ACL-OCL / Base_JSON /prefixW /json /wat /2021.wat-1.0.json
Benjamin Aw
Add updated pkl file v3
6fa4bc9
{
"paper_id": "2021",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T04:34:00.711849Z"
},
"title": "Organizing Committee",
"authors": [
{
"first": "Toshiaki",
"middle": [],
"last": "Nakazawa",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Chenchen",
"middle": [],
"last": "Ding",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Anoop",
"middle": [],
"last": "Kunchukuttan",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Katsuhito",
"middle": [],
"last": "Sudoh",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Pushpak",
"middle": [],
"last": "Bhattacharyya",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Hailong",
"middle": [],
"last": "Cao",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Jiajun",
"middle": [],
"last": "Zhang",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Luis",
"middle": [],
"last": "Fernando",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "D",
"middle": [
"'"
],
"last": "Haro",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Haizhou",
"middle": [],
"last": "Li",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Chen",
"middle": [],
"last": "Zhang",
"suffix": "",
"affiliation": {},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "",
"pdf_parse": {
"paper_id": "2021",
"_pdf_hash": "",
"abstract": [],
"body_text": [
{
"text": "Many Asian countries are rapidly growing these days and the importance of communicating and exchanging the information with these countries has intensified. To satisfy the demand for communication among these countries, machine translation technology is essential.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Preface",
"sec_num": null
},
{
"text": "Machine translation technology has rapidly evolved recently and it is seeing practical use especially between European languages. However, the translation quality of Asian languages is not that high compared to that of European languages, and machine translation technology for these languages has not reached a stage of proliferation yet. This is not only due to the lack of the language resources for Asian languages but also due to the lack of techniques to correctly transfer the meaning of sentences from/to Asian languages. Consequently, a place for gathering and sharing the resources and knowledge about Asian language translation is necessary to enhance machine translation research for Asian languages.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Preface",
"sec_num": null
},
{
"text": "The Conference on Machine Translation (WMT), the world's largest machine translation workshop, mainly targets on European language. The International Workshop on Spoken Language Translation (IWSLT) has spoken language translation tasks for some Asian languages using TED talk data, but there is no task for written language. The Workshop on Asian Translation (WAT) is an open machine translation evaluation campaign focusing on Asian languages. WAT gathers and shares the resources and knowledge of Asian language translation to understand the problems to be solved for the practical use of machine translation technologies among all Asian countries. WAT is unique in that it is an \"open innovation platform\": the test data is fixed and open, so participants can repeat evaluations on the same data and confirm changes in translation accuracy over time. WAT has no deadline for the automatic translation quality evaluation (continuous evaluation), so participants can submit translation results at any time.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Preface",
"sec_num": null
},
{
"text": "Following the success of the previous WAT workshops (WAT2014 -WAT2020), WAT2021 will bring together machine translation researchers and users to try, evaluate, share and discuss brand-new ideas about machine translation. For the 8th WAT, we included several new translation tasks including Malayalam Visual Genome Task, MultiIndicMT, Restricted Translation Task and Ambiguous MSCOCO Task. We had 28 teams participated in the shared tasks and 24 teams submitted their translation results for the human evaluation. About 2,100 translation results were submitted to the automatic evaluation server, and selected submissions were manually evaluated. In addition to the shared tasks, WAT2021 also features research papers on topics related to machine translation, especially for Asian languages. The program committee accepted 5 research papers. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Preface",
"sec_num": null
}
],
"back_matter": [
{
"text": "We are grateful to \"SunFlare Co., Ltd.\", \"Kawamura International\" and \"Asia-Pacific Association for Machine Translation (AAMT)\" for partially sponsoring the workshop. We would like to thank all the authors who submitted papers. We express our deepest gratitude to the committee members for their timely reviews. We also thank the ACL-IJCNLP 2021 organizers for their help with administrative matters.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "acknowledgement",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Bering Lab's Submissions on WAT 2021 Shared Task Heesoo Park and",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bering Lab's Submissions on WAT 2021 Shared Task Heesoo Park and Dongjun Lee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Ketan Kotwal, Amulya Ratna Dash, Satya Ranjan Dash, Yashvardhan Sharma, Petr Motlicek and Ond\u0159ej Bojar",
"authors": [],
"year": null,
"venue": "NLPHut's Participation at WAT2021 Shantipriya Parida, Subhadarshi Panda",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "NLPHut's Participation at WAT2021 Shantipriya Parida, Subhadarshi Panda, Ketan Kotwal, Amulya Ratna Dash, Satya Ranjan Dash, Yashvardhan Sharma, Petr Motlicek and Ond\u0159ej Bojar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "155 IITP at WAT 2021: System description for English-Hindi Multimodal Translation Task Baban Gain, Dibyanayan Bandyopadhyay and Asif Ekbal",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Improved English to Hindi Multimodal Neural Machine Translation Sahinur Rahman Laskar, Abdullah Faiz Ur Rahman Khilji, Darsh Kaushik, Partha Pakray and Sivaji Bandyopadhyay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 IITP at WAT 2021: System description for English-Hindi Multimodal Translation Task Baban Gain, Dibyanayan Bandyopadhyay and Asif Ekbal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Visual-Linguistic Translation by Aligning Object Tags Kshitij Gupta, Devansh Gautam and",
"authors": [
{
"first": "",
"middle": [],
"last": "Vita",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "ViTA: Visual-Linguistic Translation by Aligning Object Tags Kshitij Gupta, Devansh Gautam and Radhika Mamidi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "TMEKU System for the WAT2021 Multimodal Translation Task Yuting Zhao",
"authors": [
{
"first": "Mamoru",
"middle": [],
"last": "Komachi",
"suffix": ""
},
{
"first": "Tomoyuki",
"middle": [],
"last": "Kajiwara",
"suffix": ""
},
{
"first": "Chenhui",
"middle": [
". . . . . . . . . . . . . . . . ."
],
"last": "Chu",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "TMEKU System for the WAT2021 Multimodal Translation Task Yuting Zhao, Mamoru Komachi, Tomoyuki Kajiwara and Chenhui Chu . . . . . . . . . . . . . . . . . . . . . 174",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Optimal Word Segmentation for Neural Machine Translation into Dravidian Languages Prajit Dhar, Arianna Bisazza and Gertjan van Noord",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Optimal Word Segmentation for Neural Machine Translation into Dravidian Languages Prajit Dhar, Arianna Bisazza and Gertjan van Noord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Itihasa: A large-scale corpus for Sanskrit to English translation Rahul Aralikatte, Miryam de Lhoneux",
"authors": [
{
"first": "Anoop",
"middle": [],
"last": "Kunchukuttan",
"suffix": ""
},
{
"first": "Anders",
"middle": [
". . . . ."
],
"last": "S\u00f8gaard",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Itihasa: A large-scale corpus for Sanskrit to English translation Rahul Aralikatte, Miryam de Lhoneux, Anoop Kunchukuttan and Anders S\u00f8gaard . . . . . . . . . . . 191",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "NICT-5's Submission To WAT 2021: MBART Pre-training And In-Domain Fine Tuning For Indic Languages Raj Dabre and",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "NICT-5's Submission To WAT 2021: MBART Pre-training And In-Domain Fine Tuning For Indic Lan- guages Raj Dabre and Abhisek Chakrabarty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Marcel Bollmann and Anders S\u00f8gaard",
"authors": [],
"year": null,
"venue": "How far can we get with one GPU in 100 hours? CoAStaL at MultiIndicMT Shared Task Rahul Aralikatte",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "How far can we get with one GPU in 100 hours? CoAStaL at MultiIndicMT Shared Task Rahul Aralikatte, H\u00e9ctor Ricardo Murrieta Bello, Daniel Hershcovich, Marcel Bollmann and An- ders S\u00f8gaard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "IIIT Hyderabad Submission To WAT 2021: Efficient Multilingual NMT systems for Indian languages Sourav Kumar, Salil Aggarwal and",
"authors": [
{
"first": "Dipti",
"middle": [],
"last": "Sharma",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "IIIT Hyderabad Submission To WAT 2021: Efficient Multilingual NMT systems for Indian languages Sourav Kumar, Salil Aggarwal and Dipti Sharma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Language Relatedness and Lexical Closeness can help Improve Multilingual NMT: IITBombay@MultiIndicNMT WAT2021 Jyotsana Khatri, Nikhil Saini and Pushpak Bhattacharyya",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Language Relatedness and Lexical Closeness can help Improve Multilingual NMT: IITBombay@MultiIndicNMT WAT2021 Jyotsana Khatri, Nikhil Saini and Pushpak Bhattacharyya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Poland submission to WAT 2021 Indic Language Multilingual Task Adam Dobrowolski",
"authors": [
{
"first": "",
"middle": [],
"last": "Samsung R&d Institute ; Marcin",
"suffix": ""
},
{
"first": "Marcin",
"middle": [],
"last": "Szyma\u0144ski",
"suffix": ""
},
{
"first": "Pawe\u0142",
"middle": [],
"last": "Chochowski",
"suffix": ""
},
{
"first": "",
"middle": [
". . . . ."
],
"last": "Przybysz",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Samsung R&D Institute Poland submission to WAT 2021 Indic Language Multilingual Task Adam Dobrowolski, Marcin Szyma\u0144ski, Marcin Chochowski and Pawe\u0142 Przybysz . . . . . . . . . . . 224",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Multilingual Machine Translation Systems at WAT 2021: One-to-Many and Many-to-One Transformer based NMT Shivam Mhaskar",
"authors": [
{
"first": "Aditya",
"middle": [],
"last": "Jain",
"suffix": ""
},
{
"first": "Aakash",
"middle": [],
"last": "Banerjee",
"suffix": ""
},
{
"first": "Pushpak",
"middle": [
". . . . . . . . . . . . ."
],
"last": "Bhattacharyya",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Multilingual Machine Translation Systems at WAT 2021: One-to-Many and Many-to-One Transformer based NMT Shivam Mhaskar, Aditya Jain, Aakash Banerjee and Pushpak Bhattacharyya . . . . . . . . . . . . . . . . . 233",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Indic-English Multilingual Neural Machine Translation using Romanized Vocabulary Ramakrishna Appicharla, Kamal Kumar Gupta, Asif Ekbal and Pushpak Bhattacharyya",
"authors": [
{
"first": "",
"middle": [],
"last": "Iitp-Mt At Wat2021",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "IITP-MT at WAT2021: Indic-English Multilingual Neural Machine Translation using Romanized Vocab- ulary Ramakrishna Appicharla, Kamal Kumar Gupta, Asif Ekbal and Pushpak Bhattacharyya . . . . . . 238",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "ANVITA Machine Translation System for WAT 2021 MultiIndicMT Shared Task Pavanpankaj Vegi",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "ANVITA Machine Translation System for WAT 2021 MultiIndicMT Shared Task Pavanpankaj Vegi, Sivabhavani J, Biswajit Paul, Chitra Viswanathan and Prasanna Kumar K R 244",
"links": null
}
},
"ref_entries": {
"TABREF0": {
"text": "Overview of the 8th Workshop on Asian TranslationToshiaki Nakazawa, Hideki Nakayama, Chenchen Ding, Raj Dabre, Shohei Higashiyama, Hideya Mino, Isao Goto, Win Pa Pa, AnoopKunchukuttan, Shantipriya Parida, Ond\u0159ej Bojar, Chenhui Chu, Akiko Eriguchi, Kaori Abe, Yusuke Oda and Sadao Kurohashi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 NHK's Lexically-Constrained Neural Machine Translation at WAT 2021 Hideya Mino, Kazutaka Kinugawa, Hitoshi Ito, Isao Goto, Ichiro Yamada and Takenobu Tokunaga 46 Input Augmentation Improves Constrained Beam Search for Neural Machine Translation: NTT at WAT 2021 Katsuki Chousa and Makoto Morishita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 NICT's Neural Machine Translation Systems for the WAT21 Restricted Translation Task Zuchao Li, Masao Utiyama, Eiichiro Sumita and Hai Zhao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Ponrudee Netisopakul and Thepchai Supnithi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Hybrid Statistical Machine Translation for English-Myanmar: UTYCC Submission to WAT-2021 Ye Kyaw Thu, Thazin Myint Oo, Hlaing Myat Nwe, Khaing Zar Mon, Nang Aeindray Kyaw, Naing Linn Phyo, Nann Hwan Khun and Hnin Aye Thant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 NICT-2 Translation System at WAT-2021: Applying a Pretrained Multilingual Encoder-Decoder Model to Low-resource Language Pairs Kenji Imamura and Eiichiro Sumita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Rakuten's Participation in WAT 2021: Examining the Effectiveness of Pre-trained Models for Multilingual and Multimodal Machine Translation Raymond Hendy Susanto, Dongzhe Wang, Sunil Yadav, Mausam Jain and Ohnmar Htun . . . . . . 96 BTS: Back TranScription for Speech-to-Text Post-Processor using Text-to-Speech-to-Text chanjun park, Jaehyung Seo, Seolhwa Lee, Chanhee Lee, Hyeonseok Moon, Sugyeong Eo and Heuiseok Lim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Zero-pronoun Data Augmentation for Japanese-to-English Translation Ryokan Ri, Toshiaki Nakazawa and Yoshimasa Tsuruoka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Evaluation Scheme of Focal Translation for Japanese Partially Amended Statutes Takahiro Yamakoshi, Takahiro Komamizu, Yasuhiro Ogawa and Katsuhiko Toyama . . . . . . . . . . 124 TMU NMT System with Japanese BART for the Patent task of WAT 2021 Hwichan Kim and Mamoru Komachi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 System Description for Transperfect Wiktor Stribi\u017cew, Fred Bane, Jos\u00e9 Concei\u00e7\u00e3o and Anna Zaretskaya . . . . . . . . . . . . . . . . . . . . . . . . . 138",
"num": null,
"html": null,
"type_str": "table",
"content": "<table><tr><td>Machine</td></tr></table>"
}
}
}
}