ACL-OCL / Base_JSON /prefixS /json /sigmorphon /2021.sigmorphon-1.2.json
Benjamin Aw
Add updated pkl file v3
6fa4bc9
{
"paper_id": "2021",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T15:30:36.690979Z"
},
"title": "Recursive prosody is not finite-state",
"authors": [
{
"first": "Hossep",
"middle": [],
"last": "Dolatian",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Brook University Stony Brook",
"location": {
"region": "NY",
"country": "USA"
}
},
"email": "[email protected]"
},
{
"first": "Aniello",
"middle": [],
"last": "De Santo",
"suffix": "",
"affiliation": {},
"email": "[email protected]"
},
{
"first": "Thomas",
"middle": [],
"last": "Graf",
"suffix": "",
"affiliation": {},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "This paper investigates bounds on the generative capacity of prosodic processes, by focusing on the complexity of recursive prosody in coordination contexts in English (Wagner, 2010). Although all phonological processes and most prosodic processes are computationally regular string languages, we show that recursive prosody is not. The output string language is instead parallel multiple context-free (Seki et al., 1991). We evaluate the complexity of the pattern over strings, and then move on to a characterization over trees that requires the expressivity of multi bottom-up tree transducers. In doing so, we provide a foundation for future mathematically grounded investigations of the syntax-prosody interface.",
"pdf_parse": {
"paper_id": "2021",
"_pdf_hash": "",
"abstract": [
{
"text": "This paper investigates bounds on the generative capacity of prosodic processes, by focusing on the complexity of recursive prosody in coordination contexts in English (Wagner, 2010). Although all phonological processes and most prosodic processes are computationally regular string languages, we show that recursive prosody is not. The output string language is instead parallel multiple context-free (Seki et al., 1991). We evaluate the complexity of the pattern over strings, and then move on to a characterization over trees that requires the expressivity of multi bottom-up tree transducers. In doing so, we provide a foundation for future mathematically grounded investigations of the syntax-prosody interface.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "At the level of words, all attested processes in phonology form regular string languages and can be generated via finite-state acceptors (FSAs) and transducers (FSTs) (Johnson, 1972; Kaplan and Kay, 1994; Heinz, 2018) . However, not much attention has been given to the generative capacity of prosodic processes at the phrasal or sentential level (but see Yu, 2019) . The little work that exists in this respect has shown that many attested intonational processes are finite-state and regular (Pierrehumbert, 1980) . It is thus a common hypothesis in the literature that the cross-linguistic typology of prosodic phonology should also be regular.",
"cite_spans": [
{
"start": 167,
"end": 182,
"text": "(Johnson, 1972;",
"ref_id": "BIBREF45"
},
{
"start": 183,
"end": 204,
"text": "Kaplan and Kay, 1994;",
"ref_id": "BIBREF47"
},
{
"start": 205,
"end": 217,
"text": "Heinz, 2018)",
"ref_id": "BIBREF36"
},
{
"start": 356,
"end": 365,
"text": "Yu, 2019)",
"ref_id": "BIBREF89"
},
{
"start": 493,
"end": 514,
"text": "(Pierrehumbert, 1980)",
"ref_id": "BIBREF67"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In this paper, we falsify this hypothesis by providing a mathematically grounded characterization of a pattern of recursive prosody in English coordination, as empirically documented by Wagner (2010) . Specifically, we show that when converting a syntactic representation into a prosodic representation, the string language that is generated by this prosodic process is neither a regular nor context-free language, and thus cannot be generated by string-based FSAs. As a tree-totree function, the pattern can be captured by a class of bottom-up tree transducers whose outputs correspond to parallel multiple context-free string languages.",
"cite_spans": [
{
"start": 186,
"end": 199,
"text": "Wagner (2010)",
"ref_id": "BIBREF83"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "This paper is organized as follows. In \u00a72, we provide a literature review of phonology and prosodic phonology, with emphasis on the general tendency for regular computation. In \u00a73, we describe the recursive prosody of coordination structures, and why it cannot be generated with an FST over string inputs. In \u00a74, we show how a multi bottom-up tree transducer can generate the prosodic patterns. We discuss our results in \u00a75, and conclude in \u00a76.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Within computational prosody, there are two strands of work. One focuses on the generation of prosodic structure at or below the word level. The other operates above the word-level.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Computation of prosody",
"sec_num": "2"
},
{
"text": "At the word level, there is a plethora of work on generating prosodic constituents, all of which require finite-state or regular computation, whether for syllables (Kiraz and M\u00f6bius, 1998; Yap, 2006; Hulden, 2006; Idsardi, 2009) , feet (van Oostendorp, 1993; Idsardi, 2009; Yu, 2017) , or prosodic words (Coleman, 1995; Chew, 2003) . 1 In fact, most wordlevel prosody seems to require at most subregular computation (Strother-Garcia, 2018 Hao, 2020; Dolatian, 2020; Dolatian et al., 2021; Koser, in prep) .",
"cite_spans": [
{
"start": 164,
"end": 188,
"text": "(Kiraz and M\u00f6bius, 1998;",
"ref_id": "BIBREF48"
},
{
"start": 189,
"end": 199,
"text": "Yap, 2006;",
"ref_id": "BIBREF87"
},
{
"start": 200,
"end": 213,
"text": "Hulden, 2006;",
"ref_id": "BIBREF37"
},
{
"start": 214,
"end": 228,
"text": "Idsardi, 2009)",
"ref_id": "BIBREF40"
},
{
"start": 236,
"end": 258,
"text": "(van Oostendorp, 1993;",
"ref_id": "BIBREF66"
},
{
"start": 259,
"end": 273,
"text": "Idsardi, 2009;",
"ref_id": "BIBREF40"
},
{
"start": 274,
"end": 283,
"text": "Yu, 2017)",
"ref_id": "BIBREF88"
},
{
"start": 304,
"end": 319,
"text": "(Coleman, 1995;",
"ref_id": "BIBREF11"
},
{
"start": 320,
"end": 331,
"text": "Chew, 2003)",
"ref_id": "BIBREF4"
},
{
"start": 334,
"end": 335,
"text": "1",
"ref_id": null
},
{
"start": 416,
"end": 438,
"text": "(Strother-Garcia, 2018",
"ref_id": "BIBREF76"
},
{
"start": 439,
"end": 449,
"text": "Hao, 2020;",
"ref_id": "BIBREF35"
},
{
"start": 450,
"end": 465,
"text": "Dolatian, 2020;",
"ref_id": "BIBREF20"
},
{
"start": 466,
"end": 488,
"text": "Dolatian et al., 2021;",
"ref_id": "BIBREF21"
},
{
"start": 489,
"end": 504,
"text": "Koser, in prep)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Computation of prosody",
"sec_num": "2"
},
{
"text": "However, there is a dearth of formal results for phrasal or intonational prosody. Early work in generative phonology treated the prosodic representations as directly generated from the syntax, with any deviations caused by readjustment rules (Chomsky and Halle, 1968) . Notoriously, syntactic representations are at 1 For syllables and feet, there is a large literature of formalization within Declarative Phonology (Scobbie et al., 1996) . This work tends to employ formal representations that are similar to context-free grammars (Klein, 1991; Walther, 1993 Walther, , 1995 Dirksen, 1993; Coleman, 1991 Coleman, , 1992 Coleman, , 1993 Coleman, , 1996 Coleman, , 2000 Coleman, , 1998 Coleman and Pierrehumbert, 1997; Chew, 2003) . But these representations can be restricted enough to be equivalent to regular languages (see earlier such restrictions in Church, 1983) . least context-free (Chomsky, 1956; Chomsky and Sch\u00fctzenberger, 1959) . Because sentential prosody interacts with the syntactic level in non-trivial ways, it might seem sensible to assume that 1) the transformation from syntax to prosody is not finite-state definable (= definable with finite-state transducers), and that 2) the string language of prosodic representations is a supra-regular language, not a regular language. Importantly though, this assumption is not trivially true. In fact, early work has shown that even if syntax is context-free, the corresponding prosodic structures can be a regular string language. For instance, Reich (1969) argued that the prosodic structures in SPE can be generated via finite-state devices (see also Langendoen, 1975) , while Pierrehumbert (1980) modeled English intonation using a simple finite-state acceptor.",
"cite_spans": [
{
"start": 242,
"end": 267,
"text": "(Chomsky and Halle, 1968)",
"ref_id": "BIBREF6"
},
{
"start": 316,
"end": 317,
"text": "1",
"ref_id": null
},
{
"start": 416,
"end": 438,
"text": "(Scobbie et al., 1996)",
"ref_id": "BIBREF70"
},
{
"start": 532,
"end": 545,
"text": "(Klein, 1991;",
"ref_id": "BIBREF49"
},
{
"start": 546,
"end": 559,
"text": "Walther, 1993",
"ref_id": "BIBREF84"
},
{
"start": 560,
"end": 575,
"text": "Walther, , 1995",
"ref_id": "BIBREF85"
},
{
"start": 576,
"end": 590,
"text": "Dirksen, 1993;",
"ref_id": "BIBREF19"
},
{
"start": 591,
"end": 604,
"text": "Coleman, 1991",
"ref_id": "BIBREF16"
},
{
"start": 605,
"end": 620,
"text": "Coleman, , 1992",
"ref_id": "BIBREF9"
},
{
"start": 621,
"end": 636,
"text": "Coleman, , 1993",
"ref_id": "BIBREF10"
},
{
"start": 637,
"end": 652,
"text": "Coleman, , 1996",
"ref_id": "BIBREF12"
},
{
"start": 653,
"end": 668,
"text": "Coleman, , 2000",
"ref_id": "BIBREF14"
},
{
"start": 669,
"end": 684,
"text": "Coleman, , 1998",
"ref_id": "BIBREF13"
},
{
"start": 685,
"end": 717,
"text": "Coleman and Pierrehumbert, 1997;",
"ref_id": "BIBREF15"
},
{
"start": 718,
"end": 729,
"text": "Chew, 2003)",
"ref_id": "BIBREF4"
},
{
"start": 855,
"end": 868,
"text": "Church, 1983)",
"ref_id": "BIBREF8"
},
{
"start": 890,
"end": 905,
"text": "(Chomsky, 1956;",
"ref_id": "BIBREF5"
},
{
"start": 906,
"end": 939,
"text": "Chomsky and Sch\u00fctzenberger, 1959)",
"ref_id": "BIBREF7"
},
{
"start": 1514,
"end": 1520,
"text": "(1969)",
"ref_id": null
},
{
"start": 1616,
"end": 1633,
"text": "Langendoen, 1975)",
"ref_id": "BIBREF56"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Computation of prosody",
"sec_num": "2"
},
{
"text": "When analyzed over string languages, this mismatch between supra-regular syntax and regular prosody was not explored much in the subsequent literature. In fact, it seems that current research on computational prosody uses the premise that prosodic structures are at most regular (Gibbon, 2001) . Crucially, this premise is confounded by the general lack of explicit mathematical formalizations of prosodic systems. For example, there are algorithms for Dutch intonation that capture surface intonational contours and other acoustic cues (t' Hart and Cohen, 1973; t'Hart and Collier, 1975) . These algorithms however do not themselves provide sufficient mathematical detail to show that the prosodic phenomenon in question is a regular string language. Instead, one has to deduce that Dutch intonation is regular because the algorithm does not utilize counting or unbounded look-ahead (t 'Hart et al., 2006, pg. 114) .",
"cite_spans": [
{
"start": 279,
"end": 293,
"text": "(Gibbon, 2001)",
"ref_id": "BIBREF30"
},
{
"start": 541,
"end": 562,
"text": "Hart and Cohen, 1973;",
"ref_id": null
},
{
"start": 563,
"end": 588,
"text": "t'Hart and Collier, 1975)",
"ref_id": "BIBREF80"
},
{
"start": 887,
"end": 915,
"text": "'Hart et al., 2006, pg. 114)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Computation of prosody",
"sec_num": "2"
},
{
"text": "As a reflection of this mismatch, early work in prosodic phonology assumed something known as the strict layer hypothesis (SLH; Nespor and Vogel, 1986; Selkirk, 1986) . The SLH assumed that prosodic trees cannot be recursive -i.e. a prosodic phrase cannot dominate another prosodic phrase -thus ensuring that a prosodic tree will have fixed depth. Subsequent work in prosodic phonology weakened the SLH: prosodic recursion at the phrase or sentence level is now accepted as empirically robust (Ladd 1986 (Ladd , 2008 Selkirk 2011; Mester 2012, 2013) . But empirically, it is difficult to find cases of unbounded prosodic recursion (Van der Hulst, 2010). Consider a language that uses only bounded prosodic recursion -e.g. there can be at most two recursive levels of prosodic phrases. The prosodic tree will have fixed depth; and the computation of the corresponding string language is regular. It is then possible to create a computational network that uses a supra-regular grammar for the syntax which interacts with a finite-state grammar for the prosody (Yu and Stabler, 2017; Yu, 2019) . To summarize, it seems that the implicit consensus in computational prosody is that 1) syntax can be supra-regular, but the corresponding prosody is regular; 2) prosodic recursion is bounded.",
"cite_spans": [
{
"start": 128,
"end": 151,
"text": "Nespor and Vogel, 1986;",
"ref_id": "BIBREF64"
},
{
"start": 152,
"end": 166,
"text": "Selkirk, 1986)",
"ref_id": "BIBREF73"
},
{
"start": 493,
"end": 503,
"text": "(Ladd 1986",
"ref_id": "BIBREF54"
},
{
"start": 504,
"end": 516,
"text": "(Ladd , 2008",
"ref_id": "BIBREF55"
},
{
"start": 517,
"end": 530,
"text": "Selkirk 2011;",
"ref_id": "BIBREF74"
},
{
"start": 531,
"end": 549,
"text": "Mester 2012, 2013)",
"ref_id": null
},
{
"start": 1058,
"end": 1080,
"text": "(Yu and Stabler, 2017;",
"ref_id": "BIBREF90"
},
{
"start": 1081,
"end": 1090,
"text": "Yu, 2019)",
"ref_id": "BIBREF89"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Computation of prosody",
"sec_num": "2"
},
{
"text": "However, as we elaborate in the next section, coordination data from Wagner (2005) is a case where syntactic recursion generates potentially unboundedrecursive prosodic structure. The rest of the paper is then dedicated to exploring the consequences of this construction for the expressivity of sentential prosody.",
"cite_spans": [
{
"start": 69,
"end": 82,
"text": "Wagner (2005)",
"ref_id": "BIBREF82"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Computation of prosody",
"sec_num": "2"
},
{
"text": "To our knowledge, Wagner (2005 Wagner ( , 2010 is the clearest case where syntactic recursion gets mapped to recursive prosody, such that the recursion is unboundedly deep for the prosody. In this section, we go over the data and generalizations ( \u00a73.1), we sketch Wagner's cyclic analysis ( \u00a73.2), and we discuss issues with finiteness ( \u00a73.3). Finally, we show that that this construction does not correspond to a regular string language ( \u00a73.4).",
"cite_spans": [
{
"start": 18,
"end": 30,
"text": "Wagner (2005",
"ref_id": "BIBREF82"
},
{
"start": 31,
"end": 46,
"text": "Wagner ( , 2010",
"ref_id": "BIBREF83"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Prosodic recursion in coordination",
"sec_num": "3"
},
{
"text": "Wagner documents unbounded prosodic recursion in the coordination of nouns, in contrast to earlier results which reported flat non-recursive prosody (Langendoen, 1987 (Langendoen, , 1998 . Based on experimental and acoustic studies, Wagner reports that recursive coordination creates recursively strong prosodic boundaries. Syntactic edges have a prosodic strength that incrementally depends on their distance from the bottom-most constituents.",
"cite_spans": [
{
"start": 149,
"end": 166,
"text": "(Langendoen, 1987",
"ref_id": "BIBREF57"
},
{
"start": 167,
"end": 186,
"text": "(Langendoen, , 1998",
"ref_id": "BIBREF58"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Unbounded recursive prosody",
"sec_num": "3.1"
},
{
"text": "When three items are coordinated with two nonidentical operators, then two syntactic parses are possible. Each syntactic parse has an analogous prosodic parse. The prosodic parse is based on the relative strength of a prosodic boundary, with | being weaker than ||. The boundary is placed before the operator. [A and B] and C] means that I saw A and B together, and I saw C separately. We can extract the following generalizations from the data above. First, the depth of a constituent directly affects the prosodic strength of its edges. At a syntactic edge, the strength of the prosodic boundary depends on the distance between that edge and the most embedded element: for instance, in (1a) the leftbracket between A-B is mapped to a prosodic boundary of strength three |||, because A is above two layers of coordination. The deepest constituent C-D gets the weakest boundary |. Second, when there is associativity, the prosodic strength percolates to other positions within this associative span. For example, in (1b) the boundary of strength || is percolated to A-B from B-C. Let S be a set of constituents S (terminals or non-terminals) that is properly contained in Y, such that at least one constituent in S be prosodified. Let | k be the strongest prosodic boundary inside Y. Place the boundary | k+1 between each constituent in Y.",
"cite_spans": [
{
"start": 310,
"end": 319,
"text": "[A and B]",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Unbounded recursive prosody",
"sec_num": "3.1"
},
{
"text": "The algorithm is generalized to coordination of any depth. It takes as input a syntactic tree, and the output is prosodically marked strings. We illustrate this below, with the input tree represented as a bracketed string.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Unbounded recursive prosody",
"sec_num": "3.1"
},
{
"text": "Input [A and B and [C and D] ] Base case C | and D Recursive case A || and B || and C | and D",
"cite_spans": [
{
"start": 6,
"end": 28,
"text": "[A and B and [C and D]",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Illustrating Wagner's algorithm",
"sec_num": "3."
},
{
"text": "Because Wagner's study used noun phrases with at most three or four items, the resulting language of prosodic parses is a finite language. Thus, the relevant syntax-to-prosody function is bounded. It is difficult to elicit coordination of 5 items, likely due to processing reasons (Wagner, 2010, 194) .",
"cite_spans": [
{
"start": 281,
"end": 300,
"text": "(Wagner, 2010, 194)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Issues of finiteness",
"sec_num": "3.3"
},
{
"text": "If the primary culprit is performance, though, then syntactic competence may in fact allow for coordination constructions of unbounded depth with any number of items. Wagner's algorithm generates a prosodic structure for any such sentence, such as for (4). For the rest of this paper, we abstract away the finite bounds on coordination size in order to analyze the generative capacity of the underlying system (see Savitch, 1993, for mathematical arguments in support of factoring out finite bounds). [A and B and [C and [D and E]] ] is mapped to A ||| and B ||| and C || and D | and E",
"cite_spans": [
{
"start": 501,
"end": 531,
"text": "[A and B and [C and [D and E]]",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Issues of finiteness",
"sec_num": "3.3"
},
{
"text": "The choice of representation plays an important role in determining the generative capacity of the prosodic mapping. We first start by treating the mapping as a string-to-string function. We show that the mapping is not regular. Let the input language be a bracketed string language, such that the input alphabet is a set of nouns{A, ..., Z}, coordinators, and brackets. The output language replaces the brackets with substrings of | * . For illustration, assume that the input language is guaranteed to be a well-bracketed string. At a syntactic boundary, we have to calculate the number of intervening boundaries between it and deepest node. But this requires unbounded memory. For instance, to parse the example below, we incrementally increase the prosodic strength of each boundary as we read the input left-to-right.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Computing recursive prosody over strings",
"sec_num": "3.4"
},
{
"text": "[ Given the above string with only left-branching syntax, the leftmost prosodic boundary will have a juncture of strength |. Every subsequent prosodic boundary will have incrementally larger strength. Over a string, this means we have to memorize the number x of prosodic junctures that were generated at any point in order to then generate x+1 junctures at the next point. A 1-way FST cannot memorize an unbounded amount of information. Thus, this function is not rational function and cannot be defined by a 1-way FST. To prove this, we can look at this function in terms of the size of the input and output strings.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Linearly parsing the prosody:",
"sec_num": "5."
},
{
"text": "[ n A 0 and A 1 ] and A 2 ] and ... and A n ] is mapped to A 0 | and A 1 || and A 2 ||| and ... | n and A n Abstractly, for a left-branching input string with n number of left-brackets [, the output string has a monotonically increasing number of prosodic junctures:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Illustrating growth size of recursive prosody",
"sec_num": "6."
},
{
"text": "| \u2022\u2022\u2022 || \u2022\u2022\u2022 ||| \u2022\u2022\u2022 |n.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Illustrating growth size of recursive prosody",
"sec_num": "6."
},
{
"text": "The total number of prosodic junctures is a triangular number n(n+1)/2. We thus derive the following lemma.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Illustrating growth size of recursive prosody",
"sec_num": "6."
},
{
"text": "Lemma 1. For generating coordination prosody as a string-to-string function, the size of the output string grows at a rate of at least O(n 2 ) where n is the size of the input string.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Illustrating growth size of recursive prosody",
"sec_num": "6."
},
{
"text": "Such a function is neither rational nor regular. Rational functions are computed by 1-way FSTs, and regular functions by 2-way FSTs (Engelfriet and Hoogeboom, 2001 ). 2 They share the following property in terms of growth rates (Lhote, 2020) . Theorem 1. Given an input string of size n, the size of the output string of a regular function grows at most linearly as c\u2022n, where c is a constant.",
"cite_spans": [
{
"start": 132,
"end": 163,
"text": "(Engelfriet and Hoogeboom, 2001",
"ref_id": "BIBREF24"
},
{
"start": 228,
"end": 241,
"text": "(Lhote, 2020)",
"ref_id": "BIBREF59"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Illustrating growth size of recursive prosody",
"sec_num": "6."
},
{
"text": "Thus, this string-to-string function is not regular. It could be a more expressive polyregular function (Engelfriet and Maneth, 2002; Engelfriet, 2015; Boja\u0144czyk, 2018; Boja\u0144czyk et al., 2019) , a question that we leave for future work.",
"cite_spans": [
{
"start": 104,
"end": 133,
"text": "(Engelfriet and Maneth, 2002;",
"ref_id": "BIBREF25"
},
{
"start": 134,
"end": 151,
"text": "Engelfriet, 2015;",
"ref_id": "BIBREF23"
},
{
"start": 152,
"end": 168,
"text": "Boja\u0144czyk, 2018;",
"ref_id": null
},
{
"start": 169,
"end": 192,
"text": "Boja\u0144czyk et al., 2019)",
"ref_id": "BIBREF2"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Illustrating growth size of recursive prosody",
"sec_num": "6."
},
{
"text": "The discussion in this section focused on generating the output prosodic string when the input syntax is a bracketed string. Importantly though, Lemma 1 entails that no matter how one chooses their string encoding of syntactic structure, prosody cannot be modeled as a rational transduction unless there is an upper bound on the minimum number of output symbols that a single syntactic boundary must be rewritten as. To the best of our knowledge, there is no syntactic string encoding that guarantees such a bound. In the next section, we will discuss how to compute prosodic strength starting from a tree.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Illustrating growth size of recursive prosody",
"sec_num": "6."
},
{
"text": "4 Computing recursive prosody over trees Wagner (2010) 's treatment of recursive prosody assumes an algorithm that maps a syntactic tree to a prosodic string. It is thus valuable to understand the complexity of processes at the syntax-prosody interface starting from the tree representation of a sentence. Assuming we start from trees, there is one more choice to be made, namely whether the prosodic information (in the output) is present within a string or a tree. Notably, every tree-to-string transduction can be regarded as a tree-to-tree transduction plus a string yield mapping. As the tree-to-tree case subsumes the tree-to-string one, it makes sense to consider only the former. For a tree-to-tree mapping, the goal is to obtain a tree representation that already contains the correct prosodic information (Ladd, 1986; Selkirk, 2011) . This is the focus of the rest of this paper.",
"cite_spans": [
{
"start": 41,
"end": 54,
"text": "Wagner (2010)",
"ref_id": "BIBREF83"
},
{
"start": 815,
"end": 827,
"text": "(Ladd, 1986;",
"ref_id": "BIBREF54"
},
{
"start": 828,
"end": 842,
"text": "Selkirk, 2011)",
"ref_id": "BIBREF74"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Illustrating growth size of recursive prosody",
"sec_num": "6."
},
{
"text": "When working over syntactic structures explicitly, it is important to commit to a specific tree representation.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Dependency trees",
"sec_num": "4.1"
},
{
"text": "In what follows, we adopt a type of dependency trees, where the head of a phrase is treated as the mother of the subtree that contains its arguments. For example, the coordinated noun phrase Pearl and Garnet is represented as the following dependency tree.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Dependency trees",
"sec_num": "4.1"
},
{
"text": "Dependency trees have a rich tradition in descriptive, theoretical, and computational approaches to language, and their properties have been defined across a variety of grammar formalisms (Tesni\u00e8re, 1965; Nivre, 2005; Boston et al., 2009; Kuhlmann, 2013; Debusmann and Kuhlmann, 2010; De Marneffe and Nivre, 2019; Graf and De Santo, 2019; Shafiei and Graf, 2020, a.o.) . Dependency trees keep the relation between heads and arguments local, and they maximally simplify the readability of our mapping rules. Hence, they allow us to focus our discussion on issues that are directly related to the connection of coordinated embeddings and prosodic strength, without having to commit to a particular analysis of coordinate structure.",
"cite_spans": [
{
"start": 188,
"end": 204,
"text": "(Tesni\u00e8re, 1965;",
"ref_id": "BIBREF78"
},
{
"start": 205,
"end": 217,
"text": "Nivre, 2005;",
"ref_id": "BIBREF65"
},
{
"start": 218,
"end": 238,
"text": "Boston et al., 2009;",
"ref_id": "BIBREF3"
},
{
"start": 239,
"end": 254,
"text": "Kuhlmann, 2013;",
"ref_id": "BIBREF53"
},
{
"start": 255,
"end": 284,
"text": "Debusmann and Kuhlmann, 2010;",
"ref_id": "BIBREF18"
},
{
"start": 285,
"end": 313,
"text": "De Marneffe and Nivre, 2019;",
"ref_id": "BIBREF17"
},
{
"start": 314,
"end": 338,
"text": "Graf and De Santo, 2019;",
"ref_id": "BIBREF33"
},
{
"start": 339,
"end": 368,
"text": "Shafiei and Graf, 2020, a.o.)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "and Pearl Garnet",
"sec_num": null
},
{
"text": "Importantly, this choice does not impact the generalizability of the solution. It is fairly straightforward to convert basic dependency trees into phrase structure trees. Similarly, although it is possible to adopt n-ary branching structures, we chose to limit ourselves to binary trees (in the input). This turns out to be the most conservative assumption, as it forces us to explicitly deal with associativity and flat prosody.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "and Pearl Garnet",
"sec_num": null
},
{
"text": "We are interested in the complexity of mapping a \"plain\" syntactic tree to a tree representation which contains the correct prosodic information. Because of this, we encode prosodic strength over trees in the form of strength boundaries at each level of embedding. Each embedding level in our final tree representation will thus have a prosodic strength branch. The tree below shows how the syntactic tree for Pearl and Garnet is enriched with prosodic information, according to our encoding choices. For readability, we use $ to mark prosodic boundaries in trees instead of |, since the latter could be confused with a unary tree branch.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Encoding prosodic strength over trees",
"sec_num": "4.2"
},
{
"text": "As the tree below shows, the depth of the prosody branch at each embedding level corresponds to the number of prosodic boundaries needed at that level. Finally, the prosodic tree is fed to a yield function to generate an output prosodified string. In particular, the correct tree-to-string mapping can be obtained by a modified version of a recursive-descent yield, which enumerates nodes left-to-right, depth first, and only enumerates the mother node of each level after the boundary branch. This strategy is depicted by the numerical subscripts in the tree above, which reconstruct how the yield of the prosodically annotated tree produces the string: Pearl || and Garnet | and Rose. The rest of this section will focus on how to obtain the correct tree encoding of prosodic information, starting from a plain dependency tree.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "and Pearl $ Garnet",
"sec_num": null
},
{
"text": "For a natural number n, we let [n] = {1,...,n}. A ranked alphabet \u03a3 is a finite set of symbols, each one of which has a rank assigned by the function r :\u03a3\u2192N. We write \u03a3 (n) to denote {\u03c3 \u2208\u03a3|r(\u03c3)=n}, and \u03c3 (n) indicates that \u03c3 has rank n.",
"cite_spans": [
{
"start": 204,
"end": 207,
"text": "(n)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Mathematical preliminaries",
"sec_num": "4.3"
},
{
"text": "Given a ranked alphabet \u03a3 and a set A, T \u03a3 (A) is the set of all trees over \u03a3 indexed by A. The symbols in \u03a3 are possible labels for nodes in the tree, indexed by elements in A. The set T \u03a3 of \u03a3-trees contains all \u03c3 \u2208\u03a3 (0) and all terms \u03c3 (n) (t 1 ,...,t n ) (n\u22650) such that t 1 , ... , t n \u2208 T \u03a3 . Given a term m (n) (s 1 , ... , s n ) where each s i is a subtree with root d i , we call m the mother of the daughters d 1 ,...,d n (1 \u2264 i \u2264 n). If two distinct nodes have the same mother, they are siblings. Essentially, the rank of a symbol denotes the finite number of daughters that it can take. Elements of A are considered as additional symbols of rank 0. Example 1. Given \u03a3 := a (0) ,b (0) ,c (2) ,d (2) , T \u03a3 is an infinite set. The symbol a (0) means that a is a terminal node without daughters, while c (2) is a non-terminal node with two daughters. For example, consider the tree below. As is standard in defining meta-rules, we introduce X as a countably infinite set of variable symbols (X \u2229 \u03a3 = X) to be used as place-holders in the definitions of transduction rules over trees.",
"cite_spans": [
{
"start": 706,
"end": 709,
"text": "(2)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Mathematical preliminaries",
"sec_num": "4.3"
},
{
"text": "We assume that the starting point of the prosodic process is a plain syntactic tree. Thus, in order to derive the correct prosodic encoding, we need to propagate information about levels of coordination embedding and about associativity. We adopt a bottom-up approach, and characterize this process in terms of multi bottom-up tree transducers (MBOT; Engelfriet et al., 1980; Lilin, 1981; Maletti, 2011) . Essentially, MBOTs generalize traditional bottom-up tree transducers in that they allow states to pass more than one output subtree up to subsequent transducer operations (Gildea, 2012) . In other words, each MBOT rule potentially specifies several parts of the output tree. This is highlighted by the fact that the transducer states (q \u2208Q) can have rank greater than one -i.e. they can have more than one daughter, where the additional daughters are used to hold subtrees in memory. We follow F\u00fcl\u00f6p et al. (2004) in presenting the semantics of MBOTs.",
"cite_spans": [
{
"start": 351,
"end": 375,
"text": "Engelfriet et al., 1980;",
"ref_id": "BIBREF26"
},
{
"start": 376,
"end": 388,
"text": "Lilin, 1981;",
"ref_id": "BIBREF61"
},
{
"start": 389,
"end": 403,
"text": "Maletti, 2011)",
"ref_id": "BIBREF62"
},
{
"start": 577,
"end": 591,
"text": "(Gildea, 2012)",
"ref_id": "BIBREF32"
},
{
"start": 900,
"end": 919,
"text": "F\u00fcl\u00f6p et al. (2004)",
"ref_id": "BIBREF27"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Multi bottom-up tree transducers",
"sec_num": "4.4"
},
{
"text": "M = (Q,\u03a3,\u2206,root,q f ,R),",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Definition 1 (MBOT). A multi bottom-up tree transducer (MBOT) is a tuple",
"sec_num": null
},
{
"text": "where Q, \u03a3 \u222a \u2206, {root}, {q f } are pairwise disjoint, such that:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Definition 1 (MBOT). A multi bottom-up tree transducer (MBOT) is a tuple",
"sec_num": null
},
{
"text": "\u2022 Q is a ranked alphabet with Q (0) =\u2205, called the set of states \u2022 \u03a3 and \u2206 are ranked input and output alphabets, respectively \u2022 root is a unary symbol, called the root symbol \u2022 q f is a unary symbol called the final state R is a finite set of rules of two forms:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Definition 1 (MBOT). A multi bottom-up tree transducer (MBOT) is a tuple",
"sec_num": null
},
{
"text": "\u2022 \u03c3(q 1 (x 1,1 ,...,x 1,n 1 ),...,q k (x k,1 ,...,x k,n k )) \u2192q 0 (t 1 ,...,t n 0 )",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Definition 1 (MBOT). A multi bottom-up tree transducer (MBOT) is a tuple",
"sec_num": null
},
{
"text": "where",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Definition 1 (MBOT). A multi bottom-up tree transducer (MBOT) is a tuple",
"sec_num": null
},
{
"text": "k \u2265 0, \u03c3 \u2208 \u03a3 (k) , for every i \u2208 [k] \u222a {0}, q i \u2208 Q (n i ) for some n i \u2265 1, for every j \u2208[n 0 ],t j \u2208T \u2206 ({x i,j |i\u2208[k],j \u2208[n i ]}). \u2022 root(q(x 1 ,...,x n ))\u2192q f (t)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Definition 1 (MBOT). A multi bottom-up tree transducer (MBOT) is a tuple",
"sec_num": null
},
{
"text": "where n\u22651,q \u2208Q (n) , and t\u2208T \u2206 (X n ).",
"cite_spans": [
{
"start": 15,
"end": 18,
"text": "(n)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Definition 1 (MBOT). A multi bottom-up tree transducer (MBOT) is a tuple",
"sec_num": null
},
{
"text": "The derivational relation induced by M is a binary relation \u21d2 M over the set T \u03a3\u222a\u2206\u222aQ\u222a{root,q f } defined as follows. For every \u03d5,\u03c8 \u2208T \u03a3\u222a\u2206\u222aQ\u222a{root,q f } , \u03d5\u21d2 M \u03c8 iff there is a tree \u03b2 \u2208 T \u03a3\u222a\u2206\u222aQ\u222a{root,q f } (X 1 ) s.t. x 1 occurs exactly once in \u03b2 and either there is a rule",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Definition 1 (MBOT). A multi bottom-up tree transducer (MBOT) is a tuple",
"sec_num": null
},
{
"text": "\u2022 \u03c3(q 1 (x 1,1 ,...,x 1,n 1 ) ,...,q k (x k,1 ,...,x k,n k )) \u2192 r in R and there are trees",
"cite_spans": [],
"ref_spans": [
{
"start": 6,
"end": 29,
"text": "1 (x 1,1 ,...,x 1,n 1 )",
"ref_id": "FIGREF2"
}
],
"eq_spans": [],
"section": "Definition 1 (MBOT). A multi bottom-up tree transducer (MBOT) is a tuple",
"sec_num": null
},
{
"text": "T i,j \u2208 T \u03a3 for every i \u2208 [k] and j \u2208 [n i ], s.t. \u03d5 = \u03b2[\u03c3(q 1 (t 1,1 , ... , t 1,n 1 ), ... , q k (t k,1 , ... , t k,n k ))], and \u03c8 =\u03b2[r[x i,j \u2190t i,j |i\u2208[k],j \u2208[n i ]]]",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Definition 1 (MBOT). A multi bottom-up tree transducer (MBOT) is a tuple",
"sec_num": null
},
{
"text": "; or there is a rule",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Definition 1 (MBOT). A multi bottom-up tree transducer (MBOT) is a tuple",
"sec_num": null
},
{
"text": "\u2022 root(q(x 1 ,. ..,x n ))\u2192q f (t) in R and there are trees (q(t 1 ,...,t n ) )], and",
"cite_spans": [],
"ref_spans": [
{
"start": 2,
"end": 15,
"text": "root(q(x 1 ,.",
"ref_id": "FIGREF2"
},
{
"start": 59,
"end": 76,
"text": "(q(t 1 ,...,t n )",
"ref_id": "FIGREF2"
}
],
"eq_spans": [],
"section": "Definition 1 (MBOT). A multi bottom-up tree transducer (MBOT) is a tuple",
"sec_num": null
},
{
"text": "t i \u2208 T \u2206 for every i \u2208 [n] s.t. \u03d5 = \u03b2[root",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Definition 1 (MBOT). A multi bottom-up tree transducer (MBOT) is a tuple",
"sec_num": null
},
{
"text": "\u03c8 = \u03b2[q f (t[t 1 ,...,t n ])].",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Definition 1 (MBOT). A multi bottom-up tree transducer (MBOT) is a tuple",
"sec_num": null
},
{
"text": "The tree transformation computed by M is the relation:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Definition 1 (MBOT). A multi bottom-up tree transducer (MBOT) is a tuple",
"sec_num": null
},
{
"text": "\u03c4 M ={(s,t)\u2208T \u03a3 \u00d7T \u2206 | root(s)\u21d2 * M q f (t)}",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Definition 1 (MBOT). A multi bottom-up tree transducer (MBOT) is a tuple",
"sec_num": null
},
{
"text": "Intuitively, tree transductions are performed by rewriting a local tree fragment as specified by one of the rules in R. For instance, a rule can replace a subtree, or copy it to a different position. Rules apply bottom-up from the leaves of the input tree, and terminate in an accepting state q f .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Definition 1 (MBOT). A multi bottom-up tree transducer (MBOT) is a tuple",
"sec_num": null
},
{
"text": "We want a transducer which captures Wagner (2010)'s bottom-up cyclic procedure. Consider now the MBOT M pros = (Q, \u03a3, \u2206, root, q f , R), with Q = {q * ,q c }, \u03c3 c \u2208 {and,or} \u03a3, \u03c3 \u2208 \u03a3\u2212{and,or}, and \u03a3 = \u2206. We use q c to indicate that M pros has verified that a branch contains a coordination (so \u03c3 c ), with q * assigned to any other branch. As mentioned, we use $ to mark prosodic boundaries in the trees instead of |. The set of rules R is as follows.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "MBOT for recursive prosody",
"sec_num": "4.5"
},
{
"text": "Rule 1 rewrites a terminal symbol \u03c3 as itself. The MBOT for that branch transitions to q * (\u03c3).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "MBOT for recursive prosody",
"sec_num": "4.5"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "\u03c3 \u2192q * (\u03c3)",
"eq_num": "(1)"
}
],
"section": "MBOT for recursive prosody",
"sec_num": "4.5"
},
{
"text": "Rule 2 applies to a subtree headed by \u03c3 c \u2208{and,or}, with only terminal symbols as daughters: \u03c3 c (q * (x),q * (y)). It inserts a prosodic boundary $ between the daughters x,y. The boundary $ is also copied as a daughter of the mother q c , as record of the fact that we have seen one coordination level.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "MBOT for recursive prosody",
"sec_num": "4.5"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "\u03c3 c (q * (x),q * (y))\u2192q c (\u03c3 c (x,$,y),$)",
"eq_num": "(2)"
}
],
"section": "MBOT for recursive prosody",
"sec_num": "4.5"
},
{
"text": "We illustrate this in Figure 1 with a coordination of two items, representing the mapping: [B and A] \u2192 B | and A. We also assume that sentence-initial boundaries are vacuously interpreted.",
"cite_spans": [],
"ref_spans": [
{
"start": 22,
"end": 30,
"text": "Figure 1",
"ref_id": "FIGREF2"
}
],
"eq_spans": [],
"section": "MBOT for recursive prosody",
"sec_num": "4.5"
},
{
"text": "We now consider cases where a coordination is the mother not just of terminal nodes, but of other coordinated phrases. Rule 3 handles the case in which the right sibling of the mother was also headed by a coordination (as encoded by \u03c3 c having q c as one of its daughters). Here, q c is the result of a previous rule application (e.g. rule 2) and it has two subtrees itself: q c (w,y). Although we do not have access to the internal labels of x, y, and w, by the format of the previous rules we know that the right daughter of q c (i.e. y) is the one that contains the strength information. Then, rule 3 has three things to do. It increments y by one boundary: $(y). It places $(y) in between the two subtrees x and w. And, it copies $(y) as the daughter of the new q c state in order to propagate $(y) to the next embedding level (see Figure 2) . Rule 4 applies once all coordinate phrases up to the root have been rewritten. It simply rewrites the root as the final accepting state. It gets rid of the daughter of q c that contains the strength markers, since there is no need to propagate them any further.",
"cite_spans": [],
"ref_spans": [
{
"start": 836,
"end": 845,
"text": "Figure 2)",
"ref_id": "FIGREF3"
}
],
"eq_spans": [],
"section": "MBOT for recursive prosody",
"sec_num": "4.5"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "\u03c3 c (q * (x),q c (w,y))\u2192q c (\u03c3 c (x,$(y),w),$",
"eq_num": "("
}
],
"section": "MBOT for recursive prosody",
"sec_num": "4.5"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "root(q c (x,y))\u2192q f (x)",
"eq_num": "(4)"
}
],
"section": "MBOT for recursive prosody",
"sec_num": "4.5"
},
{
"text": "As the examples so far should have clarified, M pros as currently defined readily handles cases where the embedding of the coordination is strictly right branching, with the bulk of the work done via rule 3. However, while these rules work well for instances in which a coordination is always the right daughter of a node, they cannot deal with cases in which the coordination branches left, or alternates between the two. This is easily fixed by introducing variants to rule 3, which consider the position of the coordination as marked by q c . Importantly, the position of the copy of the boundary branch is not altered, and it is always kept as the rightmost sibling of q c . What changes is the relative position of the w and x subbranches in the output (see Figure 3) . Finally, we need to take care of the flat prosody or associativity issue. The MBOT M pros as outlined so far increases the depth of the boundary branch at each level of embedding. Because we are adopting binary branching trees, the current set of rules is trivially unable to encode cases like [A and B and C] . We follow Wagner's assumption that semantic information on the syntactic tree guides the prosody cycles. Representationally, we mark this by using specific labels on the internal nodes of the tree. We assume that the flat constituent interpretation is obtained by marking internal nodes as non-cyclic, introducing the alphabet symbol \u03c3 n :",
"cite_spans": [
{
"start": 1069,
"end": 1084,
"text": "[A and B and C]",
"ref_id": null
}
],
"ref_spans": [
{
"start": 763,
"end": 772,
"text": "Figure 3)",
"ref_id": null
}
],
"eq_spans": [],
"section": "MBOT for recursive prosody",
"sec_num": "4.5"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "\u03c3 n (q * (x),q c (w,y)\u2192q c (\u03c3 c (x,y,w),y)",
"eq_num": "(7)"
}
],
"section": "MBOT for recursive prosody",
"sec_num": "4.5"
},
{
"text": "Essentially, rule 7 tells us that when a coordination node is marked as \u03c3 n , M pros just propagates the level of prosodic strength that it currently has registered (in y), without increments (see Figure 6 ). This rule can be trivially adjusted to deal with branching differences, as done for rules 3 and 5. A full, step by step M pros transduction is shown in Figure 5 . Taken together, the recursive prosodic patterns are fully characterized by M pros when it is adjusted with a set of rules to deal with alternating branching and flat associativity. The tree transducer generates tree representations where each level of embedding is marked by a branch, which carries information about the prosodic strength for that level. As outlined in Section 4.2, this final representation may then be fed to a modified string yield function for dependency tree languages.",
"cite_spans": [],
"ref_spans": [
{
"start": 197,
"end": 205,
"text": "Figure 6",
"ref_id": "FIGREF6"
},
{
"start": 361,
"end": 369,
"text": "Figure 5",
"ref_id": "FIGREF5"
}
],
"eq_spans": [],
"section": "MBOT for recursive prosody",
"sec_num": "4.5"
},
{
"text": "Dependency trees allowed us to present a transducer with rules that are relatively easy to read. But, as mentioned before, this choice does not affect our general result. Under the standard assumption that the distance between the head of a phrase and its maximal projection is bounded, M pros can be extended to phrase struc-ture trees, by virtue of the bottom-up strategy being intrinsically equipped with finite look-ahead. A switch to phrase structure trees may prove useful for future work on the interaction of prosody and movement.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "MBOT for recursive prosody",
"sec_num": "4.5"
},
{
"text": "The previous section characterized recursive prosody over trees with a non-linear, deterministic MBOT. This is a nice result, as MBOTs are generally wellunderstood in terms of their algorithmic properties. Moreover, this result is in line with past work exploring the connections of MBOTs, tree languages, and the complexity of movement and copying operations in syntax (Kobele, 2006; Kobele et al., 2007, a.o.) .",
"cite_spans": [
{
"start": 370,
"end": 384,
"text": "(Kobele, 2006;",
"ref_id": "BIBREF51"
},
{
"start": 385,
"end": 411,
"text": "Kobele et al., 2007, a.o.)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Generating recursive prosody",
"sec_num": "5"
},
{
"text": "We can now ask what the complexity of this approach is. MBOTs generate output string languages that are potentially parallel multiple context-free languages (PMCFL; Seki et al., 1991 Seki et al., , 1993 Gildea, 2012; Maletti, 2014; F\u00fcl\u00f6p et al., 2005) . Since this class of string languages is more powerful than context-free, the corresponding tree language is not a regular tree language (G\u00e9cseg and Steinby, 1997) . This is not surprising, as MBOTs can be understood as an extension of synchronous tree substitution grammars (Maletti, 2014) .",
"cite_spans": [
{
"start": 165,
"end": 182,
"text": "Seki et al., 1991",
"ref_id": "BIBREF71"
},
{
"start": 183,
"end": 202,
"text": "Seki et al., , 1993",
"ref_id": "BIBREF72"
},
{
"start": 203,
"end": 216,
"text": "Gildea, 2012;",
"ref_id": "BIBREF32"
},
{
"start": 217,
"end": 231,
"text": "Maletti, 2014;",
"ref_id": "BIBREF63"
},
{
"start": 232,
"end": 251,
"text": "F\u00fcl\u00f6p et al., 2005)",
"ref_id": "BIBREF28"
},
{
"start": 390,
"end": 416,
"text": "(G\u00e9cseg and Steinby, 1997)",
"ref_id": "BIBREF29"
},
{
"start": 528,
"end": 543,
"text": "(Maletti, 2014)",
"ref_id": "BIBREF63"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Generating recursive prosody",
"sec_num": "5"
},
{
"text": "Notably, independently of our specific MBOT solution, prosody as defined in this paper generates at least some output string languages that lack the constant growth property -hence, that are PMCFLs. Consider as input a regular tree language of left-branching coordinationate phrases, where each level is simply of the form and(X, Mary). The n\u2212th level of embedding from the top extends the string yield by n+2 symbols. This immediately implies no constant growth, and thus no semi-linearity (Weir, 1988; Joshi et al., 1990) .",
"cite_spans": [
{
"start": 491,
"end": 503,
"text": "(Weir, 1988;",
"ref_id": "BIBREF86"
},
{
"start": 504,
"end": 523,
"text": "Joshi et al., 1990)",
"ref_id": "BIBREF46"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Generating recursive prosody",
"sec_num": "5"
},
{
"text": "Interestingly though, the prosody MBOT developed here is fairly limited in its expressivity as the transducer states themselves do almost no work, and most of the transduction rules in M pros rely on the ability to store the prosody strength branch. Hence, the specific MBOT in this paper might turn out to belong to a relatively weak subclass of tree transductions with copying, perhaps a variant of input strictly local tree transductions (cf. Ikawa et al., 2020; Ji and Heinz, 2020) , or a transducer variant of sensing tree automata (cf. F\u00fcl\u00f6p et al., 2004; Kobele et al., 2007; Maletti, 2011 Maletti, , 2014 Graf and De Santo, 2019) . Since all of those have recently been used in the formal study of syntax, they are natural candidates for a computational model of prosody, and their sensitivity to minor representational difference might also illuminate what aspects of syntactic representation affect the complexity of prosodic processes.",
"cite_spans": [
{
"start": 446,
"end": 465,
"text": "Ikawa et al., 2020;",
"ref_id": "BIBREF41"
},
{
"start": 466,
"end": 485,
"text": "Ji and Heinz, 2020)",
"ref_id": "BIBREF44"
},
{
"start": 542,
"end": 561,
"text": "F\u00fcl\u00f6p et al., 2004;",
"ref_id": "BIBREF27"
},
{
"start": 562,
"end": 582,
"text": "Kobele et al., 2007;",
"ref_id": "BIBREF50"
},
{
"start": 583,
"end": 596,
"text": "Maletti, 2011",
"ref_id": "BIBREF62"
},
{
"start": 597,
"end": 612,
"text": "Maletti, , 2014",
"ref_id": "BIBREF63"
},
{
"start": 613,
"end": 637,
"text": "Graf and De Santo, 2019)",
"ref_id": "BIBREF33"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Generating recursive prosody",
"sec_num": "5"
},
{
"text": "Finally, one might worry that the mathematical complexity is a confound of the representation we use, rather than a genuine property of the phenomenon. However, a representation of prosodic strength is necessary and cannot be reduced further for two reasons. First, strength cannot be reduced to syntactic boundaries because a single prosodic edge ( may correspond to | k for any k \u22651. As discussed in depth by Wagner (2005 Wagner ( , 2010 , one cannot simply convert a syntactic tree into a prosodic tree by replacing the labels of nonterminal nodes. Second, strength also cannot be reduced to different categories of prosodic constituents -e.g. assuming that | is a prosodic phrase while || is an intonational phrase. As argued in depth in (Wagner, 2005 (Wagner, , 2010 , these different constituent types do not map neatly to prosodic strength. Instead, these boundaries all encode relative strengths of prosodic phrase boundaries.",
"cite_spans": [
{
"start": 411,
"end": 423,
"text": "Wagner (2005",
"ref_id": "BIBREF82"
},
{
"start": 424,
"end": 439,
"text": "Wagner ( , 2010",
"ref_id": "BIBREF83"
},
{
"start": 742,
"end": 755,
"text": "(Wagner, 2005",
"ref_id": "BIBREF82"
},
{
"start": 756,
"end": 771,
"text": "(Wagner, , 2010",
"ref_id": "BIBREF83"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Generating recursive prosody",
"sec_num": "5"
},
{
"text": "This paper formalizes the computation of unbounded recursive prosodic structures in coordination. Their computation cannot be done by string-based finitestate transducers. They instead need more expressive grammars. To our knowledge, this paper is one of the few (if only) formal results on how prosodic phonology at the sentence-level is computationally more expressive than phonology at the word-level.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6"
},
{
"text": "As discussed above, recent work in prosodic phonology relies on the assumption that prosodic structure can be recursive. However, because such work usually uses bounded-recursion, such phenomena are computationally regular. Departing from this stance, this paper focused on the prosodic phenomena reported in Wagner (2005) as a core case study, because of the following fundamental properties:",
"cite_spans": [
{
"start": 309,
"end": 322,
"text": "Wagner (2005)",
"ref_id": "BIBREF82"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6"
},
{
"text": "\u2022 The syntax has unbounded recursion.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6"
},
{
"text": "\u2022 The prosody has unbounded recursion. \u2022 All recursive prosodic constituents have the same prosodic label (= a prosodic phrase). \u2022 The recursive prosodic constituents have acoustic cues marking different strengths. \u2022 There is an algorithm which explicitly assigns the recursive prosodic constituents to these different strengths.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6"
},
{
"text": "In this paper, we focused on explicitly generating the prosodic strengths at each recursive prosodic levels, putting aside the mathematically simpler task of converting a recursive syntactic tree into a recursive prosodic tree (Elfner, 2015; Bennett and Elfner, 2019) -which is a process essentially analogous to a relabeling of the nonterminal nodes of the syntactic tree, without care for the prosodic strength. The mapping studied in this paper has been conjectured in the past to be computationally more expressive than regular languages or functions (Yu and Stabler, 2017) . Here, we formally verified that hypothesis.",
"cite_spans": [
{
"start": 555,
"end": 577,
"text": "(Yu and Stabler, 2017)",
"ref_id": "BIBREF90"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6"
},
{
"text": "An open question then is to find other empirical phenomena which also have the above properties. One potential area of investigation is the assignment of relative prominence relations in English compound prosody (Chomsky and Halle, 1968) . However, English compound prosody is a highly controversial area.",
"cite_spans": [
{
"start": 212,
"end": 237,
"text": "(Chomsky and Halle, 1968)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6"
},
{
"text": "It is unclear what is the current consensus on an exact algorithm for these compounds, especially one that utilizes recursion and is not based on impressionistic judgments (Liberman and Prince, 1977; Gussenhoven, 2011) . In this sense, the mathematical results in this paper highlight the importance of representational commitments and of explicit assumptions in the study of prosodic expressivity. Our paper might then help identify crucial issues in future theoretical and empirical investigations of the syntax-prosody interface.",
"cite_spans": [
{
"start": 172,
"end": 199,
"text": "(Liberman and Prince, 1977;",
"ref_id": "BIBREF60"
},
{
"start": 200,
"end": 218,
"text": "Gussenhoven, 2011)",
"ref_id": "BIBREF34"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6"
},
{
"text": "This equivalence only holds for functions and deterministic FSTs. Non-deterministic FSTs can also compute relations.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "We are grateful to our anonymous reviewers, Jon Rawski, and Kristine Yu. Thomas Graf is supported by the National Science Foundation under Grant No. BCS-1845344.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgements",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "The syntaxprosody interface",
"authors": [
{
"first": "Ryan",
"middle": [],
"last": "Bennett",
"suffix": ""
},
{
"first": "Emily",
"middle": [],
"last": "Elfner",
"suffix": ""
}
],
"year": 2019,
"venue": "Annual Review of Linguistics",
"volume": "5",
"issue": "",
"pages": "151--171",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ryan Bennett and Emily Elfner. 2019. The syntax- prosody interface. Annual Review of Linguistics, 5:151-171.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "String-to-string interpretations with polynomialsize output",
"authors": [
{
"first": "Miko\u0142aj",
"middle": [],
"last": "Boja\u0144czyk",
"suffix": ""
},
{
"first": "Sandra",
"middle": [],
"last": "Kiefer",
"suffix": ""
},
{
"first": "Nathan",
"middle": [],
"last": "Lhote",
"suffix": ""
}
],
"year": 2019,
"venue": "46th International Colloquium on Automata, Languages, and Programming, ICALP 2019",
"volume": "132",
"issue": "",
"pages": "1--106",
"other_ids": {
"DOI": [
"10.4230/LIPIcs.ICALP.2019.106"
]
},
"num": null,
"urls": [],
"raw_text": "Miko\u0142aj Boja\u0144czyk, Sandra Kiefer, and Nathan Lhote. 2019. String-to-string interpretations with polynomial- size output. In 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, Patras, Greece. (LIPIcs), volume 132, page 106:1-106:14, Schloss Dagstuhl -Leibniz- Zentrum fuer Informatik.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Dependency structures derived from minimalist grammars",
"authors": [
{
"first": "Marisa",
"middle": [
"Ferrara"
],
"last": "Boston",
"suffix": ""
},
{
"first": "John",
"middle": [
"T"
],
"last": "Hale",
"suffix": ""
},
{
"first": "Marco",
"middle": [],
"last": "Kuhlmann",
"suffix": ""
}
],
"year": 2009,
"venue": "The Mathematics of Language",
"volume": "",
"issue": "",
"pages": "1--12",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Marisa Ferrara Boston, John T. Hale, and Marco Kuhlmann. 2009. Dependency structures derived from minimalist grammars. In The Mathematics of Language, pages 1-12. Springer.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "A computational phonology of Russian",
"authors": [
{
"first": "Peter",
"middle": [],
"last": "Chew",
"suffix": ""
}
],
"year": 2003,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Peter Chew. 2003. A computational phonology of Russian. Universal-Publishers, Parkland, FL.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Three models for the description of language",
"authors": [
{
"first": "Noam",
"middle": [],
"last": "Chomsky",
"suffix": ""
}
],
"year": 1956,
"venue": "IRE Transactions on information theory",
"volume": "2",
"issue": "3",
"pages": "113--124",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Noam Chomsky. 1956. Three models for the description of language. IRE Transactions on information theory, 2(3):113-124.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "The sound pattern of English",
"authors": [
{
"first": "Noam",
"middle": [],
"last": "Chomsky",
"suffix": ""
},
{
"first": "Morris",
"middle": [],
"last": "Halle",
"suffix": ""
}
],
"year": 1968,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Noam Chomsky and Morris Halle. 1968. The sound pattern of English. MIT Press, Cambridge, MA.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "The algebraic theory of context-free languages",
"authors": [
{
"first": "Noam",
"middle": [],
"last": "Chomsky",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Sch\u00fctzenberger",
"suffix": ""
}
],
"year": 1959,
"venue": "Studies in Logic and the Foundations of Mathematics",
"volume": "26",
"issue": "",
"pages": "118--161",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Noam Chomsky and Marcel P Sch\u00fctzenberger. 1959. The algebraic theory of context-free languages. In Studies in Logic and the Foundations of Mathematics, volume 26, pages 118-161. Elsevier.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Phrase-structure parsing: A method for taking advantage of allophonic constraints",
"authors": [
{
"first": "Kenneth",
"middle": [
"Ward"
],
"last": "Church",
"suffix": ""
}
],
"year": 1983,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kenneth Ward Church. 1983. Phrase-structure parsing: A method for taking advantage of allophonic constraints. Ph.D. thesis, Massachusetts Institute of Technology.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "The phonetic interpretation of headed phonological structures containing overlapping constituents",
"authors": [
{
"first": "John",
"middle": [],
"last": "Coleman",
"suffix": ""
}
],
"year": 1992,
"venue": "Phonology",
"volume": "9",
"issue": "1",
"pages": "1--44",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "John Coleman. 1992. The phonetic interpretation of headed phonological structures containing overlapping constituents. Phonology, 9(1):1-44.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "English word-stress in unificationbased grammar",
"authors": [
{
"first": "John",
"middle": [],
"last": "Coleman",
"suffix": ""
}
],
"year": 1993,
"venue": "Computational Phonology",
"volume": "",
"issue": "",
"pages": "97--106",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "John Coleman. 1993. English word-stress in unification- based grammar. In T. Mark Ellison and James Scobbie, editors, Computational Phonology, page 97-106. Centre for Cognitive Science, University of Edinburgh.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Declarative lexical phonology",
"authors": [
{
"first": "John",
"middle": [],
"last": "Coleman",
"suffix": ""
}
],
"year": 1995,
"venue": "Frontiers of phonology: Atoms, structures, derivations",
"volume": "",
"issue": "",
"pages": "333--383",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "John Coleman. 1995. Declarative lexical phonology. In Jacques Durand and Francsis Katamba, editors, Frontiers of phonology: Atoms, structures, derivations, pages 333-383. Longman, London.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Declarative syllabification in Tashlhit Berber",
"authors": [
{
"first": "John",
"middle": [],
"last": "Coleman",
"suffix": ""
}
],
"year": 1996,
"venue": "Current trends in phonology: Models and methods",
"volume": "1",
"issue": "",
"pages": "175--216",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "John Coleman. 1996. Declarative syllabification in Tashlhit Berber. In Jacques Durand and Bernard Laks, editors, Current trends in phonology: Models and methods, volume 1, pages 175-216. European Studies Research Institute, University of Salford, Salford.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Phonological representations: Their names, forms and powers",
"authors": [
{
"first": "John",
"middle": [],
"last": "Coleman",
"suffix": ""
}
],
"year": 1998,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "John Coleman. 1998. Phonological representations: Their names, forms and powers. Cambridge University Press, Cambridge.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Candidate selection. The Linguistic Review",
"authors": [
{
"first": "John",
"middle": [],
"last": "Coleman",
"suffix": ""
}
],
"year": 2000,
"venue": "",
"volume": "17",
"issue": "",
"pages": "167--180",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "John Coleman. 2000. Candidate selection. The Linguistic Review, 17(2-4):167-180.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Stochastic phonological grammars and acceptability",
"authors": [
{
"first": "John",
"middle": [],
"last": "Coleman",
"suffix": ""
},
{
"first": "Janet",
"middle": [],
"last": "Pierrehumbert",
"suffix": ""
}
],
"year": 1997,
"venue": "Third meeting of the ACL special interest group in computational phonology: Proceedings of the workshop",
"volume": "",
"issue": "",
"pages": "49--56",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "John Coleman and Janet Pierrehumbert. 1997. Stochastic phonological grammars and acceptability. In Third meeting of the ACL special interest group in com- putational phonology: Proceedings of the workshop, pages 49-56, East Stroudsburg, PA. Association for computational linguistics.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Prosodic structure, parametersetting and ID/LP grammar",
"authors": [
{
"first": "",
"middle": [],
"last": "John S Coleman",
"suffix": ""
}
],
"year": 1991,
"venue": "Declarative perspectives on phonology",
"volume": "",
"issue": "",
"pages": "65--78",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "John S Coleman. 1991. Prosodic structure, parameter- setting and ID/LP grammar. In Steven Bird, editor, Declarative perspectives on phonology, pages 65-78. Centre for Cognitive Science, University of Edinburgh.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Dependency grammar",
"authors": [
{
"first": "Marie-Catherine De",
"middle": [],
"last": "Marneffe",
"suffix": ""
},
{
"first": "Joakim",
"middle": [],
"last": "Nivre",
"suffix": ""
}
],
"year": 2019,
"venue": "Annual Review of Linguistics",
"volume": "5",
"issue": "",
"pages": "197--218",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Marie-Catherine De Marneffe and Joakim Nivre. 2019. Dependency grammar. Annual Review of Linguistics, 5:197-218.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Dependency grammar: Classification and exploration",
"authors": [
{
"first": "Ralph",
"middle": [],
"last": "Debusmann",
"suffix": ""
},
{
"first": "Marco",
"middle": [],
"last": "Kuhlmann",
"suffix": ""
}
],
"year": 2010,
"venue": "Resource-adaptive cognitive processes",
"volume": "",
"issue": "",
"pages": "365--388",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ralph Debusmann and Marco Kuhlmann. 2010. Depen- dency grammar: Classification and exploration. In Resource-adaptive cognitive processes, pages 365-388. Springer.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Phrase structure phonology",
"authors": [
{
"first": "Arthur",
"middle": [],
"last": "Dirksen",
"suffix": ""
}
],
"year": 1993,
"venue": "Computational Phonology",
"volume": "",
"issue": "",
"pages": "81--96",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Arthur Dirksen. 1993. Phrase structure phonology. In T. Mark Ellison and James Scobbie, editors, Compu- tational Phonology, page 81-96. Centre for Cognitive Science, University of Edinburgh.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Computational locality of cyclic phonology in Armenian",
"authors": [
{
"first": "",
"middle": [],
"last": "Hossep Dolatian",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hossep Dolatian. 2020. Computational locality of cyclic phonology in Armenian. Ph.D. thesis, Stony Brook University.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Computational restrictions on iterative prosodic processes",
"authors": [
{
"first": "Nate",
"middle": [],
"last": "Hossep Dolatian",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Koser",
"suffix": ""
},
{
"first": "Jonathan",
"middle": [],
"last": "Strother-Garcia",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Rawski",
"suffix": ""
}
],
"year": 2021,
"venue": "Proceedings of the 2019 Annual Meeting on Phonology. Linguistic Society of America",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.3765/amp.v9i0.4920"
]
},
"num": null,
"urls": [],
"raw_text": "Hossep Dolatian, Nate Koser, Kristina Strother-Garcia, and Jonathan Rawski. 2021. Computational restric- tions on iterative prosodic processes. In Proceedings of the 2019 Annual Meeting on Phonology. Linguistic Society of America.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Recursion in prosodic phrasing: Evidence from Connemara Irish. Natural Language & Linguistic Theory",
"authors": [
{
"first": "Emily",
"middle": [
"Elfner"
],
"last": "",
"suffix": ""
}
],
"year": 2015,
"venue": "",
"volume": "33",
"issue": "",
"pages": "1169--1208",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Emily Elfner. 2015. Recursion in prosodic phrasing: Evidence from Connemara Irish. Natural Language & Linguistic Theory, 33(4):1169-1208.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Two-way pebble transducers for partial functions and their composition",
"authors": [
{
"first": "Joost",
"middle": [],
"last": "Engelfriet",
"suffix": ""
}
],
"year": 2015,
"venue": "Acta Informatica",
"volume": "52",
"issue": "7-8",
"pages": "559--571",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Joost Engelfriet. 2015. Two-way pebble transducers for partial functions and their composition. Acta Informatica, 52(7-8):559-571.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "MSO definable string transductions and two-way finitestate transducers",
"authors": [
{
"first": "Joost",
"middle": [],
"last": "Engelfriet",
"suffix": ""
},
{
"first": "Hendrik",
"middle": [],
"last": "",
"suffix": ""
}
],
"year": 2001,
"venue": "Transactions of the Association for Computational Linguistics",
"volume": "2",
"issue": "2",
"pages": "216--254",
"other_ids": {
"DOI": [
"10.1145/371316.371512"
]
},
"num": null,
"urls": [],
"raw_text": "Joost Engelfriet and Hendrik Jan Hoogeboom. 2001. MSO definable string transductions and two-way finite- state transducers. Transactions of the Association for Computational Linguistics, 2(2):216-254.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Two-way finite state transducers with nested pebbles",
"authors": [
{
"first": "Joost",
"middle": [],
"last": "Engelfriet",
"suffix": ""
},
{
"first": "Sebastian",
"middle": [],
"last": "Maneth",
"suffix": ""
}
],
"year": 2002,
"venue": "International Symposium on Mathematical Foundations of Computer Science",
"volume": "",
"issue": "",
"pages": "234--244",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Joost Engelfriet and Sebastian Maneth. 2002. Two-way finite state transducers with nested pebbles. In Inter- national Symposium on Mathematical Foundations of Computer Science, pages 234-244. Springer.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Tree transducers, l systems, and two-way machines",
"authors": [
{
"first": "Joost",
"middle": [],
"last": "Engelfriet",
"suffix": ""
},
{
"first": "Grzegorz",
"middle": [],
"last": "Rozenberg",
"suffix": ""
},
{
"first": "Giora",
"middle": [],
"last": "Slutzki",
"suffix": ""
}
],
"year": 1980,
"venue": "Journal of Computer and System Sciences",
"volume": "20",
"issue": "2",
"pages": "150--202",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Joost Engelfriet, Grzegorz Rozenberg, and Giora Slutzki. 1980. Tree transducers, l systems, and two-way machines. Journal of Computer and System Sciences, 20(2):150-202.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "A bottom-up characterization of deterministic top-down tree transducers with regular look-ahead",
"authors": [
{
"first": "Zolt\u00e1n",
"middle": [],
"last": "F\u00fcl\u00f6p",
"suffix": ""
},
{
"first": "Armin",
"middle": [],
"last": "K\u00fchnemann",
"suffix": ""
},
{
"first": "Heiko",
"middle": [],
"last": "Vogler",
"suffix": ""
}
],
"year": 2004,
"venue": "Information Processing Letters",
"volume": "91",
"issue": "2",
"pages": "57--67",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zolt\u00e1n F\u00fcl\u00f6p, Armin K\u00fchnemann, and Heiko Vogler. 2004. A bottom-up characterization of deterministic top-down tree transducers with regular look-ahead. Information Processing Letters, 91(2):57-67.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Linear deterministic multi bottom-up tree transducers",
"authors": [
{
"first": "Zolt\u00e1n",
"middle": [],
"last": "F\u00fcl\u00f6p",
"suffix": ""
},
{
"first": "Armin",
"middle": [],
"last": "K\u00fchnemann",
"suffix": ""
},
{
"first": "Heiko",
"middle": [],
"last": "Vogler",
"suffix": ""
}
],
"year": 2005,
"venue": "Theoretical computer science",
"volume": "347",
"issue": "1-2",
"pages": "276--287",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zolt\u00e1n F\u00fcl\u00f6p, Armin K\u00fchnemann, and Heiko Vogler. 2005. Linear deterministic multi bottom-up tree transducers. Theoretical computer science, 347(1-2):276-287.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Tree languages",
"authors": [
{
"first": "Ferenc",
"middle": [],
"last": "G\u00e9cseg",
"suffix": ""
},
{
"first": "Magnus",
"middle": [],
"last": "Steinby",
"suffix": ""
}
],
"year": 1997,
"venue": "Handbook of formal languages",
"volume": "",
"issue": "",
"pages": "1--68",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ferenc G\u00e9cseg and Magnus Steinby. 1997. Tree lan- guages. In Handbook of formal languages, pages 1-68. Springer.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Finite state prosodic analysis of African corpus resources",
"authors": [
{
"first": "Dafydd",
"middle": [],
"last": "Gibbon",
"suffix": ""
}
],
"year": 2001,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Dafydd Gibbon. 2001. Finite state prosodic analysis of African corpus resources. In EUROSPEECH 2001",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Speech Communication and Technology, 2 nd INTERSPEECH Event",
"authors": [
{
"first": "",
"middle": [],
"last": "Scandinavia",
"suffix": ""
}
],
"year": 2001,
"venue": "",
"volume": "",
"issue": "",
"pages": "83--86",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Scandinavia, 7 th European Conference on Speech Communication and Technology, 2 nd INTERSPEECH Event, Aalborg, Denmark, September 3-7, 2001, pages 83-86. ISCA.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "On the string translations produced by multi bottom-up tree transducers",
"authors": [
{
"first": "Daniel",
"middle": [],
"last": "Gildea",
"suffix": ""
}
],
"year": 2012,
"venue": "Computational Linguistics",
"volume": "38",
"issue": "3",
"pages": "673--693",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Daniel Gildea. 2012. On the string translations produced by multi bottom-up tree transducers. Computational Linguistics, 38(3):673-693.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Sensing tree automata as a model of syntactic dependencies",
"authors": [
{
"first": "Thomas",
"middle": [],
"last": "Graf",
"suffix": ""
},
{
"first": "Aniello De",
"middle": [],
"last": "Santo",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 16 th Meeting on the Mathematics of Language",
"volume": "",
"issue": "",
"pages": "12--26",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Thomas Graf and Aniello De Santo. 2019. Sensing tree automata as a model of syntactic dependencies. In Proceedings of the 16 th Meeting on the Mathematics of Language, pages 12-26, Toronto, Canada. Association for Computational Linguistics.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "Sentential prominence in English",
"authors": [
{
"first": "Carlos",
"middle": [],
"last": "Gussenhoven",
"suffix": ""
}
],
"year": 2011,
"venue": "The Blackwell companion to phonology",
"volume": "5",
"issue": "",
"pages": "1--29",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Carlos Gussenhoven. 2011. Sentential prominence in English. In Marc van Oostendorp, Colin Ewen, Eliz- abeth Hume, and Keren Rice, editors, The Blackwell companion to phonology, volume 5, pages 1-29. Wiley-Blackwell, Malden, MA.",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "Metrical grids and generalized tier projection",
"authors": [
{
"first": "Yiding",
"middle": [],
"last": "Hao",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the Society for Computation in Linguistics",
"volume": "3",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yiding Hao. 2020. Metrical grids and generalized tier pro- jection. In Proceedings of the Society for Computation in Linguistics, volume 3.",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "The computational nature of phonological generalizations",
"authors": [
{
"first": "Jeffrey",
"middle": [],
"last": "Heinz",
"suffix": ""
}
],
"year": 2018,
"venue": "Phonological Typology, Phonetics and Phonology",
"volume": "",
"issue": "",
"pages": "126--195",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jeffrey Heinz. 2018. The computational nature of phonological generalizations. In Larry Hyman and Frans Plank, editors, Phonological Typology, Phonetics and Phonology, chapter 5, pages 126-195. Mouton de Gruyter, Berlin.",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "Finite-state syllabification",
"authors": [
{
"first": "",
"middle": [],
"last": "Mans Hulden",
"suffix": ""
}
],
"year": 2006,
"venue": "Finite-State Methods and Natural Language Processing. FSMNLP 2005",
"volume": "4002",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mans Hulden. 2006. Finite-state syllabification. In Anssi Yli-Jyr\u00e4, Lauri Karttunen, and Juhani Karhum\u00e4ki, editors, Finite-State Methods and Natural Language Processing. FSMNLP 2005. Lecture Notes in Computer Science, volume 4002. Springer, Berlin/Heidelberg.",
"links": null
},
"BIBREF38": {
"ref_id": "b38",
"title": "A note on recursion in phonology recursion",
"authors": [
{
"first": "Harry",
"middle": [],
"last": "Van Der Hulst",
"suffix": ""
}
],
"year": 2010,
"venue": "",
"volume": "",
"issue": "",
"pages": "301--342",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Harry Van der Hulst. 2010. A note on recursion in phonology recursion. In Harry Van der Hulst, editor, Recursion and human language, pages 301-342.",
"links": null
},
"BIBREF40": {
"ref_id": "b40",
"title": "Calculating metrical structure",
"authors": [
{
"first": "J",
"middle": [],
"last": "William",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Idsardi",
"suffix": ""
}
],
"year": 2009,
"venue": "Contemporary views on architecture and representations in phonology, number 48 in Current Studies in Linguistics",
"volume": "",
"issue": "",
"pages": "191--211",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "William J Idsardi. 2009. Calculating metrical structure. In Eric Raimy and Charles E. Cairns, editors, Contem- porary views on architecture and representations in phonology, number 48 in Current Studies in Linguistics, pages 191-211. MIT Press, Cambridge, MA.",
"links": null
},
"BIBREF41": {
"ref_id": "b41",
"title": "Quantifier-free tree transductions",
"authors": [
{
"first": "Shiori",
"middle": [],
"last": "Ikawa",
"suffix": ""
},
{
"first": "Akane",
"middle": [],
"last": "Ohtaka",
"suffix": ""
},
{
"first": "Adam",
"middle": [],
"last": "Jardine",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the Society for Computation in Linguistics",
"volume": "3",
"issue": "1",
"pages": "455--458",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shiori Ikawa, Akane Ohtaka, and Adam Jardine. 2020. Quantifier-free tree transductions. Proceedings of the Society for Computation in Linguistics, 3(1):455-458.",
"links": null
},
"BIBREF42": {
"ref_id": "b42",
"title": "Recursive prosodic phrasing in Japanese",
"authors": [
{
"first": "Junko",
"middle": [],
"last": "Ito",
"suffix": ""
},
{
"first": "Armin",
"middle": [],
"last": "Mester",
"suffix": ""
}
],
"year": 2012,
"venue": "Prosody matters: Essays in honor of Elisabeth Selkirk",
"volume": "",
"issue": "",
"pages": "280--303",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Junko Ito and Armin Mester. 2012. Recursive prosodic phrasing in Japanese. In Toni Borowsky, Shigeto Kawahara, Shinya Takahito, and Mariko Sugahara, editors, Prosody matters: Essays in honor of Elisabeth Selkirk, pages 280-303. Equinox Publishing, London.",
"links": null
},
"BIBREF43": {
"ref_id": "b43",
"title": "Prosodic subcategories in Japanese",
"authors": [
{
"first": "Junko",
"middle": [],
"last": "Ito",
"suffix": ""
},
{
"first": "Armin",
"middle": [],
"last": "Mester",
"suffix": ""
}
],
"year": 2013,
"venue": "Lingua",
"volume": "124",
"issue": "",
"pages": "20--40",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Junko Ito and Armin Mester. 2013. Prosodic subcate- gories in Japanese. Lingua, 124:20-40.",
"links": null
},
"BIBREF44": {
"ref_id": "b44",
"title": "Input strictly local tree transducers",
"authors": [
{
"first": "Jing",
"middle": [],
"last": "Ji",
"suffix": ""
},
{
"first": "Jeffrey",
"middle": [],
"last": "Heinz",
"suffix": ""
}
],
"year": 2020,
"venue": "International Conference on Language and Automata Theory and Applications",
"volume": "",
"issue": "",
"pages": "369--381",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jing Ji and Jeffrey Heinz. 2020. Input strictly local tree transducers. In International Conference on Language and Automata Theory and Applications, pages 369-381. Springer.",
"links": null
},
"BIBREF45": {
"ref_id": "b45",
"title": "Formal aspects of phonological description",
"authors": [
{
"first": "C",
"middle": [],
"last": "Douglas",
"suffix": ""
},
{
"first": "Johnson",
"middle": [],
"last": "",
"suffix": ""
}
],
"year": 1972,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "C Douglas Johnson. 1972. Formal aspects of phonologi- cal description. Mouton, The Hague.",
"links": null
},
"BIBREF46": {
"ref_id": "b46",
"title": "The convergence of mildly context-sensitive grammar formalisms",
"authors": [
{
"first": "K",
"middle": [],
"last": "Aravind",
"suffix": ""
},
{
"first": "Vijay",
"middle": [],
"last": "Joshi",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Shanker",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Weir",
"suffix": ""
}
],
"year": 1990,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Aravind K Joshi, K Vijay Shanker, and David Weir. 1990. The convergence of mildly context-sensitive grammar formalisms. Technical Reports (CIS), page 539.",
"links": null
},
"BIBREF47": {
"ref_id": "b47",
"title": "Regular models of phonological rule systems",
"authors": [
{
"first": "M",
"middle": [],
"last": "Ronald",
"suffix": ""
},
{
"first": "Martin",
"middle": [],
"last": "Kaplan",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Kay",
"suffix": ""
}
],
"year": 1994,
"venue": "Computational linguistics",
"volume": "20",
"issue": "3",
"pages": "331--378",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ronald M. Kaplan and Martin Kay. 1994. Regular models of phonological rule systems. Computational linguistics, 20(3):331-378.",
"links": null
},
"BIBREF48": {
"ref_id": "b48",
"title": "Multilingual syllabification using weighted finite-state transducers",
"authors": [
{
"first": "Anton",
"middle": [],
"last": "George",
"suffix": ""
},
{
"first": "Bernd",
"middle": [],
"last": "Kiraz",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "M\u00f6bius",
"suffix": ""
}
],
"year": 1998,
"venue": "The third ESCA/COCOSDA workshop (ETRW) on speech synthesis",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "George Anton Kiraz and Bernd M\u00f6bius. 1998. Mul- tilingual syllabification using weighted finite-state transducers. In The third ESCA/COCOSDA workshop (ETRW) on speech synthesis.",
"links": null
},
"BIBREF49": {
"ref_id": "b49",
"title": "Phonological data types",
"authors": [
{
"first": "Ewan",
"middle": [],
"last": "Klein",
"suffix": ""
}
],
"year": 1991,
"venue": "Declarative perspectives on phonology",
"volume": "",
"issue": "",
"pages": "127--138",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ewan Klein. 1991. Phonological data types. In Steven Bird, editor, Declarative perspectives on phonol- ogy, pages 127-138. Centre for Cognitive Science, University of Edinburgh.",
"links": null
},
"BIBREF50": {
"ref_id": "b50",
"title": "An automata-theoretic approach to minimalism. Model theoretic syntax at 10",
"authors": [
{
"first": "Gregory",
"middle": [
"M"
],
"last": "Kobele",
"suffix": ""
},
{
"first": "Christian",
"middle": [],
"last": "Retor\u00e9",
"suffix": ""
},
{
"first": "Sylvain",
"middle": [],
"last": "Salvati",
"suffix": ""
}
],
"year": 2007,
"venue": "",
"volume": "",
"issue": "",
"pages": "71--80",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Gregory M. Kobele, Christian Retor\u00e9, and Sylvain Salvati. 2007. An automata-theoretic approach to minimalism. Model theoretic syntax at 10, pages 71-80.",
"links": null
},
"BIBREF51": {
"ref_id": "b51",
"title": "Generating Copies: An investigation into structural identity in language and grammar",
"authors": [
{
"first": "Gregory",
"middle": [],
"last": "Michael Kobele",
"suffix": ""
}
],
"year": 2006,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Gregory Michael Kobele. 2006. Generating Copies: An investigation into structural identity in language and grammar. Ph.D. thesis, University of California, Los Angeles.",
"links": null
},
"BIBREF52": {
"ref_id": "b52",
"title": "Nate Koser. in prep. The computational nature of stress assignment",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nate Koser. in prep. The computational nature of stress assignment. Ph.D. thesis, Rutgers University.",
"links": null
},
"BIBREF53": {
"ref_id": "b53",
"title": "Mildly non-projective dependency grammar",
"authors": [
{
"first": "Marco",
"middle": [],
"last": "Kuhlmann",
"suffix": ""
}
],
"year": 2013,
"venue": "Computational Linguistics",
"volume": "39",
"issue": "2",
"pages": "355--387",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Marco Kuhlmann. 2013. Mildly non-projective de- pendency grammar. Computational Linguistics, 39(2):355-387.",
"links": null
},
"BIBREF54": {
"ref_id": "b54",
"title": "Intonational phrasing: The case for recursive prosodic structure",
"authors": [
{
"first": "D",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "Robert",
"middle": [],
"last": "Ladd",
"suffix": ""
}
],
"year": 1986,
"venue": "Phonology",
"volume": "3",
"issue": "",
"pages": "311--340",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. Robert Ladd. 1986. Intonational phrasing: The case for recursive prosodic structure. Phonology, 3:311-340.",
"links": null
},
"BIBREF55": {
"ref_id": "b55",
"title": "Intonational phonology. Cambridge University Press",
"authors": [
{
"first": "D",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "Robert",
"middle": [],
"last": "Ladd",
"suffix": ""
}
],
"year": 2008,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. Robert Ladd. 2008. Intonational phonology. Cam- bridge University Press, Cambridge.",
"links": null
},
"BIBREF56": {
"ref_id": "b56",
"title": "Finite-state parsing of phrase-structure languages and the status of readjustment rules in grammar",
"authors": [
{
"first": "D",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "Terence",
"middle": [],
"last": "Langendoen",
"suffix": ""
}
],
"year": 1975,
"venue": "Linguistic Inquiry",
"volume": "6",
"issue": "4",
"pages": "533--554",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. Terence Langendoen. 1975. Finite-state parsing of phrase-structure languages and the status of readjustment rules in grammar. Linguistic Inquiry, 6(4):533-554.",
"links": null
},
"BIBREF57": {
"ref_id": "b57",
"title": "On the phrasing of coordinate compound structures",
"authors": [
{
"first": "D",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "Terence",
"middle": [],
"last": "Langendoen",
"suffix": ""
}
],
"year": 1987,
"venue": "A festschrift for Ilse Lehiste",
"volume": "",
"issue": "",
"pages": "186--196",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. Terence Langendoen. 1987. On the phrasing of coordinate compound structures. In Brian Joseph and Arnold Zwicky, editors, A festschrift for Ilse Lehiste, page 186-196. Ohio State University, Ohio.",
"links": null
},
"BIBREF58": {
"ref_id": "b58",
"title": "Limitations on embedding in coordinate structures",
"authors": [
{
"first": "D",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "Terence",
"middle": [],
"last": "Langendoen",
"suffix": ""
}
],
"year": 1998,
"venue": "Journal of Psycholinguistic Research",
"volume": "27",
"issue": "2",
"pages": "235--259",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. Terence Langendoen. 1998. Limitations on embedding in coordinate structures. Journal of Psycholinguistic Research, 27(2):235-259.",
"links": null
},
"BIBREF59": {
"ref_id": "b59",
"title": "Pebble minimization of polyregular functions",
"authors": [
{
"first": "Nathan",
"middle": [],
"last": "Lhote",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science",
"volume": "",
"issue": "",
"pages": "703--712",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nathan Lhote. 2020. Pebble minimization of polyreg- ular functions. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, pages 703-712.",
"links": null
},
"BIBREF60": {
"ref_id": "b60",
"title": "On stress and linguistic rhythm",
"authors": [
{
"first": "Mark",
"middle": [],
"last": "Liberman",
"suffix": ""
},
{
"first": "Alan",
"middle": [],
"last": "Prince",
"suffix": ""
}
],
"year": 1977,
"venue": "Linguistic inquiry",
"volume": "8",
"issue": "2",
"pages": "249--336",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mark Liberman and Alan Prince. 1977. On stress and linguistic rhythm. Linguistic inquiry, 8(2):249-336.",
"links": null
},
"BIBREF61": {
"ref_id": "b61",
"title": "Propri\u00e9t\u00e9s de cl\u00f4ture d'une extension de transducteurs d'arbres d\u00e9terministes",
"authors": [
{
"first": "Eric",
"middle": [],
"last": "Lilin",
"suffix": ""
}
],
"year": 1981,
"venue": "Colloquium on Trees in Algebra and Programming",
"volume": "",
"issue": "",
"pages": "280--289",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Eric Lilin. 1981. Propri\u00e9t\u00e9s de cl\u00f4ture d'une extension de transducteurs d'arbres d\u00e9terministes. In Colloquium on Trees in Algebra and Programming, pages 280-289. Springer.",
"links": null
},
"BIBREF62": {
"ref_id": "b62",
"title": "How to train your multi bottomup tree transducer",
"authors": [
{
"first": "Andreas",
"middle": [],
"last": "Maletti",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies",
"volume": "",
"issue": "",
"pages": "825--834",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Andreas Maletti. 2011. How to train your multi bottom- up tree transducer. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguis- tics: Human Language Technologies, pages 825-834.",
"links": null
},
"BIBREF63": {
"ref_id": "b63",
"title": "The power of regularitypreserving multi bottom-up tree transducers",
"authors": [
{
"first": "Andreas",
"middle": [],
"last": "Maletti",
"suffix": ""
}
],
"year": 2014,
"venue": "International Conference on Implementation and Application of Automata",
"volume": "",
"issue": "",
"pages": "278--289",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Andreas Maletti. 2014. The power of regularity- preserving multi bottom-up tree transducers. In International Conference on Implementation and Application of Automata, pages 278-289. Springer.",
"links": null
},
"BIBREF64": {
"ref_id": "b64",
"title": "Prosodic phonology",
"authors": [
{
"first": "Marina",
"middle": [],
"last": "Nespor",
"suffix": ""
},
{
"first": "Irene",
"middle": [],
"last": "Vogel",
"suffix": ""
}
],
"year": 1986,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Marina Nespor and Irene Vogel. 1986. Prosodic phonology. Foris, Dordrecht.",
"links": null
},
"BIBREF65": {
"ref_id": "b65",
"title": "Dependency grammar and dependency parsing",
"authors": [
{
"first": "Joakim",
"middle": [],
"last": "Nivre",
"suffix": ""
}
],
"year": 2005,
"venue": "",
"volume": "",
"issue": "",
"pages": "5133--1959",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Joakim Nivre. 2005. Dependency grammar and depen- dency parsing. MSI report, 5133.1959:1-32.",
"links": null
},
"BIBREF66": {
"ref_id": "b66",
"title": "Formal properties of metrical structure",
"authors": [
{
"first": "",
"middle": [],
"last": "Marc Van Oostendorp",
"suffix": ""
}
],
"year": 1993,
"venue": "Sixth Conference of the European Chapter of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "322--331",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Marc van Oostendorp. 1993. Formal properties of metrical structure. In Sixth Conference of the Euro- pean Chapter of the Association for Computational Linguistics, pages 322-331, Utrecht. ACL.",
"links": null
},
"BIBREF67": {
"ref_id": "b67",
"title": "The phonology and phonetics of English intonation",
"authors": [
{
"first": "Janet",
"middle": [],
"last": "Breckenridge",
"suffix": ""
},
{
"first": "Pierrehumbert",
"middle": [],
"last": "",
"suffix": ""
}
],
"year": 1980,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Janet Breckenridge Pierrehumbert. 1980. The phonology and phonetics of English intonation. Ph.D. thesis, Massachusetts Institute of Technology.",
"links": null
},
"BIBREF68": {
"ref_id": "b68",
"title": "The finiteness of natural language. Language",
"authors": [
{
"first": ".",
"middle": [
"A"
],
"last": "Peter",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Reich",
"suffix": ""
}
],
"year": 1969,
"venue": "",
"volume": "45",
"issue": "",
"pages": "831--843",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Peter. A. Reich. 1969. The finiteness of natural language. Language, 45:831-843.",
"links": null
},
"BIBREF69": {
"ref_id": "b69",
"title": "Why it might pay to assume that languages are infinite",
"authors": [
{
"first": "J",
"middle": [],
"last": "Walter",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Savitch",
"suffix": ""
}
],
"year": 1993,
"venue": "Annals of Mathematics and Artificial Intelligence",
"volume": "8",
"issue": "1-2",
"pages": "17--25",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Walter J Savitch. 1993. Why it might pay to assume that languages are infinite. Annals of Mathematics and Artificial Intelligence, 8(1-2):17-25.",
"links": null
},
"BIBREF70": {
"ref_id": "b70",
"title": "Key aspects of declarative phonology",
"authors": [
{
"first": "James",
"middle": [
"M"
],
"last": "Scobbie",
"suffix": ""
},
{
"first": "John",
"middle": [
"S"
],
"last": "Coleman",
"suffix": ""
},
{
"first": "Steven",
"middle": [],
"last": "Bird",
"suffix": ""
}
],
"year": 1996,
"venue": "Current Trends in Phonology: Models and Methods",
"volume": "2",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "James M. Scobbie, John S. Coleman, and Steven Bird. 1996. Key aspects of declarative phonology. In Jacques Durand and Bernard Laks, editors, Current Trends in Phonology: Models and Methods, volume 2. European Studies Research Institute, Salford, Manchester.",
"links": null
},
"BIBREF71": {
"ref_id": "b71",
"title": "On multiple context-free grammars",
"authors": [
{
"first": "Hiroyuki",
"middle": [],
"last": "Seki",
"suffix": ""
},
{
"first": "Takashi",
"middle": [],
"last": "Matsumura",
"suffix": ""
},
{
"first": "Mamoru",
"middle": [],
"last": "Fujii",
"suffix": ""
},
{
"first": "Tadao",
"middle": [],
"last": "Kasami",
"suffix": ""
}
],
"year": 1991,
"venue": "Theoretical Computer Science",
"volume": "88",
"issue": "2",
"pages": "191--229",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. 1991. On multiple context-free gram- mars. Theoretical Computer Science, 88(2):191-229.",
"links": null
},
"BIBREF72": {
"ref_id": "b72",
"title": "Parallel multiple context-free grammars, finite-state translation systems, and polynomial-time recognizable subclasses of lexical-functional grammars",
"authors": [
{
"first": "Hiroyuki",
"middle": [],
"last": "Seki",
"suffix": ""
},
{
"first": "Ryuichi",
"middle": [],
"last": "Nakanishi",
"suffix": ""
},
{
"first": "Yuichi",
"middle": [],
"last": "Kaji",
"suffix": ""
},
{
"first": "Sachiko",
"middle": [],
"last": "Ando",
"suffix": ""
},
{
"first": "Tadao",
"middle": [],
"last": "Kasami",
"suffix": ""
}
],
"year": 1993,
"venue": "Proceedings of the 31 st annual meeting on Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "130--139",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hiroyuki Seki, Ryuichi Nakanishi, Yuichi Kaji, Sachiko Ando, and Tadao Kasami. 1993. Parallel multiple context-free grammars, finite-state translation systems, and polynomial-time recognizable subclasses of lexical-functional grammars. In Proceedings of the 31 st annual meeting on Association for Computa- tional Linguistics, pages 130-139. Association for Computational Linguistics.",
"links": null
},
"BIBREF73": {
"ref_id": "b73",
"title": "On derived domains in sentence phonology",
"authors": [
{
"first": "Elisabeth",
"middle": [],
"last": "Selkirk",
"suffix": ""
}
],
"year": 1986,
"venue": "Phonology Yearbook",
"volume": "3",
"issue": "1",
"pages": "371--405",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Elisabeth Selkirk. 1986. On derived domains in sentence phonology. Phonology Yearbook, 3(1):371-405.",
"links": null
},
"BIBREF74": {
"ref_id": "b74",
"title": "The syntax-phonology interface",
"authors": [
{
"first": "Elisabeth",
"middle": [],
"last": "Selkirk",
"suffix": ""
}
],
"year": 2011,
"venue": "The Handbook of Phonological Theory",
"volume": "",
"issue": "",
"pages": "435--483",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Elisabeth Selkirk. 2011. The syntax-phonology interface. In John Goldsmith, Jason Riggle, and Alan C. L. Yu, editors, The Handbook of Phonological Theory, 2 edition, pages 435-483. Blackwell, Oxford.",
"links": null
},
"BIBREF75": {
"ref_id": "b75",
"title": "The subregular complexity of syntactic islands",
"authors": [
{
"first": "Nazila",
"middle": [],
"last": "Shafiei",
"suffix": ""
},
{
"first": "Thomas",
"middle": [],
"last": "Graf",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the Society for Computation in Linguistics",
"volume": "3",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nazila Shafiei and Thomas Graf. 2020. The subregular complexity of syntactic islands. In Proceedings of the Society for Computation in Linguistics, volume 3.",
"links": null
},
"BIBREF76": {
"ref_id": "b76",
"title": "Imdlawn Tashlhiyt Berber syllabification is quantifier-free",
"authors": [
{
"first": "Kristina",
"middle": [],
"last": "Strother-Garcia",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the Society for Computation in Linguistics",
"volume": "1",
"issue": "",
"pages": "145--153",
"other_ids": {
"DOI": [
"10.7275/R5J67F4D"
]
},
"num": null,
"urls": [],
"raw_text": "Kristina Strother-Garcia. 2018. Imdlawn Tashlhiyt Berber syllabification is quantifier-free. In Proceedings of the Society for Computation in Linguistics, volume 1, pages 145-153.",
"links": null
},
"BIBREF77": {
"ref_id": "b77",
"title": "Using model theory in phonology: a novel characterization of syllable structure and syllabification",
"authors": [
{
"first": "Kristina",
"middle": [],
"last": "Strother-Garcia",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kristina Strother-Garcia. 2019. Using model theory in phonology: a novel characterization of syllable structure and syllabification. Ph.D. thesis, University of Delaware.",
"links": null
},
"BIBREF78": {
"ref_id": "b78",
"title": "El\u00e9ments de syntaxe structurale",
"authors": [
{
"first": "Lucien",
"middle": [],
"last": "Tesni\u00e8re",
"suffix": ""
}
],
"year": 1959,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lucien Tesni\u00e8re. 1965. El\u00e9ments de syntaxe structurale, 1959. Paris, Klincksieck.",
"links": null
},
"BIBREF79": {
"ref_id": "b79",
"title": "Intonation by rule: a perceptual quest",
"authors": [
{
"first": "Johan",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "'",
"middle": [],
"last": "Hart",
"suffix": ""
},
{
"first": "Antonie",
"middle": [],
"last": "Cohen",
"suffix": ""
}
],
"year": 1973,
"venue": "Journal of Phonetics",
"volume": "1",
"issue": "4",
"pages": "309--327",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Johan t'Hart and Antonie Cohen. 1973. Intonation by rule: a perceptual quest. Journal of Phonetics, 1(4):309-327.",
"links": null
},
"BIBREF80": {
"ref_id": "b80",
"title": "Integrating different levels of intonation analysis",
"authors": [
{
"first": "Johan",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "'",
"middle": [],
"last": "Hart",
"suffix": ""
},
{
"first": "Ren\u00e9",
"middle": [],
"last": "Collier",
"suffix": ""
}
],
"year": 1975,
"venue": "Journal of Phonetics",
"volume": "3",
"issue": "4",
"pages": "235--255",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Johan t'Hart and Ren\u00e9 Collier. 1975. Integrating different levels of intonation analysis. Journal of Phonetics, 3(4):235-255.",
"links": null
},
"BIBREF81": {
"ref_id": "b81",
"title": "A perceptual study of intonation: An experimentalphonetic approach to speech melody",
"authors": [
{
"first": "Johan",
"middle": [],
"last": "Hart",
"suffix": ""
},
{
"first": "Ren\u00e9",
"middle": [],
"last": "Collier",
"suffix": ""
},
{
"first": "Antonie",
"middle": [],
"last": "Cohen",
"suffix": ""
}
],
"year": 2006,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Johan t'Hart, Ren\u00e9 Collier, and Antonie Cohen. 2006. A perceptual study of intonation: An experimental- phonetic approach to speech melody. Cambridge University Press.",
"links": null
},
"BIBREF82": {
"ref_id": "b82",
"title": "Prosody and recursion",
"authors": [
{
"first": "Michael",
"middle": [],
"last": "Wagner",
"suffix": ""
}
],
"year": 2005,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Michael Wagner. 2005. Prosody and recursion. Ph.D. thesis, Massachusetts Institute of Technology.",
"links": null
},
"BIBREF83": {
"ref_id": "b83",
"title": "Prosody and recursion in coordinate structures and beyond",
"authors": [
{
"first": "Michael",
"middle": [],
"last": "Wagner",
"suffix": ""
}
],
"year": 2010,
"venue": "Natural Language & Linguistic Theory",
"volume": "28",
"issue": "",
"pages": "183--237",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Michael Wagner. 2010. Prosody and recursion in coor- dinate structures and beyond. Natural Language & Linguistic Theory, 28(1):183-237.",
"links": null
},
"BIBREF84": {
"ref_id": "b84",
"title": "Declarative syllabification with applications to German",
"authors": [
{
"first": "Markus",
"middle": [],
"last": "Walther",
"suffix": ""
}
],
"year": 1993,
"venue": "Computational Phonology",
"volume": "",
"issue": "",
"pages": "55--79",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Markus Walther. 1993. Declarative syllabification with applications to German. In T. Mark Ellison and James Scobbie, editors, Computational Phonology, pages 55-79. Centre for Cognitive Science, University of Edinburgh.",
"links": null
},
"BIBREF85": {
"ref_id": "b85",
"title": "A strictly lexicalized approach to phonology",
"authors": [
{
"first": "Markus",
"middle": [],
"last": "Walther",
"suffix": ""
}
],
"year": 1995,
"venue": "Proceedings of DGfS/CL'95",
"volume": "",
"issue": "",
"pages": "108--113",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Markus Walther. 1995. A strictly lexicalized approach to phonology. In Proceedings of DGfS/CL'95, page 108-113, D\u00fcsseldorf. Deutsche Gesellschaft f\u00fcr Sprachwissenschaft, Sektion Computerlinguistik.",
"links": null
},
"BIBREF86": {
"ref_id": "b86",
"title": "Characterizing mildly contextsensitive grammar formalisms",
"authors": [
{
"first": "David Jeremy",
"middle": [],
"last": "Weir",
"suffix": ""
}
],
"year": 1988,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "David Jeremy Weir. 1988. Characterizing mildly context- sensitive grammar formalisms. Ph.D. thesis, University of Pennsylvania.",
"links": null
},
"BIBREF87": {
"ref_id": "b87",
"title": "Modeling syllable theory with finitestate transducers",
"authors": [
{
"first": "Yap",
"middle": [],
"last": "Ngee Thai",
"suffix": ""
}
],
"year": 2006,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ngee Thai Yap. 2006. Modeling syllable theory with finite- state transducers. Ph.D. thesis, University of Delaware.",
"links": null
},
"BIBREF88": {
"ref_id": "b88",
"title": "Advantages of constituency: Computational perspectives on Samoan word prosody",
"authors": [
{
"first": "Kristine",
"middle": [
"M"
],
"last": "Yu",
"suffix": ""
}
],
"year": 2017,
"venue": "International Conference on Formal Grammar",
"volume": "",
"issue": "",
"pages": "105--124",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kristine M. Yu. 2017. Advantages of constituency: Computational perspectives on Samoan word prosody. In International Conference on Formal Grammar 2017, page 105-124, Berlin. Spring.",
"links": null
},
"BIBREF89": {
"ref_id": "b89",
"title": "Parsing with minimalist grammars and prosodic trees",
"authors": [
{
"first": "Kristine",
"middle": [
"M"
],
"last": "Yu",
"suffix": ""
}
],
"year": 2019,
"venue": "Minimalist Parsing",
"volume": "",
"issue": "",
"pages": "69--109",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kristine M. Yu. 2019. Parsing with minimalist grammars and prosodic trees. In Robert C. Berwick and Edward P. Stabler, editors, Minimalist Parsing, pages 69-109. Oxford University Press, London.",
"links": null
},
"BIBREF90": {
"ref_id": "b90",
"title": "(In) variability in the Samoan syntax/prosody interface and consequences for syntactic parsing",
"authors": [
{
"first": "Kristine",
"middle": [
"M"
],
"last": "Yu",
"suffix": ""
},
{
"first": "Edward",
"middle": [
"P"
],
"last": "Stabler",
"suffix": ""
}
],
"year": 2017,
"venue": "Laboratory Phonology: Journal of the Association for Laboratory Phonology",
"volume": "8",
"issue": "1",
"pages": "1--44",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kristine M. Yu and Edward P. Stabler. 2017. (In) variability in the Samoan syntax/prosody interface and consequences for syntactic parsing. Laboratory Phonology: Journal of the Association for Laboratory Phonology, 8(1):1-44.",
"links": null
}
},
"ref_entries": {
"FIGREF1": {
"type_str": "figure",
"num": null,
"uris": null,
"text": "tree corresponds to the term d(c(b,b),d(b,a)), contained in T \u03a3 ."
},
"FIGREF2": {
"type_str": "figure",
"num": null,
"uris": null,
"text": "Example of the application of rules (1) and (2). The numerical label on the arrow indicates which rule was applied in order to rewrite the tree on the left as the tree on the right."
},
"FIGREF3": {
"type_str": "figure",
"num": null,
"uris": null,
"text": "Example of the application of rule (3). For ease of readability, we omit q * states over terminal nodes."
},
"FIGREF4": {
"type_str": "figure",
"num": null,
"uris": null,
"text": "\u03c3 c (q c (w,y),q * (x))\u2192q c (\u03c3 c (w,$(y),x),$(y)) Left branching example as in rule (5). Following the same logic, rule 6 handles cases like [[A and B] and [C and D]], in which both daughters of a coordination are headed by a coordination themselves (see Figure 4). \u03c3 c (q c (x,z),q c (y,w))\u2192q c ($(x),\u03c3 c (z,$(x),w)) Example of the application of rule (6)."
},
"FIGREF5": {
"type_str": "figure",
"num": null,
"uris": null,
"text": "Walk-through of the transduction defined by M pros . For ease of readability, and to highlight how q c propagates embedding information about the coordination, q * and q f states are omitted."
},
"FIGREF6": {
"type_str": "figure",
"num": null,
"uris": null,
"text": "Application of rule (7) for flat prosody."
},
"TABREF0": {
"type_str": "table",
"content": "<table><tr><td colspan=\"2\">: Prosody of three items with non-identical</td></tr><tr><td>operators</td><td/></tr><tr><td colspan=\"2\">Syntactic grouping Prosodic grouping</td></tr><tr><td>[A and [B or C]]</td><td>A || and B | or C</td></tr><tr><td>[[A and B] or C]</td><td>A | and B || or C</td></tr><tr><td colspan=\"2\">When the two operators are identical, then three</td></tr><tr><td colspan=\"2\">syntactic and prosodic parses are possible. The</td></tr></table>",
"num": null,
"html": null,
"text": ""
},
"TABREF1": {
"type_str": "table",
"content": "<table><tr><td colspan=\"2\">Syntactic grouping Prosodic grouping</td></tr><tr><td colspan=\"2\">[A and [B and C]] A || and B | and C</td></tr><tr><td colspan=\"2\">[[A and B] and C] A | and B || and C</td></tr><tr><td>[[A and B and C]</td><td>A | and B | and C</td></tr><tr><td colspan=\"2\">When four items are coordinated, then at most</td></tr><tr><td colspan=\"2\">11 parses are possible. The maximum is reached</td></tr><tr><td colspan=\"2\">when the three operators are identical. We can have</td></tr><tr><td colspan=\"2\">three levels of prosodic boundaries, ranging from the</td></tr><tr><td colspan=\"2\">weakest | to the strongest |||.</td></tr></table>",
"num": null,
"html": null,
"text": "Prosody of three items with identical operators"
},
"TABREF2": {
"type_str": "table",
"content": "<table><tr><td>Syntactic grouping</td><td>Prosodic grouping</td></tr><tr><td>[A and B and C and D]</td><td>A | and B | and C | and D</td></tr><tr><td>[A and B and [C and D]]</td><td>A || and B || and C | and D</td></tr><tr><td>[A and [B and C] and D]</td><td>A || and B | and C || and D</td></tr><tr><td>[[A and B] and C and D]</td><td>A | and B || and C || and D</td></tr><tr><td>[A and [B and C and D]]</td><td>A || and B | and C | and D</td></tr><tr><td>[[A and B and C] and D]</td><td>A | and B | and C || and D</td></tr><tr><td colspan=\"2\">[[A and B] and [C and D]] A | and B || and C | and D</td></tr><tr><td colspan=\"2\">[A and [B and [C and D]] A ||| and B || and C | and D</td></tr><tr><td colspan=\"2\">[A and [[B and C] and D]] A</td></tr></table>",
"num": null,
"html": null,
"text": "Prosody of four items with identical operators ||| and B | and C || and D [[A and [B and C]] and D] A || and B | and C ||| and D [[[A and B] and C] and D] A | and B || and C ||| and D"
},
"TABREF3": {
"type_str": "table",
"content": "<table><tr><td>2. Wagner's cyclic algorithm</td></tr><tr><td>(a) Base case: Let X be a constituent that</td></tr><tr><td>contains a set of unprosodified nouns</td></tr><tr><td>(terminal nodes) that are in an associative</td></tr><tr><td>coordination. Place a boundary of strength</td></tr><tr><td>| between each noun.</td></tr><tr><td>(b) Recursive case: Consider a constituent Y.</td></tr></table>",
"num": null,
"html": null,
"text": "Wagner's cyclic analysisIn order to generate the above forms, Wagner devised a cyclic procedure which we summarize with the algorithm below."
},
"TABREF4": {
"type_str": "table",
"content": "<table/>",
"num": null,
"html": null,
"text": "[[A and B] and C] and D] is mapped to A | and B || and C ||| and D, where Input alphabet \u03a3 ={ A, ... ,Z, and, or, [, ]} Output alphabet \u2206 ={ A, ... , Z, and, or, |} Input language is \u03a3"
}
}
}
}