ACL-OCL / Base_JSON /prefixR /json /repl4nlp /2020.repl4nlp-1.14.json
Benjamin Aw
Add updated pkl file v3
6fa4bc9
{
"paper_id": "2020",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T14:59:12.221885Z"
},
"title": "Adversarial Alignment of Multilingual Models for Extracting Temporal Expressions from Text",
"authors": [
{
"first": "Lukas",
"middle": [],
"last": "Lange",
"suffix": "",
"affiliation": {},
"email": "[email protected]"
},
{
"first": "Anastasiia",
"middle": [],
"last": "Iurshina",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Heike",
"middle": [],
"last": "Adel",
"suffix": "",
"affiliation": {},
"email": "[email protected]"
},
{
"first": "Jannik",
"middle": [],
"last": "Str\u00f6tgen",
"suffix": "",
"affiliation": {},
"email": "[email protected]"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Although temporal tagging is still dominated by rule-based systems, there have been recent attempts at neural temporal taggers. However, all of them focus on monolingual settings. In this paper, we explore multilingual methods for the extraction of temporal expressions from text and investigate adversarial training for aligning embedding spaces to one common space. With this, we create a single multilingual model that can also be transferred to unseen languages and set the new state of the art in those cross-lingual transfer experiments.",
"pdf_parse": {
"paper_id": "2020",
"_pdf_hash": "",
"abstract": [
{
"text": "Although temporal tagging is still dominated by rule-based systems, there have been recent attempts at neural temporal taggers. However, all of them focus on monolingual settings. In this paper, we explore multilingual methods for the extraction of temporal expressions from text and investigate adversarial training for aligning embedding spaces to one common space. With this, we create a single multilingual model that can also be transferred to unseen languages and set the new state of the art in those cross-lingual transfer experiments.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "The extraction of temporal expressions from text is an important processing step for many applications, such as topic detection and questions answering (Str\u00f6tgen and Gertz, 2016) . However, there is a lack of multilingual models for this task. While recent temporal taggers, such as the work by Laparra et al. (2018) focus on English, only little work was dedicated to multilingual temporal tagging so far. Str\u00f6tgen and Gertz (2015) proposed to automatically generate language resources for the rulebased temporal tagger HeidelTime, but all of these models are language specific and can only process texts from a fixed language. In this paper, we propose to overcome this limitation by training a single model on multiple languages to extract temporal expressions from text. We experiment with recurrent neural networks using FastText embeddings (Bojanowski et al., 2017) and the multilingual version of BERT (Devlin et al., 2019) . In order to process multilingual texts, we investigate an unsupervised alignment technique based on adversarial training, making it applicable to zero-or low-resource scenarios and compare it to standard dictionary-based alternatives (Mikolov et al., 2013) .",
"cite_spans": [
{
"start": 152,
"end": 178,
"text": "(Str\u00f6tgen and Gertz, 2016)",
"ref_id": "BIBREF35"
},
{
"start": 295,
"end": 316,
"text": "Laparra et al. (2018)",
"ref_id": "BIBREF19"
},
{
"start": 407,
"end": 432,
"text": "Str\u00f6tgen and Gertz (2015)",
"ref_id": "BIBREF34"
},
{
"start": 846,
"end": 871,
"text": "(Bojanowski et al., 2017)",
"ref_id": "BIBREF3"
},
{
"start": 909,
"end": 930,
"text": "(Devlin et al., 2019)",
"ref_id": "BIBREF9"
},
{
"start": 1167,
"end": 1189,
"text": "(Mikolov et al., 2013)",
"ref_id": "BIBREF26"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "We demonstrate that it is possible to achieve competitive performance with a single multilingual model trained jointly on English, Spanish and Portuguese. Further, we demonstrate that this multilingual model can be transferred to new languages, for which the model has not seen any labeled sentences during training by applying it to unseen French, Catalan, Basque, and German data. Our model shows superior performance compared to Heidel-Time (Str\u00f6tgen and Gertz, 2015) and sets new stateof-the-art results in the cross-lingual extraction of temporal expressions.",
"cite_spans": [
{
"start": 444,
"end": 470,
"text": "(Str\u00f6tgen and Gertz, 2015)",
"ref_id": "BIBREF34"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Temporal Tagging. The current state of the art for temporal tagging are rule-based systems, such as HeidelTime (Str\u00f6tgen and Gertz, 2013) or SU-Time (Chang and Manning, 2012). In particular, HeidelTime uses a different set of rules depending on the language and domain. Str\u00f6tgen and Gertz (2015) automatically generated HeidelTime rules for more than 200 languages in order to support many languages. However, the quality of these rules does not match the high quality of manually created rules and the models are still language specific. Aside from rule-based systems, Lee et al. (2014) proposed to learn context-dependent semantic parsers for extracting temporal expressions from text. Laparra et al. (2018) made a first step towards neural models by using recurrent neural networks. However, they only performed experiments on English corpora using monolingual models. In contrast, we propose a truly multilingual model. Multilingual Embeddings. Recently, it became popular to train embedding models on resources from many languages jointly (Lample and Conneau, 2019; . For example, multilingual BERT (Devlin et al., 2019) was trained on Wikipedia articles from more than 100 languages. Although performance improvements show the possibility to use multilingual BERT in monolingual (Hakala and Pyysalo, 2019) , multilingual (Tsai et al., 2019) and cross-lingual settings (Wu and Dredze, 2019) , it has been questioned whether multilingual BERT is truly multilingual (Pires et al., 2019; Singh et al., 2019; Libovick\u1ef3 et al., 2019) . Therefore, we will investigate the benefits of aligning its embeddings in our experiments.",
"cite_spans": [
{
"start": 111,
"end": 137,
"text": "(Str\u00f6tgen and Gertz, 2013)",
"ref_id": "BIBREF33"
},
{
"start": 270,
"end": 295,
"text": "Str\u00f6tgen and Gertz (2015)",
"ref_id": "BIBREF34"
},
{
"start": 570,
"end": 587,
"text": "Lee et al. (2014)",
"ref_id": "BIBREF20"
},
{
"start": 688,
"end": 709,
"text": "Laparra et al. (2018)",
"ref_id": "BIBREF19"
},
{
"start": 1044,
"end": 1070,
"text": "(Lample and Conneau, 2019;",
"ref_id": "BIBREF18"
},
{
"start": 1104,
"end": 1125,
"text": "(Devlin et al., 2019)",
"ref_id": "BIBREF9"
},
{
"start": 1285,
"end": 1311,
"text": "(Hakala and Pyysalo, 2019)",
"ref_id": "BIBREF12"
},
{
"start": 1327,
"end": 1346,
"text": "(Tsai et al., 2019)",
"ref_id": "BIBREF37"
},
{
"start": 1374,
"end": 1395,
"text": "(Wu and Dredze, 2019)",
"ref_id": "BIBREF40"
},
{
"start": 1469,
"end": 1489,
"text": "(Pires et al., 2019;",
"ref_id": "BIBREF27"
},
{
"start": 1490,
"end": 1509,
"text": "Singh et al., 2019;",
"ref_id": "BIBREF31"
},
{
"start": 1510,
"end": 1533,
"text": "Libovick\u1ef3 et al., 2019)",
"ref_id": "BIBREF22"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Aligning Embedding Spaces. A common method to create multilingual embedding spaces is the alignment of monolingual embeddings (Mikolov et al., 2013; Joulin et al., 2018) . Smith et al. 2017proposed to align embedding spaces by creating orthogonal transformation matrices based on bilingual dictionaries, which we use as baseline alignment method.",
"cite_spans": [
{
"start": 126,
"end": 148,
"text": "(Mikolov et al., 2013;",
"ref_id": "BIBREF26"
},
{
"start": 149,
"end": 169,
"text": "Joulin et al., 2018)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "It was shown that BERT can also benefit from alignment, i.a. in cross-lingual (Schuster et al., 2019; Liu et al., 2019) or multilingual settings (Cao et al., 2020) . In contrast to prior work, we experiment with aligning BERT using adversarial training, which is related to using adversarial training for domain adaptation (Ganin et al., 2016) , coping with bias or confounding variables (Li et al., 2018; Raff and Sylvester, 2018; Zhang et al., 2018; Barrett et al., 2019; McHardy et al., 2019) or transferring models from a source to a target language (Zhang et al., 2017; Keung et al., 2019; Wang et al., 2019) . Similar to Chen and Cardie (2018), we use a multinomial discriminator in our setting.",
"cite_spans": [
{
"start": 78,
"end": 101,
"text": "(Schuster et al., 2019;",
"ref_id": "BIBREF30"
},
{
"start": 102,
"end": 119,
"text": "Liu et al., 2019)",
"ref_id": "BIBREF23"
},
{
"start": 145,
"end": 163,
"text": "(Cao et al., 2020)",
"ref_id": "BIBREF4"
},
{
"start": 323,
"end": 343,
"text": "(Ganin et al., 2016)",
"ref_id": "BIBREF10"
},
{
"start": 388,
"end": 405,
"text": "(Li et al., 2018;",
"ref_id": "BIBREF21"
},
{
"start": 406,
"end": 431,
"text": "Raff and Sylvester, 2018;",
"ref_id": "BIBREF28"
},
{
"start": 432,
"end": 451,
"text": "Zhang et al., 2018;",
"ref_id": "BIBREF41"
},
{
"start": 452,
"end": 473,
"text": "Barrett et al., 2019;",
"ref_id": "BIBREF1"
},
{
"start": 474,
"end": 495,
"text": "McHardy et al., 2019)",
"ref_id": "BIBREF25"
},
{
"start": 554,
"end": 574,
"text": "(Zhang et al., 2017;",
"ref_id": "BIBREF43"
},
{
"start": 575,
"end": 594,
"text": "Keung et al., 2019;",
"ref_id": "BIBREF15"
},
{
"start": 595,
"end": 613,
"text": "Wang et al., 2019)",
"ref_id": "BIBREF39"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "We model the task of extracting temporal expressions as a sequence tagging problem and explore the performance of state-of-the-art recurrent neural networks with FastText and BERT embeddings, respectively. In particular, we train multilingual models that process all languages in the same model. To create and improve the multilingual embedding spaces, we propose an unsupervised alignment approach based on adversarial training and compare it to two baseline approaches. Figure 1 provides an overview of the system. The different components are described in detail in the following.",
"cite_spans": [],
"ref_spans": [
{
"start": 472,
"end": 480,
"text": "Figure 1",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Methods",
"sec_num": "3"
},
{
"text": "Following previous work, e.g., Lample et al. 2016, we train a bidirectional long-short term memory network (BiLSTM) (Hochreiter and Schmidhuber, 1997 ) with a conditional random field (CRF) (Lafferty et al., 2001) output layer. As input, we experiment with two embedding methods: (i) pre-trained FastText (Bojanowski et al., 2017) word embeddings from multiple languages, 1 and (ii) multilingual BERT (Devlin et al., 2019) embeddings. 2 For BERT, we use the averaged output of the last four layers as input to the BiLSTM and fine-tune the whole model during the training of temporal information extraction. We also experimented with a BERT setup similar to Devlin et al. (2019) where the embeddings are directly mapped to the label space and the softmax function is used to compute the label probabilities instead of a CRF. However, we found superior performance for the BiLSTM-CRF models.",
"cite_spans": [
{
"start": 116,
"end": 149,
"text": "(Hochreiter and Schmidhuber, 1997",
"ref_id": "BIBREF13"
},
{
"start": 305,
"end": 330,
"text": "(Bojanowski et al., 2017)",
"ref_id": "BIBREF3"
},
{
"start": 401,
"end": 422,
"text": "(Devlin et al., 2019)",
"ref_id": "BIBREF9"
},
{
"start": 657,
"end": 677,
"text": "Devlin et al. (2019)",
"ref_id": "BIBREF9"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Temporal Expression Extraction Model",
"sec_num": "3.1"
},
{
"text": "We propose an unsupervised approach based on adversarial training to align multilingual embeddings in a common space (Section 3.2.2) and compare it with two approaches from related work based on linear transformation matrices (Section 3.2.1).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Alignment of Embeddings",
"sec_num": "3.2"
},
{
"text": "Embedding spaces are typically aligned using a linear transformation based on bilingual dictionaries. We follow the work from Smith et al. 2017, and align embedding spaces based on orthogonal transformation matrices. These matrices can either be constructed in an unsupervised way by using words that appear in the vocabularies from both languages, i.e., equal words that can be identified using string matching, or in a supervised way based on real-world dictionaries (Mikolov et al., 2013; Joulin et al., 2018) . For the latter method, we build dictionaries based on translations from wiktionary. 3 For both methods, we reduce the vocabularies to the most frequent 5k words per language and treat English as the pivot language.",
"cite_spans": [
{
"start": 469,
"end": 491,
"text": "(Mikolov et al., 2013;",
"ref_id": "BIBREF26"
},
{
"start": 492,
"end": 512,
"text": "Joulin et al., 2018)",
"ref_id": "BIBREF14"
},
{
"start": 599,
"end": 600,
"text": "3",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Baseline Alignment",
"sec_num": "3.2.1"
},
{
"text": "We propose to use gradient reversal training to align embeddings from different (sub)spaces in an unsupervised way. Note that neither dictionaries nor other language resources are needed for this approach, making it applicable to zeroor low-resource scenarios. In particular, we extend the extraction model C with a discriminator D. Both model parts are trained alternately in a multi-task fashion. The feature extractor F is shared among them and consists of the embedding layer E, followed by a non-linear mapping: F (x) = tanh(W E(x)) with x being the current word, W \u2208 R S\u00d7S and S being the embedding dimensionality.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Adversarial Alignment",
"sec_num": "3.2.2"
},
{
"text": "The discriminator D is a multinomial non-linear classifier consisting of one hidden layer with ReLU activation (Hahnloser et al., 2000) : In total, we distinguish three sets of parameters: \u03b8 C : the parameters of the downstream classification model (i.e., the temporal tagger), \u03b8 D : the parameters of the discriminator, and \u03b8 F : the parameters of the feature extractor. The loss functions of the temporal tagger L C and of the discriminator L D are cross-entropy loss functions. While \u03b8 C and \u03b8 D are updated using standard gradient descent, gradient reversal training updates \u03b8 F as follows: with \u03b7 being the learning rate and \u03bb a hyperparameter to control the discriminator influence. Thus, \u03b8 F is updated in the opposite direction of the gradients from the discriminator loss, making the discriminator an adversary. With this, the discriminator is optimized for predicting the correct origin language of a given sentence, but at the same time the feature extractor gets updated with gradient reversal, such that the language detection becomes harder and the discriminator cannot easily distinguish the word representations from different languages.",
"cite_spans": [
{
"start": 111,
"end": 135,
"text": "(Hahnloser et al., 2000)",
"ref_id": "BIBREF11"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Adversarial Alignment",
"sec_num": "3.2.2"
},
{
"text": "D(x) = softmax(T ReLU(V F (x))) with V \u2208 R S\u00d7H , T \u2208 R",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Adversarial Alignment",
"sec_num": "3.2.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "\u03b8 F = \u03b8 F \u2212 \u03b7( \u2202L C \u2202\u03b8 F \u2212 \u03bb \u2202L D \u2202\u03b8 F )",
"eq_num": "(1)"
}
],
"section": "Adversarial Alignment",
"sec_num": "3.2.2"
},
{
"text": "For evaluation, we use the TempEval3 evaluation script and report strict and relaxed extraction F 1 score for complete and partial overlap to gold standard annotations, respectively. We also report the type F 1 score for the classification into the four temporal types: Date, Time, Duration, and Set. Our multilingual models are trained using the Portuguese TimeBank (Costa and Branco, 2012) and TempEval3 (UzZaman et al., 2013) for Spanish and English (TimeBank subset). To demonstrate that our model is able to generalize to unseen languages, we perform tests using the French (Bittar et al., 2011) , Catalan (Saur\u0131 and Badia, 2012) and Basque (Altuna et al., 2016) TimeBanks and the Zeit subset of the German KRAUTS corpus (Str\u00f6tgen et al., 2018) . Corpus statistics are shown in Table 1 .",
"cite_spans": [
{
"start": 367,
"end": 391,
"text": "(Costa and Branco, 2012)",
"ref_id": "BIBREF8"
},
{
"start": 396,
"end": 428,
"text": "TempEval3 (UzZaman et al., 2013)",
"ref_id": null
},
{
"start": 579,
"end": 600,
"text": "(Bittar et al., 2011)",
"ref_id": "BIBREF2"
},
{
"start": 611,
"end": 634,
"text": "(Saur\u0131 and Badia, 2012)",
"ref_id": "BIBREF29"
},
{
"start": 646,
"end": 667,
"text": "(Altuna et al., 2016)",
"ref_id": "BIBREF0"
},
{
"start": 726,
"end": 749,
"text": "(Str\u00f6tgen et al., 2018)",
"ref_id": "BIBREF36"
}
],
"ref_spans": [
{
"start": 783,
"end": 790,
"text": "Table 1",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Evaluation Metrics and Datasets",
"sec_num": "4.1"
},
{
"text": "We use the AdamW optimizer (Loshchilov and Hutter, 2019) with a learning rate of 1e\u22125 for the BiLSTM-CRF model part and 1e\u22126 for BERT. The model is trained for a maximum of 50 epochs using early stopping on the development set. The BiL-STM has a hidden size of 128 units per direction. The labels are encoded in the IOB2 format. For regularization, we apply dropout with a rate of 10% after the input embeddings. The discriminator for adversarial training has a hidden size H of 100 units and is trained after every 10 th batch of the sequence tagger with \u03bb set to 0.001.",
"cite_spans": [
{
"start": 27,
"end": 56,
"text": "(Loshchilov and Hutter, 2019)",
"ref_id": "BIBREF24"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Hyperparameters and Model Training",
"sec_num": "4.2"
},
{
"text": "The results for the multilingual experiments are shown in Table 2 . We trained three models with different random seeds and report the performance of the model with median performance on the combined development set of all languages. Current state of the art for English (Lee et al., 2014) achieves 83.1/91.4/85.4 for strict/relaxed/type F 1 . However, this is a monolingual model that can only be applied to English. The effects of aligning FastText embeddings are clearly visible in Table 2 . The supervised alignment using a dictionary is always superior compared to the unsupervised alignment without a dictionary or the unaligned embeddings. Our proposed adversarial alignment (w/ AT) leads to the best results across languages. The performance of BERT is close to the best FastText model. 4 Aligning BERT with adversarial training also increases performance. The improvements are smaller compared to FastText but still statistically significant for English. Table 3 provides transfer results of the models with BERT embeddings to languages without labeled training data. 5 In particular, the model using the Wikipedia data for training the discriminator is effective in generalizing to languages without train- 4 Additional experiments with the multilingual XLM model (Lample and Conneau, 2019) trained on 100 languages led to similar results as the multilingual BERT model. 5 The results of the FastText models were considerably lower for cross-lingual transfer. Table 3 : Results for the unsupervised cross-lingual setting. We compare to HeidelTime with automatically generated resources, which resembles a similar setting.",
"cite_spans": [
{
"start": 271,
"end": 289,
"text": "(Lee et al., 2014)",
"ref_id": "BIBREF20"
},
{
"start": 795,
"end": 796,
"text": "4",
"ref_id": null
},
{
"start": 1077,
"end": 1078,
"text": "5",
"ref_id": null
},
{
"start": 1217,
"end": 1218,
"text": "4",
"ref_id": null
},
{
"start": 1274,
"end": 1300,
"text": "(Lample and Conneau, 2019)",
"ref_id": "BIBREF18"
},
{
"start": 1381,
"end": 1382,
"text": "5",
"ref_id": null
}
],
"ref_spans": [
{
"start": 58,
"end": 65,
"text": "Table 2",
"ref_id": "TABREF3"
},
{
"start": 485,
"end": 492,
"text": "Table 2",
"ref_id": "TABREF3"
},
{
"start": 964,
"end": 971,
"text": "Table 3",
"ref_id": null
},
{
"start": 1470,
"end": 1477,
"text": "Table 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "Results",
"sec_num": "4.3"
},
{
"text": "ing resources for temporal expression extraction, as these languages are also aligned during model training. It outperforms the state-of-the-art Heidel-Time models by a large margin. The impressive performance of the multilingual BERT in the crosslingual setting can be explained by the fact that the model has seen many sentences in our target languages during the pre-training phase, which can now be effectively leveraged in this new setting.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Results",
"sec_num": "4.3"
},
{
"text": "The embedding spaces of BERT before and after aligning are shown in Figure 2 . The left sub-figure presents the original BERT embeddings without any fine-tuning. In this visualization, clear clusters for each language exist. After fine-tuning on multilingual temporal expression extraction and adversarial alignment (right sub-figure) the clusters for each language mostly disappear. ",
"cite_spans": [],
"ref_spans": [
{
"start": 68,
"end": 76,
"text": "Figure 2",
"ref_id": "FIGREF3"
}
],
"eq_spans": [],
"section": "Analysis",
"sec_num": "4.4"
},
{
"text": "In this paper, we investigated how a multilingual neural model with FastText or BERT embeddings can be used to extract temporal expressions from text. We investigated adversarial training for creating multilingual embedding spaces. The model can effectively be transferred to unseen languages in a cross-lingual setting and outperforms a stateof-the-art model by a large margin.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "5"
},
{
"text": "https://fasttext.cc/docs/en/ crawl-vectors.html 2 https://github.com/google-research/ bert/blob/master/multilingual.md",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://github.com/open-dsl-dict/ wiktionary-dict",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "We would like to thank the members of the BCAI NLP&KRR research group and the anonymous reviewers for their helpful comments.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgments",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Mar\u00eda Jes\u00fas Aranzabe, and Arantza D\u00edaz de Ilarraza",
"authors": [
{
"first": "Bego\u00f1a",
"middle": [],
"last": "Altuna",
"suffix": ""
}
],
"year": 2016,
"venue": "International Conference on Intelligent Text Processing and Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bego\u00f1a Altuna, Mar\u00eda Jes\u00fas Aranzabe, and Arantza D\u00edaz de Ilarraza. 2016. Adapting timeml to basque: Event annotation. In International Conference on Intelligent Text Processing and Computational Linguistics.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Adversarial removal of demographic attributes revisited",
"authors": [
{
"first": "Maria",
"middle": [],
"last": "Barrett",
"suffix": ""
},
{
"first": "Yova",
"middle": [],
"last": "Kementchedjhieva",
"suffix": ""
},
{
"first": "Yanai",
"middle": [],
"last": "Elazar",
"suffix": ""
},
{
"first": "Desmond",
"middle": [],
"last": "Elliott",
"suffix": ""
},
{
"first": "Anders",
"middle": [],
"last": "S\u00f8gaard",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1662"
]
},
"num": null,
"urls": [],
"raw_text": "Maria Barrett, Yova Kementchedjhieva, Yanai Elazar, Desmond Elliott, and Anders S\u00f8gaard. 2019. Adver- sarial removal of demographic attributes revisited. In Proceedings of the 2019 Conference on Empiri- cal Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "French TimeBank: An ISO-TimeML annotated reference corpus",
"authors": [
{
"first": "Andr\u00e9",
"middle": [],
"last": "Bittar",
"suffix": ""
},
{
"first": "Pascal",
"middle": [],
"last": "Amsili",
"suffix": ""
},
{
"first": "Pascal",
"middle": [],
"last": "Denis",
"suffix": ""
},
{
"first": "Laurence",
"middle": [],
"last": "Danlos",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Andr\u00e9 Bittar, Pascal Amsili, Pascal Denis, and Lau- rence Danlos. 2011. French TimeBank: An ISO- TimeML annotated reference corpus. In Proceed- ings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Enriching word vectors with subword information",
"authors": [
{
"first": "Piotr",
"middle": [],
"last": "Bojanowski",
"suffix": ""
},
{
"first": "Edouard",
"middle": [],
"last": "Grave",
"suffix": ""
},
{
"first": "Armand",
"middle": [],
"last": "Joulin",
"suffix": ""
},
{
"first": "Tomas",
"middle": [],
"last": "Mikolov",
"suffix": ""
}
],
"year": 2017,
"venue": "Transactions of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.1162/tacl_a_00051"
]
},
"num": null,
"urls": [],
"raw_text": "Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with subword information. Transactions of the Associa- tion for Computational Linguistics, 5.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Multilingual alignment of contextual word representations",
"authors": [
{
"first": "Steven",
"middle": [],
"last": "Cao",
"suffix": ""
},
{
"first": "Nikita",
"middle": [],
"last": "Kitaev",
"suffix": ""
},
{
"first": "Dan",
"middle": [],
"last": "Klein",
"suffix": ""
}
],
"year": 2020,
"venue": "International Conference on Learning Representations",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Steven Cao, Nikita Kitaev, and Dan Klein. 2020. Mul- tilingual alignment of contextual word representa- tions. In International Conference on Learning Rep- resentations.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "SU-Time: A library for recognizing and normalizing time expressions",
"authors": [
{
"first": "X",
"middle": [],
"last": "Angel",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Angel X. Chang and Christopher Manning. 2012. SU- Time: A library for recognizing and normalizing time expressions. In Proceedings of the Eighth In- ternational Conference on Language Resources and Evaluation (LREC'12).",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Multinomial adversarial networks for multi-domain text classification",
"authors": [
{
"first": "Xilun",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Claire",
"middle": [],
"last": "Cardie",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.18653/v1/N18-1111"
]
},
"num": null,
"urls": [],
"raw_text": "Xilun Chen and Claire Cardie. 2018. Multinomial ad- versarial networks for multi-domain text classifica- tion. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Com- putational Linguistics: Human Language Technolo- gies, Volume 1 (Long Papers).",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Unsupervised cross-lingual representation learning at scale",
"authors": [
{
"first": "Alexis",
"middle": [],
"last": "Conneau",
"suffix": ""
},
{
"first": "Kartikay",
"middle": [],
"last": "Khandelwal",
"suffix": ""
},
{
"first": "Naman",
"middle": [],
"last": "Goyal",
"suffix": ""
},
{
"first": "Vishrav",
"middle": [],
"last": "Chaudhary",
"suffix": ""
},
{
"first": "Guillaume",
"middle": [],
"last": "Wenzek",
"suffix": ""
},
{
"first": "Francisco",
"middle": [],
"last": "Guzm\u00e1n",
"suffix": ""
},
{
"first": "Edouard",
"middle": [],
"last": "Grave",
"suffix": ""
},
{
"first": "Myle",
"middle": [],
"last": "Ott",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
},
{
"first": "Veselin",
"middle": [],
"last": "Stoyanov",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1911.02116"
]
},
"num": null,
"urls": [],
"raw_text": "Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzm\u00e1n, Edouard Grave, Myle Ott, Luke Zettle- moyer, and Veselin Stoyanov. 2019. Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Time-BankPT: A TimeML annotated corpus of Portuguese",
"authors": [
{
"first": "Francisco",
"middle": [],
"last": "Costa",
"suffix": ""
},
{
"first": "Ant\u00f3nio",
"middle": [],
"last": "Branco",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Francisco Costa and Ant\u00f3nio Branco. 2012. Time- BankPT: A TimeML annotated corpus of Por- tuguese. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12).",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Devlin",
"suffix": ""
},
{
"first": "Ming-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1423"
]
},
"num": null,
"urls": [],
"raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Tech- nologies, Volume 1 (Long and Short Papers).",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Domain-adversarial training of neural networks",
"authors": [
{
"first": "Yaroslav",
"middle": [],
"last": "Ganin",
"suffix": ""
},
{
"first": "Evgeniya",
"middle": [],
"last": "Ustinova",
"suffix": ""
},
{
"first": "Hana",
"middle": [],
"last": "Ajakan",
"suffix": ""
},
{
"first": "Pascal",
"middle": [],
"last": "Germain",
"suffix": ""
},
{
"first": "Hugo",
"middle": [],
"last": "Larochelle",
"suffix": ""
},
{
"first": "Fran\u00e7ois",
"middle": [],
"last": "Laviolette",
"suffix": ""
},
{
"first": "Mario",
"middle": [],
"last": "Marchand",
"suffix": ""
},
{
"first": "Victor",
"middle": [],
"last": "Lempitsky",
"suffix": ""
}
],
"year": 2016,
"venue": "J. Mach. Learn. Res",
"volume": "17",
"issue": "1",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Fran\u00e7ois Lavio- lette, Mario Marchand, and Victor Lempitsky. 2016. Domain-adversarial training of neural networks. J. Mach. Learn. Res., 17(1).",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit",
"authors": [
{
"first": "Rahul",
"middle": [],
"last": "Richard Hr Hahnloser",
"suffix": ""
},
{
"first": "Misha",
"middle": [
"A"
],
"last": "Sarpeshkar",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Mahowald",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Rodney",
"suffix": ""
},
{
"first": "H Sebastian",
"middle": [],
"last": "Douglas",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Seung",
"suffix": ""
}
],
"year": 2000,
"venue": "Nature",
"volume": "",
"issue": "6789",
"pages": "",
"other_ids": {
"DOI": [
"10.1038/35016072"
]
},
"num": null,
"urls": [],
"raw_text": "Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Mahowald, Rodney J Douglas, and H Sebastian Se- ung. 2000. Digital selection and analogue amplifica- tion coexist in a cortex-inspired silicon circuit. Na- ture, 405(6789).",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Biomedical named entity recognition with multilingual BERT",
"authors": [
{
"first": "Kai",
"middle": [],
"last": "Hakala",
"suffix": ""
},
{
"first": "Sampo",
"middle": [],
"last": "Pyysalo",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of The 5th Workshop on BioNLP Open Shared Tasks",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.18653/v1/D19-5709"
]
},
"num": null,
"urls": [],
"raw_text": "Kai Hakala and Sampo Pyysalo. 2019. Biomedical named entity recognition with multilingual BERT. In Proceedings of The 5th Workshop on BioNLP Open Shared Tasks.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Long short-term memory",
"authors": [
{
"first": "Sepp",
"middle": [],
"last": "Hochreiter",
"suffix": ""
},
{
"first": "J\u00fcrgen",
"middle": [],
"last": "Schmidhuber",
"suffix": ""
}
],
"year": 1997,
"venue": "Neural Computing",
"volume": "",
"issue": "8",
"pages": "",
"other_ids": {
"DOI": [
"10.1162/neco.1997.9.8.1735"
]
},
"num": null,
"urls": [],
"raw_text": "Sepp Hochreiter and J\u00fcrgen Schmidhuber. 1997. Long short-term memory. Neural Computing, 9(8).",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Loss in translation: Learning bilingual word mapping with a retrieval criterion",
"authors": [
{
"first": "Armand",
"middle": [],
"last": "Joulin",
"suffix": ""
},
{
"first": "Piotr",
"middle": [],
"last": "Bojanowski",
"suffix": ""
},
{
"first": "Tomas",
"middle": [],
"last": "Mikolov",
"suffix": ""
},
{
"first": "Herv\u00e9",
"middle": [],
"last": "J\u00e9gou",
"suffix": ""
},
{
"first": "Edouard",
"middle": [],
"last": "Grave",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.18653/v1/D18-1330"
]
},
"num": null,
"urls": [],
"raw_text": "Armand Joulin, Piotr Bojanowski, Tomas Mikolov, Herv\u00e9 J\u00e9gou, and Edouard Grave. 2018. Loss in translation: Learning bilingual word mapping with a retrieval criterion. In Proceedings of the 2018 Con- ference on Empirical Methods in Natural Language Processing.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Adversarial learning with contextual embeddings for zero-resource cross-lingual classification and NER",
"authors": [
{
"first": "Phillip",
"middle": [],
"last": "Keung",
"suffix": ""
},
{
"first": "Lu",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "Vikas",
"middle": [],
"last": "Bhardwaj",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1138"
]
},
"num": null,
"urls": [],
"raw_text": "Phillip Keung, yichao lu, and Vikas Bhardwaj. 2019. Adversarial learning with contextual embeddings for zero-resource cross-lingual classification and NER. In Proceedings of the 2019 Conference on Empiri- cal Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Conditional random fields: Probabilistic models for segmenting and labeling sequence data",
"authors": [
{
"first": "John",
"middle": [
"D"
],
"last": "Lafferty",
"suffix": ""
},
{
"first": "Andrew",
"middle": [],
"last": "Mccallum",
"suffix": ""
},
{
"first": "Fernando",
"middle": [
"C N"
],
"last": "Pereira",
"suffix": ""
}
],
"year": 2001,
"venue": "Proceedings of the Eighteenth International Conference on Machine Learning",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling se- quence data. In Proceedings of the Eighteenth Inter- national Conference on Machine Learning, ICML '01.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Neural architectures for named entity recognition",
"authors": [
{
"first": "Guillaume",
"middle": [],
"last": "Lample",
"suffix": ""
},
{
"first": "Miguel",
"middle": [],
"last": "Ballesteros",
"suffix": ""
},
{
"first": "Sandeep",
"middle": [],
"last": "Subramanian",
"suffix": ""
},
{
"first": "Kazuya",
"middle": [],
"last": "Kawakami",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Dyer",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.18653/v1/N16-1030"
]
},
"num": null,
"urls": [],
"raw_text": "Guillaume Lample, Miguel Ballesteros, Sandeep Sub- ramanian, Kazuya Kawakami, and Chris Dyer. 2016. Neural architectures for named entity recognition. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Crosslingual language model pretraining",
"authors": [
{
"first": "Guillaume",
"middle": [],
"last": "Lample",
"suffix": ""
},
{
"first": "Alexis",
"middle": [],
"last": "Conneau",
"suffix": ""
}
],
"year": 2019,
"venue": "Advances in Neural Information Processing Systems (NeurIPS)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Guillaume Lample and Alexis Conneau. 2019. Cross- lingual language model pretraining. Advances in Neural Information Processing Systems (NeurIPS).",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "From characters to time intervals: New paradigms for evaluation and neural parsing of time normalizations",
"authors": [
{
"first": "Egoitz",
"middle": [],
"last": "Laparra",
"suffix": ""
},
{
"first": "Dongfang",
"middle": [],
"last": "Xu",
"suffix": ""
},
{
"first": "Steven",
"middle": [],
"last": "Bethard",
"suffix": ""
}
],
"year": 2018,
"venue": "Transactions of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.1162/tacl_a_00025"
]
},
"num": null,
"urls": [],
"raw_text": "Egoitz Laparra, Dongfang Xu, and Steven Bethard. 2018. From characters to time intervals: New paradigms for evaluation and neural parsing of time normalizations. Transactions of the Association for Computational Linguistics, 6.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Context-dependent semantic parsing for time expressions",
"authors": [
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Yoav",
"middle": [],
"last": "Artzi",
"suffix": ""
},
{
"first": "Jesse",
"middle": [],
"last": "Dodge",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.3115/v1/P14-1135"
]
},
"num": null,
"urls": [],
"raw_text": "Kenton Lee, Yoav Artzi, Jesse Dodge, and Luke Zettle- moyer. 2014. Context-dependent semantic parsing for time expressions. In Proceedings of the 52nd An- nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Towards robust and privacy-preserving text representations",
"authors": [
{
"first": "Yitong",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Timothy",
"middle": [],
"last": "Baldwin",
"suffix": ""
},
{
"first": "Trevor",
"middle": [],
"last": "Cohn",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
"volume": "2",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.18653/v1/P18-2005"
]
},
"num": null,
"urls": [],
"raw_text": "Yitong Li, Timothy Baldwin, and Trevor Cohn. 2018. Towards robust and privacy-preserving text represen- tations. In Proceedings of the 56th Annual Meet- ing of the Association for Computational Linguistics (Volume 2: Short Papers).",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "How language-neutral is multilingual bert? arXiv preprint",
"authors": [
{
"first": "Jind\u0159ich",
"middle": [],
"last": "Libovick\u1ef3",
"suffix": ""
},
{
"first": "Rudolf",
"middle": [],
"last": "Rosa",
"suffix": ""
},
{
"first": "Alexander",
"middle": [],
"last": "Fraser",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1911.03310"
]
},
"num": null,
"urls": [],
"raw_text": "Jind\u0159ich Libovick\u1ef3, Rudolf Rosa, and Alexander Fraser. 2019. How language-neutral is multilingual bert? arXiv preprint arXiv:1911.03310.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Investigating cross-lingual alignment methods for contextualized embeddings with token-level evaluation",
"authors": [
{
"first": "Qianchu",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Diana",
"middle": [],
"last": "Mccarthy",
"suffix": ""
},
{
"first": "Ivan",
"middle": [],
"last": "Vuli\u0107",
"suffix": ""
},
{
"first": "Anna",
"middle": [],
"last": "Korhonen",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.18653/v1/K19-1004"
]
},
"num": null,
"urls": [],
"raw_text": "Qianchu Liu, Diana McCarthy, Ivan Vuli\u0107, and Anna Korhonen. 2019. Investigating cross-lingual align- ment methods for contextualized embeddings with token-level evaluation. In Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL).",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Decoupled weight decay regularization",
"authors": [
{
"first": "Ilya",
"middle": [],
"last": "Loshchilov",
"suffix": ""
},
{
"first": "Frank",
"middle": [],
"last": "Hutter",
"suffix": ""
}
],
"year": 2019,
"venue": "International Conference on Learning Representations",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization. In International Con- ference on Learning Representations.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Adversarial training for satire detection: Controlling for confounding variables",
"authors": [
{
"first": "Robert",
"middle": [],
"last": "Mchardy",
"suffix": ""
},
{
"first": "Heike",
"middle": [],
"last": "Adel",
"suffix": ""
},
{
"first": "Roman",
"middle": [],
"last": "Klinger",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1069"
]
},
"num": null,
"urls": [],
"raw_text": "Robert McHardy, Heike Adel, and Roman Klinger. 2019. Adversarial training for satire detection: Con- trolling for confounding variables. In Proceedings of the 2019 Conference of the North American Chap- ter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Exploiting similarities among languages for machine translation",
"authors": [
{
"first": "Tomas",
"middle": [],
"last": "Mikolov",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Quoc",
"suffix": ""
},
{
"first": "Ilya",
"middle": [],
"last": "Le",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Sutskever",
"suffix": ""
}
],
"year": 2013,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1309.4168"
]
},
"num": null,
"urls": [],
"raw_text": "Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. 2013. Exploiting similarities among languages for ma- chine translation. arXiv preprint arXiv:1309.4168.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "How multilingual is multilingual BERT?",
"authors": [
{
"first": "Telmo",
"middle": [],
"last": "Pires",
"suffix": ""
},
{
"first": "Eva",
"middle": [],
"last": "Schlinger",
"suffix": ""
},
{
"first": "Dan",
"middle": [],
"last": "Garrette",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.18653/v1/P19-1493"
]
},
"num": null,
"urls": [],
"raw_text": "Telmo Pires, Eva Schlinger, and Dan Garrette. 2019. How multilingual is multilingual BERT? In Pro- ceedings of the 57th Annual Meeting of the Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Gradient reversal against discrimination: A fair neural network learning approach",
"authors": [
{
"first": "E",
"middle": [],
"last": "Raff",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Sylvester",
"suffix": ""
}
],
"year": 2018,
"venue": "2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.1109/DSAA.2018.00029"
]
},
"num": null,
"urls": [],
"raw_text": "E. Raff and J. Sylvester. 2018. Gradient reversal against discrimination: A fair neural network learn- ing approach. In 2018 IEEE 5th International Con- ference on Data Science and Advanced Analytics (DSAA).",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Catalan timebank 1.0 corpus documentation",
"authors": [
{
"first": "Roser",
"middle": [],
"last": "Saur\u0131",
"suffix": ""
},
{
"first": "Toni",
"middle": [],
"last": "Badia",
"suffix": ""
}
],
"year": 2012,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Roser Saur\u0131 and Toni Badia. 2012. Catalan timebank 1.0 corpus documentation. Technical report.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Cross-lingual alignment of contextual word embeddings, with applications to zeroshot dependency parsing",
"authors": [
{
"first": "Tal",
"middle": [],
"last": "Schuster",
"suffix": ""
},
{
"first": "Ori",
"middle": [],
"last": "Ram",
"suffix": ""
},
{
"first": "Regina",
"middle": [],
"last": "Barzilay",
"suffix": ""
},
{
"first": "Amir",
"middle": [],
"last": "Globerson",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1162"
]
},
"num": null,
"urls": [],
"raw_text": "Tal Schuster, Ori Ram, Regina Barzilay, and Amir Globerson. 2019. Cross-lingual alignment of con- textual word embeddings, with applications to zero- shot dependency parsing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Hu- man Language Technologies, Volume 1 (Long and Short Papers).",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "BERT is not an interlingua and the bias of tokenization",
"authors": [
{
"first": "Jasdeep",
"middle": [],
"last": "Singh",
"suffix": ""
},
{
"first": "Bryan",
"middle": [],
"last": "Mccann",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Socher",
"suffix": ""
},
{
"first": "Caiming",
"middle": [],
"last": "Xiong",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.18653/v1/D19-6106"
]
},
"num": null,
"urls": [],
"raw_text": "Jasdeep Singh, Bryan McCann, Richard Socher, and Caiming Xiong. 2019. BERT is not an interlingua and the bias of tokenization. In Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019).",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Offline bilingual word vectors, orthogonal transformations and the inverted softmax",
"authors": [
{
"first": "L",
"middle": [],
"last": "Samuel",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Smith",
"suffix": ""
},
{
"first": "H",
"middle": [
"P"
],
"last": "David",
"suffix": ""
},
{
"first": "Steven",
"middle": [],
"last": "Turban",
"suffix": ""
},
{
"first": "Nils",
"middle": [
"Y"
],
"last": "Hamblin",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Hammerla",
"suffix": ""
}
],
"year": 2017,
"venue": "5th International Conference on Learning Representations",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Samuel L. Smith, David H. P. Turban, Steven Hamblin, and Nils Y. Hammerla. 2017. Offline bilingual word vectors, orthogonal transformations and the inverted softmax. In 5th International Conference on Learn- ing Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Multilingual and cross-domain temporal tagging. Language Resources and Evaluation",
"authors": [
{
"first": "Jannik",
"middle": [],
"last": "Str\u00f6tgen",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Gertz",
"suffix": ""
}
],
"year": 2013,
"venue": "",
"volume": "47",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.1007/s10579-012-9179-y"
]
},
"num": null,
"urls": [],
"raw_text": "Jannik Str\u00f6tgen and Michael Gertz. 2013. Multilingual and cross-domain temporal tagging. Language Re- sources and Evaluation, 47(2).",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "A baseline temporal tagger for all languages",
"authors": [
{
"first": "Jannik",
"middle": [],
"last": "Str\u00f6tgen",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Gertz",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.18653/v1/D15-1063"
]
},
"num": null,
"urls": [],
"raw_text": "Jannik Str\u00f6tgen and Michael Gertz. 2015. A baseline temporal tagger for all languages. In Proceedings of the 2015 Conference on Empirical Methods in Natu- ral Language Processing.",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "Domainsensitive temporal tagging",
"authors": [
{
"first": "Jannik",
"middle": [],
"last": "Str\u00f6tgen",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Gertz",
"suffix": ""
}
],
"year": 2016,
"venue": "Synthesis Lectures on Human Language Technologies",
"volume": "9",
"issue": "3",
"pages": "",
"other_ids": {
"DOI": [
"https://www.morganclaypool.com/doi/abs/10.2200/S00721ED1V01Y201606HLT036"
]
},
"num": null,
"urls": [],
"raw_text": "Jannik Str\u00f6tgen and Michael Gertz. 2016. Domain- sensitive temporal tagging. Synthesis Lectures on Human Language Technologies, 9(3).",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "KRAUTS: A German temporally annotated news corpus",
"authors": [
{
"first": "Jannik",
"middle": [],
"last": "Str\u00f6tgen",
"suffix": ""
},
{
"first": "Anne-Lyse",
"middle": [],
"last": "Minard",
"suffix": ""
},
{
"first": "Lukas",
"middle": [],
"last": "Lange",
"suffix": ""
},
{
"first": "Manuela",
"middle": [],
"last": "Speranza",
"suffix": ""
},
{
"first": "Bernardo",
"middle": [],
"last": "Magnini",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the Eleventh International Conference on Language Resources and Evaluation",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jannik Str\u00f6tgen, Anne-Lyse Minard, Lukas Lange, Manuela Speranza, and Bernardo Magnini. 2018. KRAUTS: A German temporally annotated news corpus. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018).",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "Small and practical BERT models for sequence labeling",
"authors": [
{
"first": "Henry",
"middle": [],
"last": "Tsai",
"suffix": ""
},
{
"first": "Jason",
"middle": [],
"last": "Riesa",
"suffix": ""
},
{
"first": "Melvin",
"middle": [],
"last": "Johnson",
"suffix": ""
},
{
"first": "Naveen",
"middle": [],
"last": "Arivazhagan",
"suffix": ""
},
{
"first": "Xin",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Amelia",
"middle": [],
"last": "Archer",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1374"
]
},
"num": null,
"urls": [],
"raw_text": "Henry Tsai, Jason Riesa, Melvin Johnson, Naveen Ari- vazhagan, Xin Li, and Amelia Archer. 2019. Small and practical BERT models for sequence labeling. In Proceedings of the 2019 Conference on Empiri- cal Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).",
"links": null
},
"BIBREF38": {
"ref_id": "b38",
"title": "SemEval-2013 task 1: TempEval-3: Evaluating time expressions, events, and temporal relations",
"authors": [
{
"first": "Naushad",
"middle": [],
"last": "Uzzaman",
"suffix": ""
},
{
"first": "Hector",
"middle": [],
"last": "Llorens",
"suffix": ""
},
{
"first": "Leon",
"middle": [],
"last": "Derczynski",
"suffix": ""
},
{
"first": "James",
"middle": [],
"last": "Allen",
"suffix": ""
},
{
"first": "Marc",
"middle": [],
"last": "Verhagen",
"suffix": ""
},
{
"first": "James",
"middle": [],
"last": "Pustejovsky",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the Seventh International Workshop on Semantic Evaluation",
"volume": "2",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Naushad UzZaman, Hector Llorens, Leon Derczyn- ski, James Allen, Marc Verhagen, and James Puste- jovsky. 2013. SemEval-2013 task 1: TempEval-3: Evaluating time expressions, events, and temporal relations. In Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013).",
"links": null
},
"BIBREF39": {
"ref_id": "b39",
"title": "Weakly-supervised concept-based adversarial learning for cross-lingual word embeddings",
"authors": [
{
"first": "Haozhou",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "James",
"middle": [],
"last": "Henderson",
"suffix": ""
},
{
"first": "Paola",
"middle": [],
"last": "Merlo",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1450"
]
},
"num": null,
"urls": [],
"raw_text": "Haozhou Wang, James Henderson, and Paola Merlo. 2019. Weakly-supervised concept-based adversarial learning for cross-lingual word embeddings. In Pro- ceedings of the 2019 Conference on Empirical Meth- ods in Natural Language Processing and the 9th In- ternational Joint Conference on Natural Language Processing (EMNLP-IJCNLP).",
"links": null
},
"BIBREF40": {
"ref_id": "b40",
"title": "Beto, bentz, becas: The surprising cross-lingual effectiveness of BERT",
"authors": [
{
"first": "Shijie",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Mark",
"middle": [],
"last": "Dredze",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1077"
]
},
"num": null,
"urls": [],
"raw_text": "Shijie Wu and Mark Dredze. 2019. Beto, bentz, becas: The surprising cross-lingual effectiveness of BERT. In Proceedings of the 2019 Conference on Empiri- cal Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).",
"links": null
},
"BIBREF41": {
"ref_id": "b41",
"title": "Mitigating unwanted biases with adversarial learning",
"authors": [
{
"first": "Brian",
"middle": [],
"last": "Hu Zhang",
"suffix": ""
},
{
"first": "Blake",
"middle": [],
"last": "Lemoine",
"suffix": ""
},
{
"first": "Margaret",
"middle": [],
"last": "Mitchell",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.1145/3278721.3278779"
]
},
"num": null,
"urls": [],
"raw_text": "Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. 2018. Mitigating unwanted biases with adversarial learning. In Proceedings of the 2018",
"links": null
},
"BIBREF42": {
"ref_id": "b42",
"title": "AAAI/ACM Conference on AI, Ethics, and Society, AIES '18",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "AAAI/ACM Conference on AI, Ethics, and Society, AIES '18.",
"links": null
},
"BIBREF43": {
"ref_id": "b43",
"title": "Adversarial training for unsupervised bilingual lexicon induction",
"authors": [
{
"first": "Meng",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Yang",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Huanbo",
"middle": [],
"last": "Luan",
"suffix": ""
},
{
"first": "Maosong",
"middle": [],
"last": "Sun",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.18653/v1/P17-1179"
]
},
"num": null,
"urls": [],
"raw_text": "Meng Zhang, Yang Liu, Huanbo Luan, and Maosong Sun. 2017. Adversarial training for unsupervised bilingual lexicon induction. In Proceedings of the 55th Annual Meeting of the Association for Compu- tational Linguistics (Volume 1: Long Papers).",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"uris": null,
"type_str": "figure",
"text": "Overview of our multilingual system with adversarial training for improving the embedding space.",
"num": null
},
"FIGREF1": {
"uris": null,
"type_str": "figure",
"text": "H\u00d7O , H being a hyperparameter and O the number of different languages.",
"num": null
},
"FIGREF3": {
"uris": null,
"type_str": "figure",
"text": "t-SNE plots of the last BERT layer without any training (left) and after training (right).",
"num": null
},
"TABREF1": {
"text": "Number of sentences / temporal expressions per corpus. The lower part is only used for evaluation.",
"html": null,
"type_str": "table",
"content": "<table/>",
"num": null
},
"TABREF3": {
"text": "Results for multilingual models trained on English, Spanish and Portuguese data jointly. \u2020 highlights aligned models with statistical significant differences to the unaligned model (paired permutation test, p=0.05).",
"html": null,
"type_str": "table",
"content": "<table/>",
"num": null
}
}
}
}