue": "3",
"pages": "277--308",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Janyce Wiebe, Theresa Wilson, Rebecca Bruce, Matthew Bell, and Melanie Martin. 2004. Learn- ing subjective language. Computational linguistics, 30(3):277-308.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"text": "of Frame Semantics, we identified in the Opinion Mining and in the Emotion Detection field three Frames of interest, recalled by specific Predicates: Sentiment, Opinion and Physical act. The frame elements evoked by such frames are described below.",
"type_str": "figure",
"uris": null,
"num": null
},
"FIGREF2": {
"text": "presents three headlines examples processed both with the dependency syntactic parser and the semantic LG-based semantic analyzer. Notice that the elements of the traditional grammar automatically identified by DeSR, such as subjects and complements, have been renamed according with the lexico-grammar tradition. Examples of syntactically and semantically annotated sentences",
"type_str": "figure",
"uris": null,
"num": null
},
"TABREF1": {
"num": null,
"text": "Extract of the Lexicon-grammar table of the verb Class 45.",
"html": null,
"content": "<table/>",
"type_str": "table"
},
"TABREF2": {
"num": null,
"text": "Extract of the semantic description of the opinionated verbs belonging to the LG class 45.",
"html": null,
"content": "<table><tr><td>ity (positive/negative) through the combination of</td></tr><tr><td>four tags: POS, NEG, STRONG and WEAK, cre-</td></tr><tr><td>ating, this way, an evaluation scale that goes from</td></tr><tr><td>-3 to +3 and a strength scale that ranges from -1 to</td></tr><tr><td>+1.</td></tr><tr><td>Semantic Role Labeling. Thanks to lexical re-</td></tr><tr><td>sources of this kind, it is possible to automatically</td></tr><tr><td>extract and semantically describe real occurrences</td></tr><tr><td>of sentences, like [4]</td></tr></table>",
"type_str": "table"
}
}
}
}