ACL-OCL / Base_JSON /prefixS /json /socialnlp /2021.socialnlp-1.12.json
Benjamin Aw
Add updated pkl file v3
6fa4bc9
{
"paper_id": "2021",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T15:48:41.537105Z"
},
"title": "PANDORA Talks: Personality and Demographics on Reddit",
"authors": [
{
"first": "Matej",
"middle": [],
"last": "Gjurkovi\u0107",
"suffix": "",
"affiliation": {
"laboratory": "Text Analysis and Knowledge Engineering Lab",
"institution": "University of Zagreb",
"location": {
"addrLine": "Unska 3",
"postCode": "10000",
"settlement": "Zagreb",
"country": "Croatia"
}
},
"email": ""
},
{
"first": "Mladen",
"middle": [],
"last": "Karan",
"suffix": "",
"affiliation": {
"laboratory": "Text Analysis and Knowledge Engineering Lab",
"institution": "University of Zagreb",
"location": {
"addrLine": "Unska 3",
"postCode": "10000",
"settlement": "Zagreb",
"country": "Croatia"
}
},
"email": ""
},
{
"first": "Iva",
"middle": [],
"last": "Vukojevi\u0107",
"suffix": "",
"affiliation": {
"laboratory": "Text Analysis and Knowledge Engineering Lab",
"institution": "University of Zagreb",
"location": {
"addrLine": "Unska 3",
"postCode": "10000",
"settlement": "Zagreb",
"country": "Croatia"
}
},
"email": ""
},
{
"first": "Mihaela",
"middle": [
"Bo\u0161njak"
],
"last": "Jan\u0161najder",
"suffix": "",
"affiliation": {
"laboratory": "Text Analysis and Knowledge Engineering Lab",
"institution": "University of Zagreb",
"location": {
"addrLine": "Unska 3",
"postCode": "10000",
"settlement": "Zagreb",
"country": "Croatia"
}
},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Personality and demographics are important variables in social sciences and computational sociolinguistics. However, datasets with both personality and demographic labels are scarce. To address this, we present PANDORA, the first dataset of Reddit comments of 10k users partially labeled with three personality models and demographics (age, gender, and location), including 1.6k users labeled with the wellestablished Big 5 personality model. We showcase the usefulness of this dataset on three experiments, where we leverage the more readily available data from other personality models to predict the Big 5 traits, analyze gender classification biases arising from psychodemographic variables, and carry out a confirmatory and exploratory analysis based on psychological theories. Finally, we present benchmark prediction models for all personality and demographic variables.",
"pdf_parse": {
"paper_id": "2021",
"_pdf_hash": "",
"abstract": [
{
"text": "Personality and demographics are important variables in social sciences and computational sociolinguistics. However, datasets with both personality and demographic labels are scarce. To address this, we present PANDORA, the first dataset of Reddit comments of 10k users partially labeled with three personality models and demographics (age, gender, and location), including 1.6k users labeled with the wellestablished Big 5 personality model. We showcase the usefulness of this dataset on three experiments, where we leverage the more readily available data from other personality models to predict the Big 5 traits, analyze gender classification biases arising from psychodemographic variables, and carry out a confirmatory and exploratory analysis based on psychological theories. Finally, we present benchmark prediction models for all personality and demographic variables.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Personality and demographics describe differences between people at the individual and group level. This makes them important for much of social sciences research, where they may be used as either target or control variables. One field that can greatly benefit from textual datasets with personality and demographic data is computational sociolinguistics (Nguyen et al., 2016) , which uses NLP methods to study language use in society.",
"cite_spans": [
{
"start": 355,
"end": 376,
"text": "(Nguyen et al., 2016)",
"ref_id": "BIBREF46"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Conversely, personality and demographic data can be useful in the development of NLP systems. Recent advances in machine learning have brought significant improvements in NLP systems' performance across many tasks, but these typically come at the cost of more complex and less interpretable models, often susceptible to biases . Biases are commonly caused by societal biases present in data, and eliminating them requires a thorough understanding of the data used to train the model. One way to do this is to consider demographic and personality variables, as language use and interpretation is affected by both. Incorporating these variables into the design and analysis of NLP models can help interpret model's decisions, avoid societal biases, and control for confounders.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "The demographic variables of age, gender, and location have been widely used in computational sociolinguistics (Bamman et al., 2014; Peersman et al., 2011; Eisenstein et al., 2010) , while in NLP there is ample work on predicting these variables or using them in other NLP tasks. In contrast, advances in text-based personality research are lagging behind. This can be traced to the fact that (1) personality-labeled datasets are scarce and (2) personality labels are much harder to infer from text than demographic variables such as age and gender. In addition, the few existing datasets have serious limitations: a small number of authors or comments, comments of limited length, non-anonymity, or topic bias. While most of these limitations have been addressed by the recently published MBTI9k Reddit dataset (Gjurkovi\u0107 and\u0160najder, 2018) , this dataset still has two deficiencies. Firstly, it uses the Myers-Briggs Type Indicator (MBTI) model (Myers et al., 1990) , which -while popular among the general public and in business -is discredited by most personality psychologists (Barbuto Jr, 1997) . The alternative is the well-known Five Factor Model (or Big 5) (McCrae and John, 1992) , which, however, is less popular, and thus labels for it are harder to obtain. Another deficiency of MBTI9k is the lack of demographics, limiting model interpretability and use in sociolinguistics.",
"cite_spans": [
{
"start": 111,
"end": 132,
"text": "(Bamman et al., 2014;",
"ref_id": "BIBREF1"
},
{
"start": 133,
"end": 155,
"text": "Peersman et al., 2011;",
"ref_id": "BIBREF51"
},
{
"start": 156,
"end": 180,
"text": "Eisenstein et al., 2010)",
"ref_id": "BIBREF17"
},
{
"start": 812,
"end": 840,
"text": "(Gjurkovi\u0107 and\u0160najder, 2018)",
"ref_id": null
},
{
"start": 946,
"end": 966,
"text": "(Myers et al., 1990)",
"ref_id": "BIBREF45"
},
{
"start": 1081,
"end": 1099,
"text": "(Barbuto Jr, 1997)",
"ref_id": "BIBREF2"
},
{
"start": 1165,
"end": 1188,
"text": "(McCrae and John, 1992)",
"ref_id": "BIBREF40"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Our work seeks to address these problems by introducing a new dataset -Personality ANd Demographics Of Reddit Authors (PANDORA) -the first dataset from Reddit labeled with personality and demographic data. PANDORA comprises over 17M comments written by more than 10k Reddit users, labeled with Big 5 and/or two other person-ality models (MBTI, Enneagram) , alongside age, gender, location, and language. In particular, Big 5 labels are available for more than 1.6k users, who jointly produced more than 3M comments.",
"cite_spans": [
{
"start": 337,
"end": 354,
"text": "(MBTI, Enneagram)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "PANDORA provides exciting opportunities for sociolinguistic research and development of NLP models. In this paper we showcase its usefulness through three experiments. In the first, inspired by work on domain adaptation and multitask learning, we show how the MBTI and Enneagram labels can be used to predict the labels from the wellestablished Big 5 model. We leverage the fact that more data is available for MBTI and Enneagram, and exploit the correlations between the traits of the different models and their manifestations in text. In the second experiment we demonstrate how the complete psycho-demographic profile can help in pinpointing biases in gender classification. We show that a gender classifier trained on a large Reddit dataset fails to predict gender for users with certain combinations of personality traits more often than for other users. Finally, the third experiment showcases the usefulness of PANDORA in social sciences: building on existing theories from psychology, we perform a confirmatory and exploratory analysis between propensity for philosophy and certain psycho-demographic variables.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "We also report on baselines for personality and demographics prediction on PANDORA. We treat Big 5 and other personality and demographics variables as targets for supervised machine learning, and evaluate a number of benchmark models with different feature sets. We make PANDORA available 1 for the research community, in the hope this will stimulate further research.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Personality models and assessment. Myers-Briggs Type Indicator (MBTI; Myers et al., 1990) and Five Factor Model (FFM; McCrae and John, 1992) are two most commonly used personality models. Myers-Briggs Type Indicator (MBTI) categorizes people in 16 personality types defined by four dichotomies: Introversion/Extraversion (way of gaining energy), Sensing/iNtuition (way of gathering information), Thinking/Feeling (way of making decisions), and Judging/Perceiving (preferences in interacting with others). The main criticism of MBTI focuses on low validity (Bess and Harvey, 2002; McCrae and Costa, 1989 ).",
"cite_spans": [
{
"start": 35,
"end": 69,
"text": "Myers-Briggs Type Indicator (MBTI;",
"ref_id": null
},
{
"start": 70,
"end": 89,
"text": "Myers et al., 1990)",
"ref_id": "BIBREF45"
},
{
"start": 94,
"end": 117,
"text": "Five Factor Model (FFM;",
"ref_id": null
},
{
"start": 118,
"end": 140,
"text": "McCrae and John, 1992)",
"ref_id": "BIBREF40"
},
{
"start": 556,
"end": 579,
"text": "(Bess and Harvey, 2002;",
"ref_id": "BIBREF4"
},
{
"start": 580,
"end": 602,
"text": "McCrae and Costa, 1989",
"ref_id": "BIBREF39"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Background and Related Work",
"sec_num": "2"
},
{
"text": "1 https://psy.takelab.fer.hr Contrary to MBTI, FFM (McCrae and John, 1992) has a dimensional approach to personality and describes people as somewhere on the continuum of five personality traits (Big 5): Extraversion (outgoingness), Agreeableness (care for social harmony), Conscientiousness (orderliness and selfdiscipline), Neuroticism (tendency to experience distress), and Openness to Experience (appreciation for art and intellectual stimuli). Big 5 personality traits are generally assessed using inventories e.g., personality tests. 2 Moreover, personality has been shown to relate to some demographic variables, including gender (Schmitt et al., 2008) , age (Soto et al., 2011) , and location (Schmitt et al., 2007) . Results show that females score higher than males in agreeableness, extraversion, conscientiousness, and neuroticism (Schmitt et al., 2008) , and that expression of all five traits subtly changes during lifetime (Soto et al., 2011) . There is also evidence of correlations between MBTI and FFM (Furnham, 1996; McCrae and Costa, 1989) .",
"cite_spans": [
{
"start": 29,
"end": 74,
"text": "Contrary to MBTI, FFM (McCrae and John, 1992)",
"ref_id": null
},
{
"start": 637,
"end": 659,
"text": "(Schmitt et al., 2008)",
"ref_id": "BIBREF62"
},
{
"start": 666,
"end": 685,
"text": "(Soto et al., 2011)",
"ref_id": "BIBREF66"
},
{
"start": 701,
"end": 723,
"text": "(Schmitt et al., 2007)",
"ref_id": "BIBREF61"
},
{
"start": 843,
"end": 865,
"text": "(Schmitt et al., 2008)",
"ref_id": "BIBREF62"
},
{
"start": 938,
"end": 957,
"text": "(Soto et al., 2011)",
"ref_id": "BIBREF66"
},
{
"start": 1020,
"end": 1035,
"text": "(Furnham, 1996;",
"ref_id": "BIBREF20"
},
{
"start": 1036,
"end": 1059,
"text": "McCrae and Costa, 1989)",
"ref_id": "BIBREF39"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Background and Related Work",
"sec_num": "2"
},
{
"text": "NLP and personality. Research on personality and language developed from early works on essays (Pennebaker and King, 1999; Argamon et al., 2005; Luyckx and Daelemans, 2008) , emails (Oberlander and Gill, 2006) , EAR devices (Mehl et al., 2001) , and blogs (Iacobelli et al., 2011) , followed by early research on social networks (Quercia et al., 2011; Golbeck et al., 2011) . In recent years, most research is done on Facebook (Schwartz et al., 2013; Celli et al., 2013; Park et al., 2015; Tandera et al., 2017; Vivek Kulkarni, 2018; Xue et al., 2018) , Twitter (Plank and Hovy, 2015; Verhoeven et al., 2016; Tighe and Cheng, 2018; Ramos et al., 2018; Celli and Lepri, 2018) , and Reddit (Gjurkovi\u0107 an\u010f Snajder, 2018; Wu et al., 2020) . Due to labeling cost and privacy concerns, it has become increasingly challenging to obtain personality datasets, especially large-scale dataset are virtually nonexistent . Wiegmann et al. (2019) provide an overview of the datasets, some of which are not publicly available.",
"cite_spans": [
{
"start": 95,
"end": 122,
"text": "(Pennebaker and King, 1999;",
"ref_id": "BIBREF53"
},
{
"start": 123,
"end": 144,
"text": "Argamon et al., 2005;",
"ref_id": "BIBREF0"
},
{
"start": 145,
"end": 172,
"text": "Luyckx and Daelemans, 2008)",
"ref_id": "BIBREF35"
},
{
"start": 182,
"end": 209,
"text": "(Oberlander and Gill, 2006)",
"ref_id": "BIBREF47"
},
{
"start": 224,
"end": 243,
"text": "(Mehl et al., 2001)",
"ref_id": "BIBREF41"
},
{
"start": 256,
"end": 280,
"text": "(Iacobelli et al., 2011)",
"ref_id": "BIBREF27"
},
{
"start": 329,
"end": 351,
"text": "(Quercia et al., 2011;",
"ref_id": "BIBREF56"
},
{
"start": 352,
"end": 373,
"text": "Golbeck et al., 2011)",
"ref_id": "BIBREF22"
},
{
"start": 427,
"end": 450,
"text": "(Schwartz et al., 2013;",
"ref_id": "BIBREF63"
},
{
"start": 451,
"end": 470,
"text": "Celli et al., 2013;",
"ref_id": "BIBREF7"
},
{
"start": 471,
"end": 489,
"text": "Park et al., 2015;",
"ref_id": null
},
{
"start": 490,
"end": 511,
"text": "Tandera et al., 2017;",
"ref_id": "BIBREF68"
},
{
"start": 512,
"end": 533,
"text": "Vivek Kulkarni, 2018;",
"ref_id": null
},
{
"start": 534,
"end": 551,
"text": "Xue et al., 2018)",
"ref_id": "BIBREF77"
},
{
"start": 562,
"end": 584,
"text": "(Plank and Hovy, 2015;",
"ref_id": "BIBREF54"
},
{
"start": 585,
"end": 608,
"text": "Verhoeven et al., 2016;",
"ref_id": "BIBREF72"
},
{
"start": 609,
"end": 631,
"text": "Tighe and Cheng, 2018;",
"ref_id": "BIBREF70"
},
{
"start": 632,
"end": 651,
"text": "Ramos et al., 2018;",
"ref_id": "BIBREF57"
},
{
"start": 652,
"end": 674,
"text": "Celli and Lepri, 2018)",
"ref_id": "BIBREF5"
},
{
"start": 688,
"end": 717,
"text": "(Gjurkovi\u0107 an\u010f Snajder, 2018;",
"ref_id": null
},
{
"start": 718,
"end": 734,
"text": "Wu et al., 2020)",
"ref_id": "BIBREF76"
},
{
"start": 910,
"end": 932,
"text": "Wiegmann et al. (2019)",
"ref_id": "BIBREF75"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Background and Related Work",
"sec_num": "2"
},
{
"text": "After MyPersonality dataset (Kosinski et al., 2015) became unavailable to the research community, subsequent research had to rely on the few smaller datasets based on essays (Pennebaker and King, 1999) , personality forums, 3 Twitter (Plank and Hovy, 2015; Verhoeven et al., 2016) , and a small portion of the MyPersonality dataset used in PAN workshops (Celli et al., 2013 (Celli et al., , 2014 Rangel et al., 2015) .",
"cite_spans": [
{
"start": 28,
"end": 51,
"text": "(Kosinski et al., 2015)",
"ref_id": "BIBREF31"
},
{
"start": 174,
"end": 201,
"text": "(Pennebaker and King, 1999)",
"ref_id": "BIBREF53"
},
{
"start": 234,
"end": 256,
"text": "(Plank and Hovy, 2015;",
"ref_id": "BIBREF54"
},
{
"start": 257,
"end": 280,
"text": "Verhoeven et al., 2016)",
"ref_id": "BIBREF72"
},
{
"start": 354,
"end": 373,
"text": "(Celli et al., 2013",
"ref_id": "BIBREF7"
},
{
"start": 374,
"end": 395,
"text": "(Celli et al., , 2014",
"ref_id": "BIBREF6"
},
{
"start": 396,
"end": 416,
"text": "Rangel et al., 2015)",
"ref_id": "BIBREF58"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Background and Related Work",
"sec_num": "2"
},
{
"text": "To the best of our knowledge, the only work that attempted to compare prediction models for both MBTI and Big 5 is that of Celli and Lepri (2018) , carried out on Twitter data. However, they did not leverage the MBTI labels in the prediction of Big 5 traits, as their dataset contained no users labeled with both personality models.",
"cite_spans": [
{
"start": 123,
"end": 145,
"text": "Celli and Lepri (2018)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Background and Related Work",
"sec_num": "2"
},
{
"text": "As most recent personality predictions models are based on deep learning (Majumder et al., 2017; Xue et al., 2018; Rissola et al., 2019; Wu et al., 2020; Lynn et al., 2020; Vu et al., 2020; , large-scale multilabeled datasets such as PANDORA can be used to develop new architectures and minimize the risk of models overfitting to spurious correlations.",
"cite_spans": [
{
"start": 73,
"end": 96,
"text": "(Majumder et al., 2017;",
"ref_id": "BIBREF38"
},
{
"start": 97,
"end": 114,
"text": "Xue et al., 2018;",
"ref_id": "BIBREF77"
},
{
"start": 115,
"end": 136,
"text": "Rissola et al., 2019;",
"ref_id": "BIBREF59"
},
{
"start": 137,
"end": 153,
"text": "Wu et al., 2020;",
"ref_id": "BIBREF76"
},
{
"start": 154,
"end": 172,
"text": "Lynn et al., 2020;",
"ref_id": "BIBREF36"
},
{
"start": 173,
"end": 189,
"text": "Vu et al., 2020;",
"ref_id": "BIBREF74"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Background and Related Work",
"sec_num": "2"
},
{
"text": "User Factor Adaption. Another important line of research that would benefit from datasets like PANDORA is debiasing based on demographic data (Liu et al., 2017; Zhang et al., 2018; Pryzant et al., 2018; Elazar and Goldberg, 2018; Huang and Paul, 2019) . Current research is done on demographics, with the exception of the work of Lynn et al. (2017) , who use personality traits, albeit predicted. Different social media sites attract different types of users, and we expect more research of this kind on Reddit, especially considering that Reddit is the source of data for many studies on mental health (De Choudhury et al., 2016; Yates et al., 2017; Sekulic et al., 2018; Cohan et al., 2018; Turcan and McKeown, 2019; Sekulic and Strube, 2019) .",
"cite_spans": [
{
"start": 142,
"end": 160,
"text": "(Liu et al., 2017;",
"ref_id": "BIBREF34"
},
{
"start": 161,
"end": 180,
"text": "Zhang et al., 2018;",
"ref_id": "BIBREF81"
},
{
"start": 181,
"end": 202,
"text": "Pryzant et al., 2018;",
"ref_id": "BIBREF55"
},
{
"start": 203,
"end": 229,
"text": "Elazar and Goldberg, 2018;",
"ref_id": "BIBREF18"
},
{
"start": 230,
"end": 251,
"text": "Huang and Paul, 2019)",
"ref_id": "BIBREF26"
},
{
"start": 330,
"end": 348,
"text": "Lynn et al. (2017)",
"ref_id": "BIBREF37"
},
{
"start": 607,
"end": 630,
"text": "Choudhury et al., 2016;",
"ref_id": "BIBREF14"
},
{
"start": 631,
"end": 650,
"text": "Yates et al., 2017;",
"ref_id": "BIBREF78"
},
{
"start": 651,
"end": 672,
"text": "Sekulic et al., 2018;",
"ref_id": "BIBREF64"
},
{
"start": 673,
"end": 692,
"text": "Cohan et al., 2018;",
"ref_id": "BIBREF11"
},
{
"start": 693,
"end": 718,
"text": "Turcan and McKeown, 2019;",
"ref_id": "BIBREF71"
},
{
"start": 719,
"end": 744,
"text": "Sekulic and Strube, 2019)",
"ref_id": "BIBREF65"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Background and Related Work",
"sec_num": "2"
},
{
"text": "Reddit is one of the most popular websites worldwide. Its users, Redditors, spend most of their online time on site and have more page views than users of other websites. This, along with the fact that users are anonymous and that the website is organized in more than a million different topics (subreddits), makes Reddit suitable for various kinds of sociolinguistic studies. To compile their MBTI9k Reddit dataset, Gjurkovi\u0107 and\u0160najder (2018) used the Pushift Reddit dataset (Baumgartner et al., 2020) to retrieve the comments dating back to 2015. We adopt MBTI9k as the starting point for PANDORA.",
"cite_spans": [
{
"start": 478,
"end": 504,
"text": "(Baumgartner et al., 2020)",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "PANDORA Dataset",
"sec_num": "3"
},
{
"text": "Ethical Research Statement. We are following the ethics code for psychological research by which researchers may dispense with informed consent of each participant for archival research, for which disclosure of responses would not place participants at risk of criminal or civil liability, or damage their financial standing, employability, or reputation, and if confidentiality is protected. As per Reddit User Agreement, users agree not to disclose sensitive information of other users and they consent that their comments are publicly available and exposed through API to other services. The users may request to have their content removed, and we have taken this into account by removing such content; future requests will be treated in the same way and escalated to Reddit. Our study has been approved by an academic IRB.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "PANDORA Dataset",
"sec_num": "3"
},
{
"text": "Gjurkovi\u0107 and\u0160najder (2018) relied on flairs to extract the MBTI labels. Flairs are short descriptions with which users introduce themselves on various subreddits, and on MBTI-related subreddits they typically report on MBTI test results. Owing to the fact that MBTI labels are easily identifiable, they used regular expressions to obtain the labels from flairs (and occasionally from comments). We use their labels for PANDORA, but additionally manually label for Enneagram, which users also typically report in their flairs. In total, 9,084 users reported their MBTI type in the flair, and 793 additionally reported their Enneagram type. Table 1 shows the distribution of MBTI types and dimensions (we omit Enneagram due to space constraints).",
"cite_spans": [],
"ref_spans": [
{
"start": 640,
"end": 647,
"text": "Table 1",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "MBTI and Enneagram Labels",
"sec_num": "3.1"
},
{
"text": "Obtaining Big 5 labels turned out to be more challenging. Unlike MBTI and Enneagram tests, Big 5 tests result in a score for each of the five traits. Moreover, the score format itself is not standardized, thus scores are reported in various formats and they are typically reported not in flairs but in comments replying to posts which mention a specific online test. Normalization of scores poses a series of challenges. Firstly, different web sites use different inventories (e.g., HEXACO, NEO PI-R, Aspect-scale), some of which are publicly available while others are proprietary. The different tests use different names for traits (e.g., emotional stability as the opposite of neuroticism) or use abbreviations (e.g., OCEAN, where O stands for openness, etc.). Secondly, test scores may be reported as either raw scores, percentages, or percentiles. Percentiles may be calculated based on the distribution of users that took the test or on distribution of specific groups of offline test-takers (e.g., students), in the latter case commonly adjusted for age and gender. Moreover, scores can be either numeric or descriptive, the former being in different ranges (e.g., -100-100, 0-100, 1-5) and the latter being different for each test (e.g., descriptions typical and average may map to the same underlying score). On top of this, users may decide to copy-paste the results, describe them in their own words (e.g., rock-bottom for low score) -often misspelling the names of the traits -or combine both. Lastly, in some cases the results do not even come from inventory-based assessments but from text-based personality prediction services (e.g., Apply Magic Sauce and Watson Personality).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Big 5 Labels",
"sec_num": "3.2"
},
{
"text": "Extraction. The fact that Big 5 scores are reported in full-text comments rather than flairs and that their form is not standardized makes it difficult to extract the scores fully automatically. Instead, we opted for a semiautomatic approach as follows. First, we retrieved candidate comments containing three traits most likely to be spelled correctly (agreeableness, openness, and extraversion). For each comment, we retrieved the corresponding post and determined what test it refers to based on the link provided, if the link was present. We first discarded all comment referring to text-based prediction services, and then used a set of regular expressions specific to the report of each test to extract personality scores from the comment. Next, we manually verified all the extracted scores and the associated comments to ensure that the comments indeed refer to a Big 5 test report and that the scores have been extracted correctly. For about 80% of reports the scores were extracted correctly, while for the remaining 20% we extracted the scores manually. This resulted in Big 5 scores for 1027 users, reported from 12 different tests. Left out from this procedure were the comments for which the test is unknown, as they were replying to posts without a link to the test. To also extract scores from these reports, we trained a test identification classifier on the reports of the 1,008 users, using character ngrams as features, and reaching an F1-macro score of 81.4% on held-out test data. We use this classifier to identify the tests referred to in the remaining comments and repeat the previous score extraction procedure. This yielded scores for additional 600 users, for a total of 1,608 users.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Big 5 Labels",
"sec_num": "3.2"
},
{
"text": "Normalization. To normalize the extracted scores, we first heuristically mapped score descriptions of various tests to numeric values in the 0-100 range in increments of 10. As mentioned, scores may refer to either raw scores, percentiles, or descriptions. Both percentiles and raw scores are mostly reported on the same 0-100 scale, so we refer to the information on the test used to interpret the score correctly. Finally, we convert raw scores and percentages reported by Truity 4 and HEXACO 5 to percentiles based on score distribution parameters. HEXACO reports distribution parameters publicly, while Truity provided us with parameters of the distribution of their test-takers.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Big 5 Labels",
"sec_num": "3.2"
},
{
"text": "Finally, for all users labeled with Big 5 labels, we retrieved all their comments from the year 2015 onward, and add these to the MBTI dataset from \u00a73.1. The resulting dataset consists of 17,640,062 comments written by 10,288 users. There are 393 users labeled with both Big 5 and MBTI.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Big 5 Labels",
"sec_num": "3.2"
},
{
"text": "To obtain age, gender, and location labels, we again turn to textual descriptions provided in flairs. For each of the 10,228 users, we collected all the distinct flairs from all their comments in the dataset, and then manually inspected these flairs for age, gender, and location information. For users who reported their age in two or more flairs at different time points, we consider the age from most recent one. Additionally, we extract comment-level self-reports of users' age (e.g., I'm 18 years old) and gender (e.g., I'm female/male). As for location, users report location at different levels, mostly countries, states, and cities, but also continents and regions. We normalize location names, and map countries to country codes, countries to continents, and states to regions. Most users are from English speaking countries, and regionally evenly distributed in US and Canada (cf. Appendix). Table 1 shows the average number per user. Lastly, Table 2 gives intersection counts between personality models and other demographic variables. 3.4 Analysis Table 1 and Figure 1 show the distributions of Big 5 scores per trait. 6 We observe that the average user in our dataset is average on neuroticism, more open, and less extraverted, agreeable, and conscientious. Furthermore, males are on average younger, less agreeable, and neurotic than females. Similarly, Table 1 shows that MBTI users have a preference for introversion, intuition (i.e., openness), thinking (i.e., less agreeable), and perceiving (less conscientious). This is not surprising if we look at Table 3 , which shows high correlation between particular MBTI dimensions or Enneagram types, and Big 5 traits. Correlations between Big 5 and MBTI follow the same pattern as correlations from existing psychological research (McCrae and Costa, 1989) .",
"cite_spans": [
{
"start": 1131,
"end": 1132,
"text": "6",
"ref_id": null
},
{
"start": 1794,
"end": 1818,
"text": "(McCrae and Costa, 1989)",
"ref_id": "BIBREF39"
}
],
"ref_spans": [
{
"start": 902,
"end": 909,
"text": "Table 1",
"ref_id": "TABREF1"
},
{
"start": 953,
"end": 960,
"text": "Table 2",
"ref_id": "TABREF3"
},
{
"start": 1060,
"end": 1067,
"text": "Table 1",
"ref_id": "TABREF1"
},
{
"start": 1072,
"end": 1080,
"text": "Figure 1",
"ref_id": "FIGREF0"
},
{
"start": 1368,
"end": 1375,
"text": "Table 1",
"ref_id": "TABREF1"
},
{
"start": 1569,
"end": 1576,
"text": "Table 3",
"ref_id": "TABREF4"
}
],
"eq_spans": [],
"section": "Demographic Labels",
"sec_num": "3.3"
},
{
"text": "Coupling linguistic data with psycho-demographic profiles sets the stage for many interesting research 6 As noted by Gjurkovi\u0107 and\u0160najder (2018), due to various selection biases involved our dataset may not be representative of Reddit users, and it is certainly not representative of internet users or the general population.",
"cite_spans": [
{
"start": 103,
"end": 104,
"text": "6",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Experiments",
"sec_num": "4"
},
{
"text": "Big 5 MBTI Enneagram Unique Gender 599 2695 345 3084 Female 232 1184 149 1331 Male 367 1511 196 1753 Age 638 1890 290 2324 Country 235 1984 182 2146 Region 74 800 65 questions. We showcase this with three experiments on PANDORA.",
"cite_spans": [],
"ref_spans": [
{
"start": 4,
"end": 195,
"text": "5 MBTI Enneagram Unique Gender 599 2695 345 3084 Female 232 1184 149 1331 Male 367 1511 196 1753 Age 638 1890 290 2324 Country 235 1984 182 2146 Region 74 800 65",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Variable",
"sec_num": null
},
{
"text": "MBTI and Enneagram are considerably more popular than Big 5 among the social media users. This makes it relatively easy to obtain the MBTI and Enneagram labels ( \u00a73.1), and develop wellperforming prediction models using supervised machine learning. On the other hand, validity of MBTI and Enneagram has been severely criticized (Barbuto Jr, 1997; Thyer, 2015), which is why they are virtually not used in psychological research. This experiment investigates whether we can combine the best of both worlds: leverage the more abundant MBTI/Enneagram labels in PANDORA to predict Big 5 traits from text. We hypothesize that the questionable psychological validity of MBTI/Enneagram labels can be compensated by their number. We base this on moderate to strong correlations observed between the personality models (Table 3 ) and the presence of a considerable number of users with multiple labels (Table 2) . We frame the experiment as a domain adapta-tion task of transferring MBTI/Enneagram labels to Big 5 labels, using a simple domain adaptation approach from (Daum\u00e9 III, 2007 ) (cf. Appendix for more details). We train four text-based MBTI classifiers on a subset of PANDORA users for which we have MBTI labels but no Big 5 labels. We then apply these classifiers on a subset of PANDORA users for which we have both MBTI and Big 5 labels, obtaining a type-level accuracy of MBTI prediction of 45%. Table 4 shows correlations between MBTI and Big 5 gold labels and predicted MBTI labels (cf. Appendix for Enneagram correlations). As expected, we observe lower overall correlations in comparison with correlations on gold labels ( Table 3 ). The main observable difference is that extraversion is now moderately correlated with predicted MBTI intuitive dimension. As majority of Big 5 traits significantly correlate with more than one MBTI dimension, we use these scores as features for training five regression models, one for each Big 5 trait. Lastly, we apply both classifiers on the subset of PANDORA users for which we have Big 5 labels but no MBTI labels (serving as domain adaptation target set). We use MBTI classifiers to obtain scores for the four MBTI dimensions, and then feed these to Big 5 models to obtain predictions for the five traits. The resulting correlations ( Table 5) clearly indicate that predictions based on MBTI help in predicting Big 5 traits. Furthermore, the results justify the use of regression models as predicted Big 5 traits are more correlated with gold Big 5 traits then predicted MBTI dimensions, with the exception of conscientiousness, which is significantly correlated with perceiving/judging MBTI dimension. For instance, predicted openness is a better predictor of openness than the intuitive dimension.",
"cite_spans": [
{
"start": 1060,
"end": 1076,
"text": "(Daum\u00e9 III, 2007",
"ref_id": "BIBREF13"
}
],
"ref_spans": [
{
"start": 810,
"end": 818,
"text": "(Table 3",
"ref_id": "TABREF4"
},
{
"start": 893,
"end": 902,
"text": "(Table 2)",
"ref_id": "TABREF3"
},
{
"start": 1400,
"end": 1407,
"text": "Table 4",
"ref_id": "TABREF6"
},
{
"start": 1631,
"end": 1638,
"text": "Table 3",
"ref_id": "TABREF4"
},
{
"start": 2283,
"end": 2291,
"text": "Table 5)",
"ref_id": "TABREF7"
}
],
"eq_spans": [],
"section": "Predicting Big 5 with MBTI/Enneagram",
"sec_num": "4.1"
},
{
"text": "Gender classification from text is a fundamental task in author profiling, and in particular author profiling on social media has recently received a lot of attention from the NLP community (Bamman et al., 2014; Sap et al., 2014; Ciot et al., 2013) . Additionally, gender is often in the spotlight of research of fairness and bias in NLP (Sun et al., 2019) . Biases are often introduced by demographic and other imbalances in training data. Here we look at personality profile as a potential source of bias, and set out to investigate whether a simple gender classification model trained on Reddit exhibits biases that could be traced back to personality traits. This is an important issue, given that Reddit is often used as a source of data for training NLP models, e.g., (Zhang et al., 2017; Cheng et al., 2017; Henderson et al., 2019; Sekulic and Strube, 2019) .",
"cite_spans": [
{
"start": 190,
"end": 211,
"text": "(Bamman et al., 2014;",
"ref_id": "BIBREF1"
},
{
"start": 212,
"end": 229,
"text": "Sap et al., 2014;",
"ref_id": "BIBREF60"
},
{
"start": 230,
"end": 248,
"text": "Ciot et al., 2013)",
"ref_id": "BIBREF10"
},
{
"start": 338,
"end": 356,
"text": "(Sun et al., 2019)",
"ref_id": "BIBREF67"
},
{
"start": 774,
"end": 794,
"text": "(Zhang et al., 2017;",
"ref_id": "BIBREF79"
},
{
"start": 795,
"end": 814,
"text": "Cheng et al., 2017;",
"ref_id": "BIBREF9"
},
{
"start": 815,
"end": 838,
"text": "Henderson et al., 2019;",
"ref_id": "BIBREF25"
},
{
"start": 839,
"end": 864,
"text": "Sekulic and Strube, 2019)",
"ref_id": "BIBREF65"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Gender Classification Bias",
"sec_num": "4.2"
},
{
"text": "To build a gender classifier, we retrieve a separate Reddit dataset and label it automatically for gender. To this end, we again rely on flairs, using strings\"/f/\" and \"/m/\" as female and male gender indicators, respectively. 7 This method yields a 98.5% precision on PANDORA. From the 34k users that used these patterns in their flairs, we sampled a balanced dataset of 24,954 users and retrieved over 30M of their comments, removing quoted text and all comments shorter than five words. Next, we aggregate the comments per user, and divide the users in an 80%-20% train-test split. For classification, we use logistic regression with 500-dimensional SVD vectors derived from Tf-Idf word n-grams. The test accuracy of the classifier was 89.9%. The accuracy of the classifier on 3,084 users from PAN-DORA with known gender was 89.3%. We now turn to bias analysis. On PANDORA, the classifier failed to predict the correct gender for 8.1% male (142/1743) and 14.4% female (192/1331) users. As this is a statistically significant difference (p<0.05 with two-proportion Z-Test), we conclude that the classifier is biased. To investigate this further, we divide male and female users into those for which the predictions were correct and those for which they were incorrect. We then test for statistically significant differences (using two-proportion Z-test for binary variables and Kruskal-Wallis H-test for continuous variables) of psycho-demographic variables between correctly and incorrectly classified cases for both groups. Results are shown in Table 6 . Differences are statistically significant for thinking and perceiving MBTI dimensions for both females and males, for extraversion Big 5 trait for males, and for age in females. Thinking and perceiving preference for females makes them more likely to be misclassified for males, and the reverse holds for males. Furthermore, the gender of more extraverted males is more likely to be misclassified. When it comes to age, younger females are more often in misclassified group. These findings clearly indicate that a complete psycho-demographic profile is a useful tool for bias analysis of machine learning models trained on social media text.",
"cite_spans": [],
"ref_spans": [
{
"start": 1548,
"end": 1555,
"text": "Table 6",
"ref_id": "TABREF9"
}
],
"eq_spans": [],
"section": "Gender Classification Bias",
"sec_num": "4.2"
},
{
"text": "Our last experiment investigates the usefulness of PANDORA for research in social sciences. One obvious type of use cases are confirmatory stud-ies which aim to replicate present theories and findings on a dataset that has been obtained in a manner different from typical datasets in the field. Another type of use cases are exploratory studies that seek to identify new relations between psychodemographic variables manifested in online talk. Here we present a use case of both types. We focus on propensity for philosophy of Reddit users (manifested as propensity for philosophical topics in online discussions), and seek to confirm its hypothesized positive relationship with openness to experiences (Johnson, 2014; Dollinger et al., 1996) , cognitive processing (e.g., insight), and readability index. We expect this to be confirmed since all four variables share proneness to higher intellectual engagement. For exploratory analysis, we extend our analysis to emotion variables.",
"cite_spans": [
{
"start": 703,
"end": 718,
"text": "(Johnson, 2014;",
"ref_id": "BIBREF29"
},
{
"start": 719,
"end": 742,
"text": "Dollinger et al., 1996)",
"ref_id": "BIBREF16"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Propensity for Philosophy",
"sec_num": "4.3"
},
{
"text": "We conducted the analysis using hierarchical regression analysis with propensity for philosophical topics as the criterion variable and demographics, personality, emotions, cognitive processing, and text readability as predictors. As a measure of propensity for philosophical topics, we compute the \"philosophy\" feature (frequency of philosophical words) from Empath (Fast et al., 2016) for each user's comments. Similarly, for the predictors we compute posemo, negemo, and insight features from LIWC (Pennebaker et al., 2015) and Flesh-Kincaid Grade Level (F-K GL) readability score (Kincaid et al., 1975 ). 8 Emotion variables are inserted for the exploratory analysis. In the hierarchical regression analysis, demographics were added as control variables in the first step, Big 5 traits were added in the second step, emotion variables in the third step, and finally insight feature as a cognitive inclination variable and F-K GL readability index were added in the last step. The sample comprises 430 Reddit users, 273 males and 157 females, with the mean age of 26.79 (SD=7.954), who all had gold labels of gender, age, and Big 5.",
"cite_spans": [
{
"start": 367,
"end": 386,
"text": "(Fast et al., 2016)",
"ref_id": "BIBREF19"
},
{
"start": 501,
"end": 526,
"text": "(Pennebaker et al., 2015)",
"ref_id": "BIBREF52"
},
{
"start": 584,
"end": 605,
"text": "(Kincaid et al., 1975",
"ref_id": "BIBREF30"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Propensity for Philosophy",
"sec_num": "4.3"
},
{
"text": "The analysis yields interesting results. 9 Firstly, as much as the 41% of variance in the \"philosophy\" feature is explained by the 11 predictors. Secondly, openness to experiences, readability index, and insight are, as expected, all significant and positive predictors of the \"philosophy\" feature. Agreeable-",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Propensity for Philosophy",
"sec_num": "4.3"
},
{
"text": "Step 1",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Predictors",
"sec_num": null
},
{
"text": "Step 2 Step 3",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Predictors",
"sec_num": null
},
{
"text": "Step 4",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Predictors",
"sec_num": null
},
{
"text": "Step 5 Gender -.26 * * -.24 * * -.20 * * -. ness was a negative significant predictor before adding the emotion variables. This is not surprising, as people low in agreeableness are less likely to pander to others, and agreeableness shows significant correlations with both positive (.20) and negative emotions (-.13). Thirdly, the results imply alluring associations with emotion variables. Negative emotions were clearly positive predictors of frequency of discussing philosophical topics. However, positive emotions were a significant predictor until the last step when F-K GL was added to the model. This was due to moderate correlation between posemo and F-K GL (-0.40). Lastly, males had higher frequency of words related to philosophy than females. To sum up, the hypothesis is confirmed and exploratory analysis yields interesting results which could motivate further research.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Predictors",
"sec_num": null
},
{
"text": "In this section we describe baseline models for predicting personality and demographic variables from user comments in PANDORA. We consider the following sets of features: (1) N-grams: Tf-Idf weighted 1-3 word ngrams and 2-5 character n-grams; (2) Stylistic: the counts of words, characters, and syllables, mono/polysyllable words, long words, unique words, as well as all readability metrics implemented in Textacy 10 ; (3) Dictionaries: words mapped to Tf-Idf categories from LIWC (Pennebaker et al., 2015) , Empath (Fast et al., 2016) , and NRC Emotion Lexicon (Mohammad and Turney, 2013) dictionaries; (4) Gender: predictions of the gender classifier from \u00a74.2; (5) Subreddit distributions: a matrix where each row is a distribution of post counts across all subreddits for a particular user, reduced using PCA to 50 features per user; (6) Subreddit other: counts of downs, score, gilded, ups, as well as the controversiality scores for a comment; (7) Named entities: the number of named entities per comment, as extracted using Spacy; 11 (8) Part-of-speech: counts for each part-of-speech; (9) Predictions (only for predicting Big 5 traits): MBTI/Enneagram predictions obtained by a classifier built on held-out data. Features (2), (4), and (6-9) are calculated at the level of individual comments and aggregated to min, max, mean, standard deviation, and median values for each user.",
"cite_spans": [
{
"start": 483,
"end": 508,
"text": "(Pennebaker et al., 2015)",
"ref_id": "BIBREF52"
},
{
"start": 518,
"end": 537,
"text": "(Fast et al., 2016)",
"ref_id": "BIBREF19"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Prediction Models",
"sec_num": "5"
},
{
"text": "We build six regression models (age and Big 5 traits) and eight classification models (four MBTI dimensions, gender, region, Enneagram). We experiment with linear/logistic regression (LR) from sklearn (Pedregosa et al., 2011) and deep learning models (NN). We trained a separate NN model for each task. In each model, a single user is represented as a matrix, with rows representing the user's comments. The comments were encoded using 1024-dimensional vectors derived using BERT (Devlin et al., 2019) . BERT comment vectors are fed into convolution layers, max pooling, and several fully connected layers. Hyperparameters and additional information can be found in the Appendix.",
"cite_spans": [
{
"start": 201,
"end": 225,
"text": "(Pedregosa et al., 2011)",
"ref_id": "BIBREF50"
},
{
"start": 480,
"end": 501,
"text": "(Devlin et al., 2019)",
"ref_id": "BIBREF15"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Prediction Models",
"sec_num": "5"
},
{
"text": "We evaluate the models using 5-fold crossvalidation with a separate stratified split for each target. We use regression F-tests to select top-K features, and optimize model hyperparameters and K on held-out data for each fold separately.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Prediction Models",
"sec_num": "5"
},
{
"text": "Results are shown in Table 8 . LR performs best when using only the n-gram features. An exception are Big 5 trait predictions, which benefit considerably from adding the MBTI/Enneagram predictions as features, building on Section 4.1 and Table 3 . Also, using 1000 comments rather than last 100 (as in NN) increased scores up to 5 points. ",
"cite_spans": [],
"ref_spans": [
{
"start": 21,
"end": 28,
"text": "Table 8",
"ref_id": "TABREF13"
},
{
"start": 238,
"end": 245,
"text": "Table 3",
"ref_id": "TABREF4"
}
],
"eq_spans": [],
"section": "Prediction Models",
"sec_num": "5"
},
{
"text": "PANDORA dataset comprises 17M comments, personality, and demographic labels for over 10k Reddit users, including 1.6k users with Big 5 labels. To our knowledge, this is the first Reddit dataset with Big 5 traits, and also the first covering multiple personality models (Big 5, MBTI, Enneagram). We showcased the usefulness of PANDORA with three experiments, showing (1) how more readily available MBTI/Enneagram labels can be used to estimate Big 5 traits, (2) that a gender classifier trained on Reddit exhibits bias on users of certain personality traits, and (3) that certain psycho-demographic variables are good predictors of propensity for philosophy of Reddit users. We also trained and evaluated benchmark prediction models for all psychodemographic variables. The poor performance of deep learning baseline models, the rich set of labels, and the large number of comments per user in PANDORA suggest that further efforts should be directed toward efficient user representations and more advanced deep learning architectures. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6"
},
{
"text": "Here we describe in more details the setup for predicting Big 5 labels using MBTI/Enneagram labels. We frame the experiment as a domain adaptation task of transferring MBTI/Enneagram labels to Big 5 labels, and use one of the simplest domain adaptation approaches where we use source classifier (MBTI) predictions as features and linearly interpolate them on development set containing both MBTI and Big 5 to make predictions on Big 5 target set (e.g., PRED and LININT baselines from (Daum\u00e9 III, 2007) ). We first partition PANDORA into three subsets: comments of users for which we have both MBTI and Big 5 labels (M+B+, n=382), comments of users for which we have the MBTI but no Big 5 labels (M+B-, n=8,691), and comments of users for which we have the Big 5 but no MBTI labels (M-B+, n=1,588). We then proceed in three steps. In the first step, we train on M+B-four text-based MBTI classifiers, one for each MBTI dimension (logistic regression, optimized with 5-fold CV, using 7000 filter-selected, Tf-Idf-weighed 1-5 word and character n-grams as features).",
"cite_spans": [
{
"start": 484,
"end": 501,
"text": "(Daum\u00e9 III, 2007)",
"ref_id": "BIBREF13"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "C Predicting Big 5 with MBTI/Enneagram",
"sec_num": null
},
{
"text": "In the second step, we use text-based MBTI classifiers to obtain MBTI labels on M+B+ (serving as domain adaptation source set), observing a typelevel accuracy of 45% (82.4% for one-off prediction). The classifiers output probabilities, which can be interpreted as a score of the corresponding MBTI dimension. As majority of Big 5 traits significantly correlate with more than one MBTI dimension, we use these scores as features for training five regression models, one for each Big 5 trait (Ridge regression optimized with 5-fold CV). Additionally, we preformed a correlation analysis between Enneagram types and Big 5 traits. Results are shown in Table 14 .",
"cite_spans": [],
"ref_spans": [
{
"start": 648,
"end": 656,
"text": "Table 14",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "C Predicting Big 5 with MBTI/Enneagram",
"sec_num": null
},
{
"text": "In the third step, we apply both classifiers on M-B+ (serving as domain adaptation target set): we first use MBTI classifiers to obtain scores for the four MBTI dimensions, and then feed these to Big 5 regression models to obtain predictions for the five traits.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "C Predicting Big 5 with MBTI/Enneagram",
"sec_num": null
},
{
"text": "The models consist of three parts: a convolutional layer, a max-pooling layer, and several fully connected (FC) layers. Convolutional kernels are as wide as BERT's representation and slide vertically over the matrix to aggregate information from sev- eral comments. We tried different kernel sizes varying from 2 to 6, and different numbers of kernels M varying from 4 to 6. Outputs of the convolutional layer are first sliced into a fixed number of K slices and then subject to max pooling. This results in M vectors of length K per user, one for each kernel, which are passed to several FC layers with Leaky ReLU activations. Regularization (L2-norm and dropout) is applied only to FC layers.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "D Parameters of the DL Model",
"sec_num": null
},
{
"text": "Figures 2 and 3 show the learning curves for logistic regression model with 1-gram features: x-axis is the number of comments and y-axis is model's F1-macro score. Performance plateaus at around 1000 comments, showing little significant changes when increasing the number of comments used for training beyond that amount.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "E Learning Curves for the Logistic Regression Models",
"sec_num": null
},
{
"text": "The usual inventories for assessing Big 5 are International Personality Item Pool (IPIP;Goldberg et al., 2006), Revised NEO Personality Inventory (NEO-PI-R;Costa et al., 1991), or Big 5 Inventory(BFI;John et al., 1991). Another common inventory is HEXACO(Lee and Ashton, 2018), which adds a sixth trait, Honesty-Humility.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "http://www.kaggle.com/datasnaek/mbti-type",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://www.truity.com/ 5 http://hexaco.org/hexaco-online",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "Although the construct of gender is not binary, we limit our present analysis to users who reported binary gender to obtain a more balanced dataset for bias analysis.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "We counted the frequencies per comment, divided it by total number of words in a comment, multiplied with 100, and averaged for total comments.9 Multivariate normality and multicollinearity were satisfied, and homoscedasticity was satisfied after removing 14 outliers based on standardized residuals.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://chartbeat-labs.github.io/textacy 11 https://spacy.io/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "We thank the reviewers for their remarks. This work has been fully supported by the Croatian Science Foundation under the project IP-2020-02-8671 PSYTXT (\"Computational Models for Text-Based Personality Prediction and Analysis\").",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgements",
"sec_num": null
},
{
"text": " Table 9 shows that most users are from English speaking countries, and regionally evenly distributed in US and Canada. For mapping states to regions, there are different regional divisions for the U.S. and Canada. We used five regions for US, and three for Canada (for one region there was no users).Additionally, for each comment we ran fast text based language identification. 12 Table 10 shows the number of comments for top 10 languages. ",
"cite_spans": [],
"ref_spans": [
{
"start": 1,
"end": 8,
"text": "Table 9",
"ref_id": null
},
{
"start": 383,
"end": 391,
"text": "Table 10",
"ref_id": null
}
],
"eq_spans": [],
"section": "annex",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Lexical predictors of personality type",
"authors": [
{
"first": "Shlomo",
"middle": [],
"last": "Argamon",
"suffix": ""
},
{
"first": "Sushant",
"middle": [],
"last": "Dhawle",
"suffix": ""
},
{
"first": "Moshe",
"middle": [],
"last": "Koppel",
"suffix": ""
},
{
"first": "James",
"middle": [],
"last": "Pennebaker",
"suffix": ""
}
],
"year": 2005,
"venue": "Proceedings of the Joint Annual Meeting of the Interface and the Classification Society",
"volume": "",
"issue": "",
"pages": "1--16",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shlomo Argamon, Sushant Dhawle, Moshe Koppel, and James Pennebaker. 2005. Lexical predictors of personality type. In Proceedings of the Joint Annual Meeting of the Interface and the Classification Soci- ety, pages 1-16.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Gender identity and lexical variation in social media",
"authors": [
{
"first": "David",
"middle": [],
"last": "Bamman",
"suffix": ""
},
{
"first": "Jacob",
"middle": [],
"last": "Eisenstein",
"suffix": ""
},
{
"first": "Tyler",
"middle": [],
"last": "Schnoebelen",
"suffix": ""
}
],
"year": 2014,
"venue": "Journal of Sociolinguistics",
"volume": "18",
"issue": "2",
"pages": "135--160",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "David Bamman, Jacob Eisenstein, and Tyler Schnoe- belen. 2014. Gender identity and lexical varia- tion in social media. Journal of Sociolinguistics, 18(2):135-160.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "A critique of the Myers-Briggs Type Indicator and its operationalization of Carl Jung's psychological types",
"authors": [
{
"first": "John",
"middle": [
"E"
],
"last": "Barbuto",
"suffix": ""
}
],
"year": 1997,
"venue": "Psychological Reports",
"volume": "80",
"issue": "2",
"pages": "611--625",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "John E. Barbuto Jr. 1997. A critique of the Myers- Briggs Type Indicator and its operationalization of Carl Jung's psychological types. Psychological Re- ports, 80(2):611-625.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "The pushshift reddit dataset",
"authors": [
{
"first": "Jason",
"middle": [],
"last": "Baumgartner",
"suffix": ""
},
{
"first": "Savvas",
"middle": [],
"last": "Zannettou",
"suffix": ""
},
{
"first": "Brian",
"middle": [],
"last": "Keegan",
"suffix": ""
},
{
"first": "Megan",
"middle": [],
"last": "Squire",
"suffix": ""
},
{
"first": "Jeremy",
"middle": [],
"last": "Blackburn",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the International AAAI Conference on Web and Social Media",
"volume": "14",
"issue": "",
"pages": "830--839",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jason Baumgartner, Savvas Zannettou, Brian Keegan, Megan Squire, and Jeremy Blackburn. 2020. The pushshift reddit dataset. Proceedings of the Interna- tional AAAI Conference on Web and Social Media, 14(1):830-839.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Bimodal score distributions and the myers-briggs type indicator: Fact or artifact",
"authors": [
{
"first": "Tammy",
"middle": [
"L"
],
"last": "Bess",
"suffix": ""
},
{
"first": "Robert",
"middle": [
"J"
],
"last": "Harvey",
"suffix": ""
}
],
"year": 2002,
"venue": "Journal of Personality Assessment",
"volume": "78",
"issue": "1",
"pages": "176--186",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tammy L. Bess and Robert J. Harvey. 2002. Bimodal score distributions and the myers-briggs type indica- tor: Fact or artifact? Journal of Personality Assess- ment, 78(1):176-186.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Is big five better than mbti? A personality computing challenge using twitter data",
"authors": [
{
"first": "Fabio",
"middle": [],
"last": "Celli",
"suffix": ""
},
{
"first": "Bruno",
"middle": [],
"last": "Lepri",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the Fifth Italian Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Fabio Celli and Bruno Lepri. 2018. Is big five better than mbti? A personality computing challenge us- ing twitter data. In Proceedings of the Fifth Italian Conference on Computational Linguistics (CLiC-it 2018), Torino, Italy, December 10-12, 2018, vol- ume 2253 of CEUR Workshop Proceedings. CEUR- WS.org.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "The workshop on computational personality recognition",
"authors": [
{
"first": "Fabio",
"middle": [],
"last": "Celli",
"suffix": ""
},
{
"first": "Bruno",
"middle": [],
"last": "Lepri",
"suffix": ""
},
{
"first": "Joan-Isaac",
"middle": [],
"last": "Biel",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Gatica-Perez",
"suffix": ""
},
{
"first": "Giuseppe",
"middle": [],
"last": "Riccardi",
"suffix": ""
},
{
"first": "Fabio",
"middle": [],
"last": "Pianesi",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the 22nd ACM international conference on Multimedia",
"volume": "",
"issue": "",
"pages": "1245--1246",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Fabio Celli, Bruno Lepri, Joan-Isaac Biel, Daniel Gatica-Perez, Giuseppe Riccardi, and Fabio Pianesi. 2014. The workshop on computational personal- ity recognition 2014. In Proceedings of the 22nd ACM international conference on Multimedia, pages 1245-1246. ACM.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Workshop on computational personality recognition: Shared task",
"authors": [
{
"first": "Fabio",
"middle": [],
"last": "Celli",
"suffix": ""
},
{
"first": "Fabio",
"middle": [],
"last": "Pianesi",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Stillwell",
"suffix": ""
},
{
"first": "Michal",
"middle": [],
"last": "Kosinski",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the AAAI Workshop on Computational Personality Recognition",
"volume": "",
"issue": "",
"pages": "2--5",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Fabio Celli, Fabio Pianesi, David Stillwell, and Michal Kosinski. 2013. Workshop on computational person- ality recognition: Shared task. In Proceedings of the AAAI Workshop on Computational Personality Recognition, pages 2-5.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Bias and fairness in natural language processing",
"authors": [
{
"first": "Kai-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Vinod",
"middle": [],
"last": "Prabhakaran",
"suffix": ""
},
{
"first": "Vicente",
"middle": [],
"last": "Ordonez",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kai-Wei Chang, Vinod Prabhakaran, and Vicente Or- donez. 2019. Bias and fairness in natural language processing. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Process- ing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): Tutorial Abstracts.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "A factored neural network model for characterizing online discussions in vector space",
"authors": [
{
"first": "Hao",
"middle": [],
"last": "Cheng",
"suffix": ""
},
{
"first": "Hao",
"middle": [],
"last": "Fang",
"suffix": ""
},
{
"first": "Mari",
"middle": [],
"last": "Ostendorf",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "2296--2306",
"other_ids": {
"DOI": [
"10.18653/v1/D17-1243"
]
},
"num": null,
"urls": [],
"raw_text": "Hao Cheng, Hao Fang, and Mari Ostendorf. 2017. A factored neural network model for characterizing online discussions in vector space. In Proceed- ings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2296-2306, Copenhagen, Denmark. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Gender inference of Twitter users in non-English contexts",
"authors": [
{
"first": "Morgane",
"middle": [],
"last": "Ciot",
"suffix": ""
},
{
"first": "Morgan",
"middle": [],
"last": "Sonderegger",
"suffix": ""
},
{
"first": "Derek",
"middle": [],
"last": "Ruths",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1136--1145",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Morgane Ciot, Morgan Sonderegger, and Derek Ruths. 2013. Gender inference of Twitter users in non- English contexts. In Proceedings of the 2013 Con- ference on Empirical Methods in Natural Language Processing, pages 1136-1145, Seattle, Washington, USA. Association for Computational Linguistics.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "SMHD: a large-scale resource for exploring online language usage for multiple mental health conditions",
"authors": [
{
"first": "Arman",
"middle": [],
"last": "Cohan",
"suffix": ""
},
{
"first": "Bart",
"middle": [],
"last": "Desmet",
"suffix": ""
},
{
"first": "Andrew",
"middle": [],
"last": "Yates",
"suffix": ""
},
{
"first": "Luca",
"middle": [],
"last": "Soldaini",
"suffix": ""
},
{
"first": "Sean",
"middle": [],
"last": "Macavaney",
"suffix": ""
},
{
"first": "Nazli",
"middle": [],
"last": "Goharian",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 27th International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "1485--1497",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Arman Cohan, Bart Desmet, Andrew Yates, Luca Sol- daini, Sean MacAvaney, and Nazli Goharian. 2018. SMHD: a large-scale resource for exploring online language usage for multiple mental health condi- tions. In Proceedings of the 27th International Con- ference on Computational Linguistics, pages 1485- 1497, Santa Fe, New Mexico, USA. Association for Computational Linguistics.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Facet scales for agreeableness and cpnscientiousness: A revision of the neo personality inventory",
"authors": [
{
"first": "Paul",
"middle": [
"T"
],
"last": "Costa",
"suffix": ""
},
{
"first": "Robert",
"middle": [
"R"
],
"last": "Mccrae",
"suffix": ""
},
{
"first": "David",
"middle": [
"A"
],
"last": "Dye",
"suffix": ""
}
],
"year": 1991,
"venue": "Personality and Individual Differences",
"volume": "12",
"issue": "9",
"pages": "887--898",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Paul T. Costa, Robert R. McCrae, and David A. Dye. 1991. Facet scales for agreeableness and cpnsci- entiousness: A revision of the neo personality in- ventory. Personality and Individual Differences, 12(9):887-898.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Frustratingly easy domain adaptation",
"authors": [
{
"first": "Hal",
"middle": [],
"last": "Daum\u00e9",
"suffix": ""
},
{
"first": "Iii",
"middle": [],
"last": "",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics",
"volume": "",
"issue": "",
"pages": "256--263",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hal Daum\u00e9 III. 2007. Frustratingly easy domain adap- tation. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 256-263, Prague, Czech Republic. Association for Computational Linguistics.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Discovering shifts to suicidal ideation from mental health content in social media",
"authors": [
{
"first": "Emre",
"middle": [],
"last": "Munmun De Choudhury",
"suffix": ""
},
{
"first": "Mark",
"middle": [],
"last": "Kiciman",
"suffix": ""
},
{
"first": "Glen",
"middle": [],
"last": "Dredze",
"suffix": ""
},
{
"first": "Mrinal",
"middle": [],
"last": "Coppersmith",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Kumar",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 2016 CHI conference on human factors in computing systems",
"volume": "",
"issue": "",
"pages": "2098--2110",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Munmun De Choudhury, Emre Kiciman, Mark Dredze, Glen Coppersmith, and Mrinal Kumar. 2016. Dis- covering shifts to suicidal ideation from mental health content in social media. In Proceedings of the 2016 CHI conference on human factors in com- puting systems, pages 2098-2110. ACM.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Devlin",
"suffix": ""
},
{
"first": "Ming-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "4171--4186",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1423"
]
},
"num": null,
"urls": [],
"raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "On traits and values: With special reference to openness to experience",
"authors": [
{
"first": "J",
"middle": [],
"last": "Stephen",
"suffix": ""
},
{
"first": "Frederick",
"middle": [
"T"
],
"last": "Dollinger",
"suffix": ""
},
{
"first": "Shawna",
"middle": [
"K"
],
"last": "Leong",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Ulicni",
"suffix": ""
}
],
"year": 1996,
"venue": "Journal of Research in Personality",
"volume": "30",
"issue": "1",
"pages": "23--41",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Stephen J. Dollinger, Frederick T. Leong, and Shawna K. Ulicni. 1996. On traits and values: With special reference to openness to experience. Journal of Research in Personality, 30(1):23-41.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "A latent variable model for geographic lexical variation",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Eisenstein",
"suffix": ""
},
{
"first": "O'",
"middle": [],
"last": "Brendan",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Connor",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Noah",
"suffix": ""
},
{
"first": "Eric",
"middle": [
"P"
],
"last": "Smith",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Xing",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the 2010 conference on empirical methods in natural language processing",
"volume": "",
"issue": "",
"pages": "1277--1287",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jacob Eisenstein, Brendan O'Connor, Noah A Smith, and Eric P Xing. 2010. A latent variable model for geographic lexical variation. In Proceedings of the 2010 conference on empirical methods in natural language processing, pages 1277-1287. Association for Computational Linguistics.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Adversarial removal of demographic attributes from text data",
"authors": [
{
"first": "Yanai",
"middle": [],
"last": "Elazar",
"suffix": ""
},
{
"first": "Yoav",
"middle": [],
"last": "Goldberg",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "11--21",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yanai Elazar and Yoav Goldberg. 2018. Adversarial removal of demographic attributes from text data. In Proceedings of the 2018 Conference on Empiri- cal Methods in Natural Language Processing, pages 11-21, Brussels, Belgium. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Empath: Understanding topic signals in largescale text",
"authors": [
{
"first": "Ethan",
"middle": [],
"last": "Fast",
"suffix": ""
},
{
"first": "Binbin",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Michael S",
"middle": [],
"last": "Bernstein",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems",
"volume": "",
"issue": "",
"pages": "4647--4657",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ethan Fast, Binbin Chen, and Michael S Bernstein. 2016. Empath: Understanding topic signals in large- scale text. In Proceedings of the 2016 CHI Con- ference on Human Factors in Computing Systems, pages 4647-4657. ACM.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "The big five versus the big four: the relationship between the Myers-Briggs Type Indicator (MBTI) and NEO-PI five factor model of personality",
"authors": [
{
"first": "Adrian",
"middle": [],
"last": "Furnham",
"suffix": ""
}
],
"year": 1996,
"venue": "Personality and Individual Differences",
"volume": "21",
"issue": "2",
"pages": "303--307",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Adrian Furnham. 1996. The big five versus the big four: the relationship between the Myers-Briggs Type Indicator (MBTI) and NEO-PI five factor model of personality. Personality and Individual Differences, 21(2):303-307.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Reddit: A gold mine for personality prediction",
"authors": [
{
"first": "Matej",
"middle": [],
"last": "Gjurkovi\u0107",
"suffix": ""
},
{
"first": "Jan\u0161najder",
"middle": [],
"last": "",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the Second Workshop on Computational Modeling of People's Opinions, Personality, and Emotions in Social Media",
"volume": "",
"issue": "",
"pages": "87--97",
"other_ids": {
"DOI": [
"10.18653/v1/W18-1112"
]
},
"num": null,
"urls": [],
"raw_text": "Matej Gjurkovi\u0107 and Jan\u0160najder. 2018. Reddit: A gold mine for personality prediction. In Proceedings of the Second Workshop on Computational Modeling of People's Opinions, Personality, and Emotions in Social Media, pages 87-97, New Orleans, Louisiana, USA. Association for Computational Linguistics.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Predicting personality from Twitter",
"authors": [
{
"first": "Jennifer",
"middle": [],
"last": "Golbeck",
"suffix": ""
},
{
"first": "Cristina",
"middle": [],
"last": "Robles",
"suffix": ""
},
{
"first": "Michon",
"middle": [],
"last": "Edmondson",
"suffix": ""
},
{
"first": "Karen",
"middle": [],
"last": "Turner",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of 2011 IEEE International Conference on Privacy, Security, Risk and Trust (PASSAT) and IEEE International Conference on Social Computing (SocialCom)",
"volume": "",
"issue": "",
"pages": "149--156",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jennifer Golbeck, Cristina Robles, Michon Edmond- son, and Karen Turner. 2011. Predicting personality from Twitter. In Proceedings of 2011 IEEE Inter- national Conference on Privacy, Security, Risk and Trust (PASSAT) and IEEE International Conference on Social Computing (SocialCom), pages 149-156.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "The development of markers for the big-five factor structure",
"authors": [
{
"first": "R",
"middle": [],
"last": "Lewis",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Goldberg",
"suffix": ""
}
],
"year": 1992,
"venue": "Psychological Assessment",
"volume": "4",
"issue": "1",
"pages": "26--42",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lewis R. Goldberg. 1992. The development of mark- ers for the big-five factor structure. Psychological Assessment, 4(1):26--42.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "The geographic distribution of big five personality traits: Patterns and profiles of human self-description across 56 nations",
"authors": [
{
"first": "Lewis",
"middle": [
"R"
],
"last": "Goldberg",
"suffix": ""
},
{
"first": "John",
"middle": [
"A"
],
"last": "Johnson",
"suffix": ""
},
{
"first": "Herbert",
"middle": [
"W"
],
"last": "Eber",
"suffix": ""
},
{
"first": "Robert",
"middle": [],
"last": "Hogan",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Mihael",
"suffix": ""
},
{
"first": "C",
"middle": [
"Robert"
],
"last": "Ashton",
"suffix": ""
},
{
"first": "Harrison",
"middle": [
"G"
],
"last": "Cloninger",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Gough",
"suffix": ""
}
],
"year": 2006,
"venue": "Journal of Research in Personality",
"volume": "40",
"issue": "1",
"pages": "84--96",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lewis R. Goldberg, John A. Johnson, Herbert W. Eber, Robert Hogan, Mihael C. Ashton, C. Robert Cloninger, and Harrison G. Gough. 2006. The geo- graphic distribution of big five personality traits: Pat- terns and profiles of human self-description across 56 nations. Journal of Research in Personality, 40(1):84-96.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "A repository of conversational datasets",
"authors": [
{
"first": "Matthew",
"middle": [],
"last": "Henderson",
"suffix": ""
},
{
"first": "Pawe\u0142",
"middle": [],
"last": "Budzianowski",
"suffix": ""
},
{
"first": "I\u00f1igo",
"middle": [],
"last": "Casanueva",
"suffix": ""
},
{
"first": "Sam",
"middle": [],
"last": "Coope",
"suffix": ""
},
{
"first": "Daniela",
"middle": [],
"last": "Gerz",
"suffix": ""
},
{
"first": "Girish",
"middle": [],
"last": "Kumar",
"suffix": ""
},
{
"first": "Nikola",
"middle": [],
"last": "Mrk\u0161i\u0107",
"suffix": ""
},
{
"first": "Georgios",
"middle": [],
"last": "Spithourakis",
"suffix": ""
},
{
"first": "Pei-Hao",
"middle": [],
"last": "Su",
"suffix": ""
},
{
"first": "Ivan",
"middle": [],
"last": "Vuli\u0107",
"suffix": ""
},
{
"first": "Tsung-Hsien",
"middle": [],
"last": "Wen",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the First Workshop on NLP for Conversational AI",
"volume": "",
"issue": "",
"pages": "1--10",
"other_ids": {
"DOI": [
"10.18653/v1/W19-4101"
]
},
"num": null,
"urls": [],
"raw_text": "Matthew Henderson, Pawe\u0142 Budzianowski, I\u00f1igo Casanueva, Sam Coope, Daniela Gerz, Girish Ku- mar, Nikola Mrk\u0161i\u0107, Georgios Spithourakis, Pei-Hao Su, Ivan Vuli\u0107, and Tsung-Hsien Wen. 2019. A repository of conversational datasets. In Proceed- ings of the First Workshop on NLP for Conversa- tional AI, pages 1-10, Florence, Italy. Association for Computational Linguistics.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Neural user factor adaptation for text classification: Learning to generalize across author demographics",
"authors": [
{
"first": "Xiaolei",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "Michael",
"middle": [
"J"
],
"last": "Paul",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019)",
"volume": "",
"issue": "",
"pages": "136--146",
"other_ids": {
"DOI": [
"10.18653/v1/S19-1015"
]
},
"num": null,
"urls": [],
"raw_text": "Xiaolei Huang and Michael J. Paul. 2019. Neural user factor adaptation for text classification: Learning to generalize across author demographics. In Proceed- ings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019), pages 136- 146, Minneapolis, Minnesota. Association for Com- putational Linguistics.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Large scale personality classification of bloggers",
"authors": [
{
"first": "Francisco",
"middle": [],
"last": "Iacobelli",
"suffix": ""
},
{
"first": "Alastair",
"middle": [
"J"
],
"last": "Gill",
"suffix": ""
},
{
"first": "Scott",
"middle": [],
"last": "Nowson",
"suffix": ""
},
{
"first": "Jon",
"middle": [],
"last": "Oberlander",
"suffix": ""
}
],
"year": 2011,
"venue": "Affective computing and intelligent interaction",
"volume": "",
"issue": "",
"pages": "568--577",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Francisco Iacobelli, Alastair J. Gill, Scott Nowson, and Jon Oberlander. 2011. Large scale personality clas- sification of bloggers. In Affective computing and intelligent interaction, pages 568-577. Springer.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "The Big Five Inventory-Versions 4a and 54",
"authors": [
{
"first": "P",
"middle": [],
"last": "Oliver",
"suffix": ""
},
{
"first": "Eileen",
"middle": [
"M"
],
"last": "John",
"suffix": ""
},
{
"first": "Robert",
"middle": [
"L"
],
"last": "Donahue",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Kentle",
"suffix": ""
}
],
"year": 1991,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Oliver P. John, Eileen M. Donahue, and Robert L. Ken- tle. 1991. The Big Five Inventory-Versions 4a and 54. Berkeley, CA: University of California,Berkeley, Institute of Personality and Social Research.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Measuring thirty facets of the five factor model with a 120-item public domain inventory: Development of the ipip-neo-120",
"authors": [
{
"first": "John",
"middle": [
"A"
],
"last": "Johnson",
"suffix": ""
}
],
"year": 2014,
"venue": "Journal of Research in Personality",
"volume": "51",
"issue": "",
"pages": "78--89",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "John A. Johnson. 2014. Measuring thirty facets of the five factor model with a 120-item public domain in- ventory: Development of the ipip-neo-120. Journal of Research in Personality, 51:78-89.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Derivation of New Readability Formulas (Automated Readability Index, Fog Count and Flesch Reading Ease Formula) for Navy Enlisted Personnel",
"authors": [
{
"first": "J",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "Peter",
"middle": [],
"last": "Kincaid",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Robert",
"suffix": ""
},
{
"first": "Rogers",
"middle": [],
"last": "Fishburne",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Richard",
"suffix": ""
},
{
"first": "Chissom",
"middle": [],
"last": "Brad",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "",
"suffix": ""
}
],
"year": 1975,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. Peter Kincaid, Robert P. Jr. Fishburne, Rogers Richard L., and Chissom Brad S. 1975. Derivation of New Readability Formulas (Auto- mated Readability Index, Fog Count and Flesch Reading Ease Formula) for Navy Enlisted Person- nel.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Facebook as a research tool for the social sciences: Opportunities, challenges, ethical considerations, and practical guidelines",
"authors": [
{
"first": "Michal",
"middle": [],
"last": "Kosinski",
"suffix": ""
},
{
"first": "Sandra",
"middle": [
"C"
],
"last": "Matz",
"suffix": ""
},
{
"first": "Samuel",
"middle": [
"D"
],
"last": "Gosling",
"suffix": ""
},
{
"first": "Vesselin",
"middle": [],
"last": "Popov",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Stillwell",
"suffix": ""
}
],
"year": 2015,
"venue": "American Psychologist",
"volume": "70",
"issue": "6",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Michal Kosinski, Sandra C. Matz, Samuel D. Gosling, Vesselin Popov, and David Stillwell. 2015. Face- book as a research tool for the social sciences: Opportunities, challenges, ethical considerations, and practical guidelines. American Psychologist, 70(6):543.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Private traits and attributes are predictable from digital records of human behavior",
"authors": [
{
"first": "Michal",
"middle": [],
"last": "Kosinski",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Stillwell",
"suffix": ""
},
{
"first": "Thore",
"middle": [],
"last": "Graepel",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the National Academy of Sciences",
"volume": "110",
"issue": "15",
"pages": "5802--5805",
"other_ids": {
"DOI": [
"10.1073/pnas.1218772110"
]
},
"num": null,
"urls": [],
"raw_text": "Michal Kosinski, David Stillwell, and Thore Grae- pel. 2013. Private traits and attributes are pre- dictable from digital records of human behavior. Proceedings of the National Academy of Sciences, 110(15):5802-5805.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Psychometric properties of the hexaco-100",
"authors": [
{
"first": "Kibeom",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Michael",
"middle": [
"C"
],
"last": "Ashton",
"suffix": ""
}
],
"year": 2018,
"venue": "Assessment",
"volume": "25",
"issue": "5",
"pages": "543--556",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kibeom Lee and Michael C. Ashton. 2018. Psycho- metric properties of the hexaco-100. Assessment, 25(5):543-556.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "Adversarial multi-task learning for text classification",
"authors": [
{
"first": "Pengfei",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Xipeng",
"middle": [],
"last": "Qiu",
"suffix": ""
},
{
"first": "Xuanjing",
"middle": [],
"last": "Huang",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.18653/v1/p17-1001"
]
},
"num": null,
"urls": [],
"raw_text": "Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017. Adversarial multi-task learning for text classifica- tion. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "Personae: A corpus for author and personality prediction from text",
"authors": [
{
"first": "Kim",
"middle": [],
"last": "Luyckx",
"suffix": ""
},
{
"first": "Walter",
"middle": [],
"last": "Daelemans",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)",
"volume": "",
"issue": "",
"pages": "2981--2987",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kim Luyckx and Walter Daelemans. 2008. Personae: A corpus for author and personality prediction from text. In Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08), pages 2981-2987.",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "Hierarchical modeling for user personality prediction: The role of messagelevel attention",
"authors": [
{
"first": "Veronica",
"middle": [],
"last": "Lynn",
"suffix": ""
},
{
"first": "Niranjan",
"middle": [],
"last": "Balasubramanian",
"suffix": ""
},
{
"first": "H",
"middle": [
"Andrew"
],
"last": "Schwartz",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "5306--5316",
"other_ids": {
"DOI": [
"10.18653/v1/2020.acl-main.472"
]
},
"num": null,
"urls": [],
"raw_text": "Veronica Lynn, Niranjan Balasubramanian, and H. An- drew Schwartz. 2020. Hierarchical modeling for user personality prediction: The role of message- level attention. In Proceedings of the 58th Annual Meeting of the Association for Computational Lin- guistics, pages 5306-5316, Online. Association for Computational Linguistics.",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "Human centered NLP with user-factor adaptation",
"authors": [
{
"first": "Veronica",
"middle": [],
"last": "Lynn",
"suffix": ""
},
{
"first": "Youngseo",
"middle": [],
"last": "Son",
"suffix": ""
},
{
"first": "Vivek",
"middle": [],
"last": "Kulkarni",
"suffix": ""
},
{
"first": "Niranjan",
"middle": [],
"last": "Balasubramanian",
"suffix": ""
},
{
"first": "H",
"middle": [
"Andrew"
],
"last": "Schwartz",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1146--1155",
"other_ids": {
"DOI": [
"10.18653/v1/D17-1119"
]
},
"num": null,
"urls": [],
"raw_text": "Veronica Lynn, Youngseo Son, Vivek Kulkarni, Ni- ranjan Balasubramanian, and H. Andrew Schwartz. 2017. Human centered NLP with user-factor adap- tation. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1146-1155, Copenhagen, Denmark. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF38": {
"ref_id": "b38",
"title": "Deep learning-based document modeling for personality detection from text",
"authors": [
{
"first": "N",
"middle": [],
"last": "Majumder",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Poria",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Gelbukh",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Cambria",
"suffix": ""
}
],
"year": 2017,
"venue": "IEEE Intelligent Systems",
"volume": "32",
"issue": "2",
"pages": "74--79",
"other_ids": {
"DOI": [
"10.1109/MIS.2017.23"
]
},
"num": null,
"urls": [],
"raw_text": "N. Majumder, S. Poria, A. Gelbukh, and E. Cambria. 2017. Deep learning-based document modeling for personality detection from text. IEEE Intelligent Systems, 32(2):74-79.",
"links": null
},
"BIBREF39": {
"ref_id": "b39",
"title": "Reinterpreting the Myers-Briggs type indicator from the perspective of the five-factor model of personality",
"authors": [
{
"first": "R",
"middle": [],
"last": "Robert",
"suffix": ""
},
{
"first": "Paul",
"middle": [
"T"
],
"last": "Mccrae",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Costa",
"suffix": ""
}
],
"year": 1989,
"venue": "Journal of personality",
"volume": "57",
"issue": "1",
"pages": "17--40",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Robert R. McCrae and Paul T. Costa. 1989. Reinter- preting the Myers-Briggs type indicator from the perspective of the five-factor model of personality. Journal of personality, 57(1):17-40.",
"links": null
},
"BIBREF40": {
"ref_id": "b40",
"title": "An introduction to the five-factor model and its applications",
"authors": [
{
"first": "R",
"middle": [],
"last": "Robert",
"suffix": ""
},
{
"first": "Oliver",
"middle": [
"P"
],
"last": "Mccrae",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "John",
"suffix": ""
}
],
"year": 1992,
"venue": "Journal of Personality",
"volume": "60",
"issue": "2",
"pages": "175--215",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Robert R. McCrae and Oliver P. John. 1992. An intro- duction to the five-factor model and its applications. Journal of Personality, 60(2):175-215.",
"links": null
},
"BIBREF41": {
"ref_id": "b41",
"title": "The electronically activated recorder (EAR): A device for sampling naturalistic daily activities and conversations",
"authors": [
{
"first": "Matthias",
"middle": [
"R"
],
"last": "Mehl",
"suffix": ""
},
{
"first": "James",
"middle": [
"W"
],
"last": "Pennebaker",
"suffix": ""
},
{
"first": "D",
"middle": [
"Michael"
],
"last": "Crow",
"suffix": ""
},
{
"first": "James",
"middle": [],
"last": "Dabbs",
"suffix": ""
},
{
"first": "John",
"middle": [
"H"
],
"last": "Price",
"suffix": ""
}
],
"year": 2001,
"venue": "Behavior Research Methods, Instruments, & Computers",
"volume": "33",
"issue": "4",
"pages": "517--523",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Matthias R. Mehl, James W. Pennebaker, D. Michael Crow, James Dabbs, and John H. Price. 2001. The electronically activated recorder (EAR): A device for sampling naturalistic daily activities and conver- sations. Behavior Research Methods, Instruments, & Computers, 33(4):517-523.",
"links": null
},
"BIBREF42": {
"ref_id": "b42",
"title": "Bottom-up and topdown: Predicting personality with psycholinguistic and language model features",
"authors": [
{
"first": "Y",
"middle": [],
"last": "Mehta",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Fatehi",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Kazameini",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Stachl",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Cambria",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Eetemadi",
"suffix": ""
}
],
"year": 2020,
"venue": "2020 IEEE International Conference on Data Mining (ICDM)",
"volume": "",
"issue": "",
"pages": "1184--1189",
"other_ids": {
"DOI": [
"10.1109/ICDM50108.2020.00146"
]
},
"num": null,
"urls": [],
"raw_text": "Y. Mehta, S. Fatehi, A. Kazameini, C. Stachl, E. Cam- bria, and S. Eetemadi. 2020. Bottom-up and top- down: Predicting personality with psycholinguistic and language model features. In 2020 IEEE Interna- tional Conference on Data Mining (ICDM), pages 1184-1189.",
"links": null
},
"BIBREF43": {
"ref_id": "b43",
"title": "Recent trends in deep learning based personality detection",
"authors": [
{
"first": "Yash",
"middle": [],
"last": "Mehta",
"suffix": ""
},
{
"first": "Navonil",
"middle": [],
"last": "Majumder",
"suffix": ""
},
{
"first": "Alexander",
"middle": [],
"last": "Gelbukh",
"suffix": ""
},
{
"first": "Erik",
"middle": [],
"last": "Cambria",
"suffix": ""
}
],
"year": 2020,
"venue": "Artificial Intelligence Review",
"volume": "53",
"issue": "",
"pages": "2313--2339",
"other_ids": {
"DOI": [
"10.1007/s10462-019-09770-z"
]
},
"num": null,
"urls": [],
"raw_text": "Yash Mehta, Navonil Majumder, Alexander Gelbukh, and Erik Cambria. 2020. Recent trends in deep learning based personality detection. Artificial In- telligence Review, 53:2313-2339.",
"links": null
},
"BIBREF44": {
"ref_id": "b44",
"title": "Crowdsourcing a word-emotion association lexicon",
"authors": [
{
"first": "M",
"middle": [],
"last": "Saif",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Mohammad",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Peter",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Turney",
"suffix": ""
}
],
"year": 2013,
"venue": "Computational Intelligence",
"volume": "29",
"issue": "3",
"pages": "436--465",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Saif M Mohammad and Peter D Turney. 2013. Crowd- sourcing a word-emotion association lexicon. Com- putational Intelligence, 29(3):436-465.",
"links": null
},
"BIBREF45": {
"ref_id": "b45",
"title": "Introduction to Type: A description of the theory and applications of the Myers-Briggs type indicator",
"authors": [
{
"first": "Isabel",
"middle": [
"Briggs"
],
"last": "Myers",
"suffix": ""
},
{
"first": "Mary",
"middle": [
"H"
],
"last": "Mccaulley",
"suffix": ""
},
{
"first": "Allen",
"middle": [
"L"
],
"last": "Hammer",
"suffix": ""
}
],
"year": 1990,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Isabel Briggs Myers, Mary H. McCaulley, and Allen L. Hammer. 1990. Introduction to Type: A description of the theory and applications of the Myers-Briggs type indicator. Consulting Psychologists Press.",
"links": null
},
"BIBREF46": {
"ref_id": "b46",
"title": "Survey: Computational sociolinguistics: A Survey",
"authors": [
{
"first": "Dong",
"middle": [],
"last": "Nguyen",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Seza",
"suffix": ""
},
{
"first": "Carolyn",
"middle": [
"P"
],
"last": "Dogru\u00f6z",
"suffix": ""
},
{
"first": "Franciska",
"middle": [],
"last": "Ros\u00e9",
"suffix": ""
},
{
"first": "Jong",
"middle": [],
"last": "De",
"suffix": ""
}
],
"year": 2016,
"venue": "Computational Linguistics",
"volume": "42",
"issue": "3",
"pages": "537--593",
"other_ids": {
"DOI": [
"10.1162/COLI_a_00258"
]
},
"num": null,
"urls": [],
"raw_text": "Dong Nguyen, A. Seza Dogru\u00f6z, Carolyn P. Ros\u00e9, and Franciska de Jong. 2016. Survey: Computational sociolinguistics: A Survey. Computational Linguis- tics, 42(3):537-593.",
"links": null
},
"BIBREF47": {
"ref_id": "b47",
"title": "Language with character: A stratified corpus comparison of individual differences in e-mail communication",
"authors": [
{
"first": "Jon",
"middle": [],
"last": "Oberlander",
"suffix": ""
},
{
"first": "Alastair",
"middle": [
"J"
],
"last": "Gill",
"suffix": ""
}
],
"year": 2006,
"venue": "Discourse Processes",
"volume": "42",
"issue": "",
"pages": "239--270",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jon Oberlander and Alastair J. Gill. 2006. Language with character: A stratified corpus comparison of in- dividual differences in e-mail communication. Dis- course Processes, 42(3):239-270.",
"links": null
},
"BIBREF49": {
"ref_id": "b49",
"title": "Automatic personality assessment through social media language",
"authors": [
{
"first": "Lyle",
"middle": [
"H"
],
"last": "Stillwell",
"suffix": ""
},
{
"first": "Martin",
"middle": [
"E P"
],
"last": "Ungar",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Seligman",
"suffix": ""
}
],
"year": 2015,
"venue": "Journal of personality and social psychology",
"volume": "108",
"issue": "6",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Stillwell, Lyle H. Ungar, and Martin E.P. Seligman. 2015. Automatic personality assessment through so- cial media language. Journal of personality and so- cial psychology, 108(6):934.",
"links": null
},
"BIBREF50": {
"ref_id": "b50",
"title": "Scikit-learn: Machine learning in Python",
"authors": [
{
"first": "F",
"middle": [],
"last": "Pedregosa",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Varoquaux",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Gramfort",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Michel",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Thirion",
"suffix": ""
},
{
"first": "O",
"middle": [],
"last": "Grisel",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Blondel",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Prettenhofer",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Weiss",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Dubourg",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Vanderplas",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Passos",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Cournapeau",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Brucher",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Perrot",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Duchesnay",
"suffix": ""
}
],
"year": 2011,
"venue": "Journal of Machine Learning Research",
"volume": "12",
"issue": "",
"pages": "2825--2830",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch- esnay. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830.",
"links": null
},
"BIBREF51": {
"ref_id": "b51",
"title": "Predicting age and gender in online social networks",
"authors": [
{
"first": "Claudia",
"middle": [],
"last": "Peersman",
"suffix": ""
},
{
"first": "Walter",
"middle": [],
"last": "Daelemans",
"suffix": ""
},
{
"first": "Leona",
"middle": [
"Van"
],
"last": "Vaerenbergh",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of the 3rd international workshop on Search and mining usergenerated contents",
"volume": "",
"issue": "",
"pages": "37--44",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Claudia Peersman, Walter Daelemans, and Leona Van Vaerenbergh. 2011. Predicting age and gender in online social networks. In Proceedings of the 3rd international workshop on Search and mining user- generated contents, pages 37-44. ACM.",
"links": null
},
"BIBREF52": {
"ref_id": "b52",
"title": "The development and psychometric properties of LIWC2015",
"authors": [
{
"first": "James",
"middle": [
"W"
],
"last": "Pennebaker",
"suffix": ""
},
{
"first": "Ryan",
"middle": [
"L"
],
"last": "Boyd",
"suffix": ""
},
{
"first": "Kayla",
"middle": [],
"last": "Jordan",
"suffix": ""
},
{
"first": "Kate",
"middle": [],
"last": "Blackburn",
"suffix": ""
}
],
"year": 2015,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "James W. Pennebaker, Ryan L. Boyd, Kayla Jordan, and Kate Blackburn. 2015. The development and psychometric properties of LIWC2015. Technical report.",
"links": null
},
"BIBREF53": {
"ref_id": "b53",
"title": "Linguistic styles: Language use as an individual difference",
"authors": [
{
"first": "James",
"middle": [
"W"
],
"last": "Pennebaker",
"suffix": ""
},
{
"first": "Laura",
"middle": [
"A"
],
"last": "King",
"suffix": ""
}
],
"year": 1999,
"venue": "Journal of personality and social psychology",
"volume": "77",
"issue": "6",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "James W. Pennebaker and Laura A. King. 1999. Lin- guistic styles: Language use as an individual differ- ence. Journal of personality and social psychology, 77(6):1296.",
"links": null
},
"BIBREF54": {
"ref_id": "b54",
"title": "Personality traits on Twitter -or-how to get 1,500 personality tests in a week",
"authors": [
{
"first": "Barbara",
"middle": [],
"last": "Plank",
"suffix": ""
},
{
"first": "Dirk",
"middle": [],
"last": "Hovy",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 6th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (WASSA 2015)",
"volume": "",
"issue": "",
"pages": "92--98",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Barbara Plank and Dirk Hovy. 2015. Personality traits on Twitter -or-how to get 1,500 personality tests in a week. In Proceedings of the 6th Workshop on Computational Approaches to Subjectivity, Sen- timent and Social Media Analysis (WASSA 2015), pages 92-98.",
"links": null
},
"BIBREF55": {
"ref_id": "b55",
"title": "Deconfounded lexicon induction for interpretable social science",
"authors": [
{
"first": "Reid",
"middle": [],
"last": "Pryzant",
"suffix": ""
},
{
"first": "Kelly",
"middle": [],
"last": "Shen",
"suffix": ""
},
{
"first": "Dan",
"middle": [],
"last": "Jurafsky",
"suffix": ""
},
{
"first": "Stefan",
"middle": [],
"last": "Wagner",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "1615--1625",
"other_ids": {
"DOI": [
"10.18653/v1/N18-1146"
]
},
"num": null,
"urls": [],
"raw_text": "Reid Pryzant, Kelly Shen, Dan Jurafsky, and Stefan Wagner. 2018. Deconfounded lexicon induction for interpretable social science. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Hu- man Language Technologies, Volume 1 (Long Pa- pers), pages 1615-1625, New Orleans, Louisiana. Association for Computational Linguistic.",
"links": null
},
"BIBREF56": {
"ref_id": "b56",
"title": "Our Twitter profiles, our selves: Predicting personality with Twitter",
"authors": [
{
"first": "Daniele",
"middle": [],
"last": "Quercia",
"suffix": ""
},
{
"first": "Michal",
"middle": [],
"last": "Kosinski",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Stillwell",
"suffix": ""
},
{
"first": "Jon",
"middle": [],
"last": "Crowcroft",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of 2011 IEEE International Conference on Privacy, Security, Risk and Trust (PASSAT) and IEEE International Conference on Social Computing (SocialCom)",
"volume": "",
"issue": "",
"pages": "180--185",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Daniele Quercia, Michal Kosinski, David Stillwell, and Jon Crowcroft. 2011. Our Twitter profiles, our selves: Predicting personality with Twitter. In Pro- ceedings of 2011 IEEE International Conference on Privacy, Security, Risk and Trust (PASSAT) and IEEE International Conference on Social Comput- ing (SocialCom), pages 180-185.",
"links": null
},
"BIBREF57": {
"ref_id": "b57",
"title": "Building a corpus for personality-dependent natural language understanding and generation",
"authors": [
{
"first": "Ricelli",
"middle": [],
"last": "Ramos",
"suffix": ""
},
{
"first": "Georges",
"middle": [],
"last": "Neto",
"suffix": ""
},
{
"first": "Barbara",
"middle": [],
"last": "Silva",
"suffix": ""
},
{
"first": "Danielle",
"middle": [],
"last": "Monteiro",
"suffix": ""
},
{
"first": "Ivandr\u00e9",
"middle": [],
"last": "Paraboni",
"suffix": ""
},
{
"first": "Rafael",
"middle": [],
"last": "Dias",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ricelli Ramos, Georges Neto, Barbara Silva, Danielle Monteiro, Ivandr\u00e9 Paraboni, and Rafael Dias. 2018. Building a corpus for personality-dependent natural language understanding and generation. In Proceed- ings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European Language Resources As- sociation (ELRA).",
"links": null
},
"BIBREF58": {
"ref_id": "b58",
"title": "Overview of the 3rd author profiling task at PAN",
"authors": [
{
"first": "Francisco",
"middle": [],
"last": "Rangel",
"suffix": ""
},
{
"first": "Paolo",
"middle": [],
"last": "Rosso",
"suffix": ""
},
{
"first": "Martin",
"middle": [],
"last": "Potthast",
"suffix": ""
},
{
"first": "Benno",
"middle": [],
"last": "Stein",
"suffix": ""
},
{
"first": "Walter",
"middle": [],
"last": "Daelemans",
"suffix": ""
}
],
"year": 2015,
"venue": "CLEF 2015 labs and workshops, notebook papers, CEUR Workshop Proceedings",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Francisco Rangel, Paolo Rosso, Martin Potthast, Benno Stein, and Walter Daelemans. 2015. Overview of the 3rd author profiling task at PAN 2015. In CLEF 2015 labs and workshops, notebook papers, CEUR Workshop Proceedings, volume 1391.",
"links": null
},
"BIBREF59": {
"ref_id": "b59",
"title": "Personality recognition in conversations using capsule neural networks",
"authors": [
{
"first": "Esteban",
"middle": [],
"last": "Andres Rissola",
"suffix": ""
},
{
"first": "Seyed",
"middle": [
"Ali"
],
"last": "Bahrainian",
"suffix": ""
},
{
"first": "Fabio",
"middle": [],
"last": "Crestani",
"suffix": ""
}
],
"year": 2019,
"venue": "IEEE/WIC/ACM International Conference on Web Intelligence, WI '19",
"volume": "",
"issue": "",
"pages": "180--187",
"other_ids": {
"DOI": [
"10.1145/3350546.3352516"
]
},
"num": null,
"urls": [],
"raw_text": "Esteban Andres Rissola, Seyed Ali Bahrainian, and Fabio Crestani. 2019. Personality recognition in conversations using capsule neural networks. In IEEE/WIC/ACM International Conference on Web Intelligence, WI '19, page 180-187, New York, NY, USA. Association for Computing Machinery.",
"links": null
},
"BIBREF60": {
"ref_id": "b60",
"title": "Developing age and gender predictive lexica over social media",
"authors": [
{
"first": "Maarten",
"middle": [],
"last": "Sap",
"suffix": ""
},
{
"first": "Gregory",
"middle": [],
"last": "Park",
"suffix": ""
},
{
"first": "Johannes",
"middle": [],
"last": "Eichstaedt",
"suffix": ""
},
{
"first": "Margaret",
"middle": [],
"last": "Kern",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Stillwell",
"suffix": ""
},
{
"first": "Michal",
"middle": [],
"last": "Kosinski",
"suffix": ""
},
{
"first": "Lyle",
"middle": [],
"last": "Ungar",
"suffix": ""
},
{
"first": "Hansen Andrew",
"middle": [],
"last": "Schwartz",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "1146--1151",
"other_ids": {
"DOI": [
"10.3115/v1/D14-1121"
]
},
"num": null,
"urls": [],
"raw_text": "Maarten Sap, Gregory Park, Johannes Eichstaedt, Mar- garet Kern, David Stillwell, Michal Kosinski, Lyle Ungar, and Hansen Andrew Schwartz. 2014. Devel- oping age and gender predictive lexica over social media. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1146-1151, Doha, Qatar. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF61": {
"ref_id": "b61",
"title": "The geographic distribution of big five personality traits: Patterns and profiles of human self-description across 56 nations",
"authors": [
{
"first": "David",
"middle": [
"P"
],
"last": "Schmitt",
"suffix": ""
},
{
"first": "Juri",
"middle": [],
"last": "Allik",
"suffix": ""
},
{
"first": "Robert",
"middle": [
"R"
],
"last": "Mccrae",
"suffix": ""
},
{
"first": "Veronica",
"middle": [],
"last": "Benet-Martinez",
"suffix": ""
}
],
"year": 2007,
"venue": "Journal of cross-cultural psychology",
"volume": "38",
"issue": "2",
"pages": "173--212",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "David P. Schmitt, Juri Allik, Robert R. McCrae, and Veronica Benet-Martinez. 2007. The geographic dis- tribution of big five personality traits: Patterns and profiles of human self-description across 56 nations. Journal of cross-cultural psychology, 38(2):173- 212.",
"links": null
},
"BIBREF62": {
"ref_id": "b62",
"title": "Why can't a man be more like a woman? sex differences in big five personality traits across 55 cultures",
"authors": [
{
"first": "David",
"middle": [
"P"
],
"last": "Schmitt",
"suffix": ""
},
{
"first": "Anu",
"middle": [],
"last": "Realo",
"suffix": ""
},
{
"first": "Martin",
"middle": [],
"last": "Voracek",
"suffix": ""
},
{
"first": "Juri",
"middle": [],
"last": "Allik",
"suffix": ""
}
],
"year": 2008,
"venue": "Journal of Personality and Social Psychology",
"volume": "94",
"issue": "1",
"pages": "168--182",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "David P. Schmitt, Anu Realo, Martin Voracek, and Juri Allik. 2008. Why can't a man be more like a woman? sex differences in big five personality traits across 55 cultures. Journal of Personality and So- cial Psychology, 94(1):168-182.",
"links": null
},
"BIBREF63": {
"ref_id": "b63",
"title": "Personality, gender, and age in the language of social media: The open-vocabulary approach",
"authors": [
{
"first": "Andrew",
"middle": [
"H"
],
"last": "Schwartz",
"suffix": ""
},
{
"first": "Johannes",
"middle": [
"C"
],
"last": "Eichstaedt",
"suffix": ""
},
{
"first": "Margaret",
"middle": [
"L"
],
"last": "Kern",
"suffix": ""
},
{
"first": "Lukasz",
"middle": [],
"last": "Dziurzynski",
"suffix": ""
},
{
"first": "Stephanie",
"middle": [
"M"
],
"last": "Ramones",
"suffix": ""
},
{
"first": "Megha",
"middle": [],
"last": "Agrawal",
"suffix": ""
},
{
"first": "Achal",
"middle": [],
"last": "Shah",
"suffix": ""
},
{
"first": "Michal",
"middle": [],
"last": "Kosinski",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Stillwell",
"suffix": ""
},
{
"first": "Martin",
"middle": [
"E P"
],
"last": "Seligman",
"suffix": ""
}
],
"year": 2013,
"venue": "PloS one",
"volume": "8",
"issue": "9",
"pages": "",
"other_ids": {
"DOI": [
"10.1371/journal.pone.0073791"
]
},
"num": null,
"urls": [],
"raw_text": "Andrew H. Schwartz, Johannes C. Eichstaedt, Mar- garet L. Kern, Lukasz Dziurzynski, Stephanie M. Ramones, Megha Agrawal, Achal Shah, Michal Kosinski, David Stillwell, Martin E.P. Seligman, et al. 2013. Personality, gender, and age in the language of social media: The open-vocabulary ap- proach. PloS one, 8(9):e73791.",
"links": null
},
"BIBREF64": {
"ref_id": "b64",
"title": "Not just depressed: Bipolar disorder prediction on Reddit",
"authors": [
{
"first": "Ivan",
"middle": [],
"last": "Sekulic",
"suffix": ""
},
{
"first": "Matej",
"middle": [],
"last": "Gjurkovi\u0107",
"suffix": ""
},
{
"first": "Jan\u0161najder",
"middle": [],
"last": "",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
"volume": "",
"issue": "",
"pages": "72--78",
"other_ids": {
"DOI": [
"10.18653/v1/W18-6211"
]
},
"num": null,
"urls": [],
"raw_text": "Ivan Sekulic, Matej Gjurkovi\u0107, and Jan\u0160najder. 2018. Not just depressed: Bipolar disorder prediction on Reddit. In Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Senti- ment and Social Media Analysis, pages 72-78, Brus- sels, Belgium. Association for Computational Lin- guistics.",
"links": null
},
"BIBREF65": {
"ref_id": "b65",
"title": "Adapting deep learning methods for mental health prediction on social media",
"authors": [
{
"first": "Ivan",
"middle": [],
"last": "Sekulic",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Strube",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)",
"volume": "",
"issue": "",
"pages": "322--327",
"other_ids": {
"DOI": [
"10.18653/v1/D19-5542"
]
},
"num": null,
"urls": [],
"raw_text": "Ivan Sekulic and Michael Strube. 2019. Adapting deep learning methods for mental health prediction on so- cial media. In Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019), pages 322-327, Hong Kong, China. Association for Com- putational Linguistics.",
"links": null
},
"BIBREF66": {
"ref_id": "b66",
"title": "Age differences in personality traits from 10 to 65: Big five domains and facets in a large cross-sectional sample",
"authors": [
{
"first": "Christopher",
"middle": [
"J"
],
"last": "Soto",
"suffix": ""
},
{
"first": "Oliver",
"middle": [
"P"
],
"last": "John",
"suffix": ""
},
{
"first": "Samuel",
"middle": [
"D"
],
"last": "Gosling",
"suffix": ""
},
{
"first": "Jeff",
"middle": [],
"last": "Potter",
"suffix": ""
}
],
"year": 2011,
"venue": "Journal of Personality and Social Psychology",
"volume": "100",
"issue": "2",
"pages": "330--348",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Christopher J. Soto, Oliver P. John, Samuel D. Gosling, and Jeff Potter. 2011. Age differences in personality traits from 10 to 65: Big five domains and facets in a large cross-sectional sample. Journal of Personality and Social Psychology, 100(2):330-348.",
"links": null
},
"BIBREF67": {
"ref_id": "b67",
"title": "Mitigating gender bias in natural language processing: Literature review",
"authors": [
{
"first": "Tony",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "Andrew",
"middle": [],
"last": "Gaut",
"suffix": ""
},
{
"first": "Shirlyn",
"middle": [],
"last": "Tang",
"suffix": ""
},
{
"first": "Yuxin",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "Mai",
"middle": [],
"last": "Elsherief",
"suffix": ""
},
{
"first": "Jieyu",
"middle": [],
"last": "Zhao",
"suffix": ""
},
{
"first": "Diba",
"middle": [],
"last": "Mirza",
"suffix": ""
},
{
"first": "Elizabeth",
"middle": [],
"last": "Belding",
"suffix": ""
},
{
"first": "Kai-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "William",
"middle": [
"Yang"
],
"last": "Wang",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "1630--1640",
"other_ids": {
"DOI": [
"10.18653/v1/P19-1159"
]
},
"num": null,
"urls": [],
"raw_text": "Tony Sun, Andrew Gaut, Shirlyn Tang, Yuxin Huang, Mai ElSherief, Jieyu Zhao, Diba Mirza, Elizabeth Belding, Kai-Wei Chang, and William Yang Wang. 2019. Mitigating gender bias in natural language processing: Literature review. In Proceedings of the 57th Annual Meeting of the Association for Com- putational Linguistics, pages 1630-1640, Florence, Italy. Association for Computational Linguistics.",
"links": null
},
"BIBREF68": {
"ref_id": "b68",
"title": "Personality prediction system from Facebook users. Procedia computer science",
"authors": [
{
"first": "Tommy",
"middle": [],
"last": "Tandera",
"suffix": ""
},
{
"first": "Derwin",
"middle": [],
"last": "Suhartono",
"suffix": ""
},
{
"first": "Rini",
"middle": [],
"last": "Wongso",
"suffix": ""
},
{
"first": "Yen",
"middle": [
"Lina"
],
"last": "Prasetio",
"suffix": ""
}
],
"year": 2017,
"venue": "",
"volume": "116",
"issue": "",
"pages": "604--611",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tommy Tandera, Derwin Suhartono, Rini Wongso, Yen Lina Prasetio, et al. 2017. Personality predic- tion system from Facebook users. Procedia com- puter science, 116:604-611.",
"links": null
},
"BIBREF69": {
"ref_id": "b69",
"title": "Science and Pseudoscience in Social Work Practice",
"authors": [
{
"first": "Monica",
"middle": [],
"last": "Thyer",
"suffix": ""
},
{
"first": "Dr",
"middle": [],
"last": "Bruce",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Pignotti",
"suffix": ""
}
],
"year": 2015,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Monica Thyer, Dr Bruce A.; Pignotti. 2015. Sci- ence and Pseudoscience in Social Work Practice. Springer Publishing Company.",
"links": null
},
"BIBREF70": {
"ref_id": "b70",
"title": "Modeling personality traits of Filipino twitter users",
"authors": [
{
"first": "Edward",
"middle": [],
"last": "Tighe",
"suffix": ""
},
{
"first": "Charibeth",
"middle": [],
"last": "Cheng",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the Second Workshop on Computational Modeling of People's Opinions, Personality, and Emotions in Social Media",
"volume": "",
"issue": "",
"pages": "112--122",
"other_ids": {
"DOI": [
"10.18653/v1/W18-1115"
]
},
"num": null,
"urls": [],
"raw_text": "Edward Tighe and Charibeth Cheng. 2018. Model- ing personality traits of Filipino twitter users. In Proceedings of the Second Workshop on Computa- tional Modeling of People's Opinions, Personality, and Emotions in Social Media, pages 112-122, New Orleans, Louisiana, USA. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF71": {
"ref_id": "b71",
"title": "Dreaddit: A Reddit dataset for stress analysis in social media",
"authors": [
{
"first": "Elsbeth",
"middle": [],
"last": "Turcan",
"suffix": ""
},
{
"first": "Kathy",
"middle": [],
"last": "Mckeown",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)",
"volume": "",
"issue": "",
"pages": "97--107",
"other_ids": {
"DOI": [
"10.18653/v1/D19-6213"
]
},
"num": null,
"urls": [],
"raw_text": "Elsbeth Turcan and Kathy McKeown. 2019. Dread- dit: A Reddit dataset for stress analysis in social media. In Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019), pages 97-107, Hong Kong. Association for Computational Linguistics.",
"links": null
},
"BIBREF72": {
"ref_id": "b72",
"title": "TwiSty: A multilingual Twitter stylometry corpus for gender and personality profiling",
"authors": [
{
"first": "Ben",
"middle": [],
"last": "Verhoeven",
"suffix": ""
},
{
"first": "Walter",
"middle": [],
"last": "Daelemans",
"suffix": ""
},
{
"first": "Barbara",
"middle": [],
"last": "Plank",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016)",
"volume": "",
"issue": "",
"pages": "1632--1637",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ben Verhoeven, Walter Daelemans, and Barbara Plank. 2016. TwiSty: A multilingual Twitter stylometry corpus for gender and personality profiling. In Pro- ceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), pages 1632-1637.",
"links": null
},
"BIBREF73": {
"ref_id": "b73",
"title": "Latent human traits in the language of social media: An open-vocabulary approach",
"authors": [],
"year": 2018,
"venue": "Plos One",
"volume": "",
"issue": "11",
"pages": "",
"other_ids": {
"DOI": [
"10.1371/journal.pone.0201703"
]
},
"num": null,
"urls": [],
"raw_text": "David Stillwell Michal Kosinski Sandra Matz Lyle Ungar Steven Skiena H. Andrew Schwartz Vivek Kulkarni, Margaret L. Kern. 2018. Latent human traits in the language of social media: An open-vocabulary approach. Plos One, 13(11).",
"links": null
},
"BIBREF74": {
"ref_id": "b74",
"title": "Predicting responses to psychological questionnaires from participants' social media posts and question text embeddings",
"authors": [
{
"first": "Huy",
"middle": [],
"last": "Vu",
"suffix": ""
},
{
"first": "Suhaib",
"middle": [],
"last": "Abdurahman",
"suffix": ""
},
{
"first": "Sudeep",
"middle": [],
"last": "Bhatia",
"suffix": ""
},
{
"first": "Lyle",
"middle": [],
"last": "Ungar",
"suffix": ""
}
],
"year": 2020,
"venue": "Findings of the Association for Computational Linguistics: EMNLP 2020",
"volume": "",
"issue": "",
"pages": "1512--1524",
"other_ids": {
"DOI": [
"10.18653/v1/2020.findings-emnlp.137"
]
},
"num": null,
"urls": [],
"raw_text": "Huy Vu, Suhaib Abdurahman, Sudeep Bhatia, and Lyle Ungar. 2020. Predicting responses to psychologi- cal questionnaires from participants' social media posts and question text embeddings. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1512-1524, Online. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF75": {
"ref_id": "b75",
"title": "Celebrity profiling",
"authors": [
{
"first": "Matti",
"middle": [],
"last": "Wiegmann",
"suffix": ""
},
{
"first": "Benno",
"middle": [],
"last": "Stein",
"suffix": ""
},
{
"first": "Martin",
"middle": [],
"last": "Potthast",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "2611--2618",
"other_ids": {
"DOI": [
"10.18653/v1/P19-1249"
]
},
"num": null,
"urls": [],
"raw_text": "Matti Wiegmann, Benno Stein, and Martin Potthast. 2019. Celebrity profiling. In Proceedings of the 57th Annual Meeting of the Association for Com- putational Linguistics, pages 2611-2618, Florence, Italy. Association for Computational Linguistics.",
"links": null
},
"BIBREF76": {
"ref_id": "b76",
"title": "Author2vec: A framework for generating user embedding",
"authors": [
{
"first": "Xiaodong",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Weizhe",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "Zhilin",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Elena",
"middle": [],
"last": "Rastorgueva",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:2003.11627"
]
},
"num": null,
"urls": [],
"raw_text": "Xiaodong Wu, Weizhe Lin, Zhilin Wang, and Elena Rastorgueva. 2020. Author2vec: A framework for generating user embedding. arXiv preprint arXiv:2003.11627.",
"links": null
},
"BIBREF77": {
"ref_id": "b77",
"title": "Deep learning-based personality recognition from text posts of online social networks",
"authors": [
{
"first": "Di",
"middle": [],
"last": "Xue",
"suffix": ""
},
{
"first": "Lifa",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Zheng",
"middle": [],
"last": "Hong",
"suffix": ""
},
{
"first": "Shize",
"middle": [],
"last": "Guo",
"suffix": ""
},
{
"first": "Liang",
"middle": [],
"last": "Gao",
"suffix": ""
},
{
"first": "Zhiyong",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Xiaofeng",
"middle": [],
"last": "Zhong",
"suffix": ""
},
{
"first": "Jianshan",
"middle": [],
"last": "Sun",
"suffix": ""
}
],
"year": 2018,
"venue": "Applied Intelligence",
"volume": "",
"issue": "",
"pages": "1--15",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Di Xue, Lifa Wu, Zheng Hong, Shize Guo, Liang Gao, Zhiyong Wu, Xiaofeng Zhong, and Jianshan Sun. 2018. Deep learning-based personality recognition from text posts of online social networks. Applied Intelligence, pages 1-15.",
"links": null
},
"BIBREF78": {
"ref_id": "b78",
"title": "Depression and self-harm risk assessment in online forums",
"authors": [
{
"first": "Andrew",
"middle": [],
"last": "Yates",
"suffix": ""
},
{
"first": "Arman",
"middle": [],
"last": "Cohan",
"suffix": ""
},
{
"first": "Nazli",
"middle": [],
"last": "Goharian",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "2968--2978",
"other_ids": {
"DOI": [
"10.18653/v1/D17-1322"
]
},
"num": null,
"urls": [],
"raw_text": "Andrew Yates, Arman Cohan, and Nazli Goharian. 2017. Depression and self-harm risk assessment in online forums. In Proceedings of the 2017 Confer- ence on Empirical Methods in Natural Language Processing, pages 2968-2978, Copenhagen, Den- mark. Association for Computational Linguistics.",
"links": null
},
"BIBREF79": {
"ref_id": "b79",
"title": "Characterizing online discussion using coarse discourse sequences",
"authors": [
{
"first": "Amy",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Bryan",
"middle": [],
"last": "Culbertson",
"suffix": ""
},
{
"first": "Praveen",
"middle": [],
"last": "Paritosh",
"suffix": ""
}
],
"year": 2017,
"venue": "11th AAAI International Conference on Web and Social Media (ICWSM)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Amy Zhang, Bryan Culbertson, and Praveen Paritosh. 2017. Characterizing online discussion using coarse discourse sequences. In 11th AAAI International Conference on Web and Social Media (ICWSM),",
"links": null
},
"BIBREF80": {
"ref_id": "b80",
"title": "Association for the Advancement of Artificial Intelligence",
"authors": [
{
"first": "Canada",
"middle": [],
"last": "Montreal",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Montreal, Canada. Association for the Advancement of Artificial Intelligence.",
"links": null
},
"BIBREF81": {
"ref_id": "b81",
"title": "Mitigating unwanted biases with adversarial learning",
"authors": [
{
"first": "Brian",
"middle": [],
"last": "Hu Zhang",
"suffix": ""
},
{
"first": "Blake",
"middle": [],
"last": "Lemoine",
"suffix": ""
},
{
"first": "Margaret",
"middle": [],
"last": "Mitchell",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.1145/3278721.3278779"
]
},
"num": null,
"urls": [],
"raw_text": "Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. 2018. Mitigating unwanted biases with adversarial learning. In Proceedings of the 2018",
"links": null
},
"BIBREF82": {
"ref_id": "b82",
"title": "AAAI/ACM Conference on AI, Ethics, and Society, AIES '18",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "335--340",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "AAAI/ACM Conference on AI, Ethics, and Society, AIES '18, pages 335-340, New York, NY, USA. ACM.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"num": null,
"uris": null,
"text": "Distribution of Big 5 percentile scores",
"type_str": "figure"
},
"FIGREF1": {
"num": null,
"uris": null,
"text": "Learning curves of logistic regression for MBTI trait prediction Figure 3: Learning curves of logistic regression for Big 5 trait prediction",
"type_str": "figure"
},
"TABREF1": {
"html": null,
"content": "<table/>",
"text": "",
"num": null,
"type_str": "table"
},
"TABREF3": {
"html": null,
"content": "<table><tr><td>MBTI / Big 5</td><td>O</td><td>C</td><td>E</td><td>A</td><td>N</td></tr><tr><td>Introverted</td><td colspan=\"4\">-.062 -.062 -.748 -.055</td><td>.157</td></tr><tr><td>Intuitive</td><td colspan=\"3\">.434 -.027 -.042</td><td>.030</td><td>.065</td></tr><tr><td>Thinking</td><td>-.027</td><td colspan=\"4\">.138 -.043 -.554 -.341</td></tr><tr><td>Perceiving</td><td colspan=\"2\">.132 -.575</td><td>.145</td><td>.055</td><td>.031</td></tr><tr><td>Enneagram 1</td><td>-.139</td><td colspan=\"2\">.271 -.012</td><td colspan=\"2\">.004 -.163</td></tr><tr><td>Enneagram 2</td><td>.038</td><td>.299</td><td>.042</td><td colspan=\"2\">.278 -.034</td></tr><tr><td>Enneagram 3</td><td>.188</td><td>.004</td><td colspan=\"3\">.143 -.069 -.097</td></tr><tr><td>Enneagram 4</td><td colspan=\"3\">.087 -.078 -.137</td><td>.320</td><td>.342</td></tr><tr><td>Enneagram 5</td><td>-.064</td><td colspan=\"4\">.006 -.358 -.157 -.040</td></tr><tr><td>Enneagram 6</td><td>-.026</td><td colspan=\"3\">.003 -.053 -.007</td><td>.276</td></tr><tr><td>Enneagram 7</td><td colspan=\"2\">.015 -.347</td><td colspan=\"3\">.393 -.119 -.356</td></tr><tr><td>Enneagram 8</td><td>-.127</td><td>.230</td><td colspan=\"3\">.234 -.363 -.179</td></tr><tr><td>Enneagram 9</td><td colspan=\"3\">-.003 -.155 -.028</td><td>.018</td><td>.090</td></tr></table>",
"text": "Intersection details for personality models and the total number of unique labels",
"num": null,
"type_str": "table"
},
"TABREF4": {
"html": null,
"content": "<table/>",
"text": "",
"num": null,
"type_str": "table"
},
"TABREF6": {
"html": null,
"content": "<table><tr><td colspan=\"6\">: Correlations between predicted MBTI, En-</td></tr><tr><td colspan=\"6\">neagram and Big 5 with gold Big 5 traits on users that</td></tr><tr><td colspan=\"6\">reported both MBTI and Big 5. Significant correlations</td></tr><tr><td colspan=\"3\">(p&lt;.05) are shown in bold.</td><td/><td/><td/></tr><tr><td>Predicted</td><td>O</td><td>C</td><td>E</td><td>A</td><td>N</td></tr><tr><td>I/E</td><td>-.082</td><td colspan=\"4\">.039 -.262 -.003 -.002</td></tr><tr><td>N/S</td><td colspan=\"2\">.127 -.021</td><td>.049</td><td>.060</td><td>.001</td></tr><tr><td>T/F</td><td>-.001</td><td colspan=\"4\">.038 -.039 -.259 -.172</td></tr><tr><td>P/J</td><td colspan=\"2\">.018 -0.41</td><td>.007</td><td>.034</td><td>.039</td></tr><tr><td>O</td><td colspan=\"2\">.147 -.082</td><td>.212</td><td>.145</td><td>.070</td></tr><tr><td>C</td><td>-.007</td><td>.237</td><td colspan=\"3\">.013 -.112 -.090</td></tr><tr><td>E</td><td colspan=\"2\">.098 -.028</td><td>.272</td><td>.044</td><td>.022</td></tr><tr><td>A</td><td colspan=\"2\">.006 -.079</td><td>.023</td><td>.264</td><td>.176</td></tr><tr><td>N</td><td colspan=\"3\">-.048 -.025 -.042</td><td>.231</td><td>.162</td></tr></table>",
"text": "",
"num": null,
"type_str": "table"
},
"TABREF7": {
"html": null,
"content": "<table><tr><td>: Correlations between predicted MBTI, En-</td></tr><tr><td>neagram and Big 5 with gold Big 5 traits on users</td></tr><tr><td>that reported only Big 5 traits. Significant correlations</td></tr><tr><td>(p&lt;.05) are shown in bold.</td></tr></table>",
"text": "",
"num": null,
"type_str": "table"
},
"TABREF9": {
"html": null,
"content": "<table><tr><td>: Differences in means of psycho-demographic</td></tr><tr><td>variables per gender and classification outcome. Signif-</td></tr><tr><td>icant correlations (*p&lt;.05, ***p&lt;.001) are in bold.</td></tr></table>",
"text": "",
"num": null,
"type_str": "table"
},
"TABREF11": {
"html": null,
"content": "<table><tr><td>: Hierarchical regression of propensity for</td></tr><tr><td>philosophical topics (\"philosophy\" feature from Em-</td></tr><tr><td>path) on gender, age, Big 5 personality traits, Flesh-</td></tr><tr><td>Kincaid Grade Level readability scores, positive and</td></tr><tr><td>negative emotions features, and insight feature as pre-</td></tr><tr><td>dictors (n=430). The table shows regression coeffi-</td></tr><tr><td>cients and the goodness of fit as measured by R 2 , ad-</td></tr><tr><td>justed R 2 , and R 2 change. Significant correlations:</td></tr><tr><td>*p&lt;.05, **p&lt;.01, ***p&lt;.001</td></tr></table>",
"text": "",
"num": null,
"type_str": "table"
},
"TABREF13": {
"html": null,
"content": "<table><tr><td>results for different feature combinations, including N-</td></tr><tr><td>grams (N), MBTI/Enneagram predictions (P), and all</td></tr><tr><td>other features (O). Best results are shown in bold.</td></tr></table>",
"text": "Prediction results for the different traits for LR and NN models. For the LR model, we show the",
"num": null,
"type_str": "table"
},
"TABREF14": {
"html": null,
"content": "<table><tr><td>Predicted</td><td>O</td><td>C</td><td>E</td><td>A</td><td>N</td></tr><tr><td>Enneagram 1</td><td>.002</td><td colspan=\"2\">.032 -.028</td><td>.047</td><td>.025</td></tr><tr><td colspan=\"2\">Enneagram 2 -.011</td><td>.108</td><td>.030</td><td>.135</td><td>.046</td></tr><tr><td>Enneagram 3</td><td>.085</td><td>.014</td><td>.071</td><td colspan=\"2\">-.064 -.069</td></tr><tr><td colspan=\"4\">Enneagram 4 -.041 -.017 -.033</td><td>.166</td><td>.159</td></tr><tr><td>Enneagram 5</td><td colspan=\"3\">.067 -.035 -.060</td><td colspan=\"2\">-.121 -.076</td></tr><tr><td colspan=\"2\">Enneagram 6 -.051</td><td colspan=\"2\">.004 -.035</td><td>.046</td><td>.113</td></tr><tr><td colspan=\"3\">Enneagram 7 -.043 -.019</td><td>.078</td><td colspan=\"2\">-.085 -.088</td></tr><tr><td>Enneagram 8</td><td colspan=\"2\">.022 -.044</td><td>.063</td><td colspan=\"2\">-.129 -.075</td></tr><tr><td colspan=\"4\">Enneagram 9 -.034 -.016 -.102</td><td colspan=\"2\">.041 -.005</td></tr></table>",
"text": "Big 5 personality test distribution in reports",
"num": null,
"type_str": "table"
},
"TABREF15": {
"html": null,
"content": "<table/>",
"text": "Correlations between Enneagram types and Big 5 traits. Significant correlations (p<.05) are shown in bold.",
"num": null,
"type_str": "table"
}
}
}
}