|
{ |
|
"paper_id": "2020", |
|
"header": { |
|
"generated_with": "S2ORC 1.0.0", |
|
"date_generated": "2023-01-19T06:34:12.561386Z" |
|
}, |
|
"title": "Manaal Faruqui (Google) Yansong Feng (Peking University) Catherine Finegan-Dollak (IBM Research) Tim Finin (UMBC)", |
|
"authors": [ |
|
{ |
|
"first": "Lucie", |
|
"middle": [], |
|
"last": "Flek", |
|
"suffix": "", |
|
"affiliation": {}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Jiwei", |
|
"middle": [], |
|
"last": "Li", |
|
"suffix": "", |
|
"affiliation": {}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "(", |
|
"middle": [], |
|
"last": "Shannonai", |
|
"suffix": "", |
|
"affiliation": {}, |
|
"email": "" |
|
}, |
|
{ |
|
"first": "Jessy", |
|
"middle": [ |
|
"Junyi" |
|
], |
|
"last": "Li", |
|
"suffix": "", |
|
"affiliation": {}, |
|
"email": "" |
|
} |
|
], |
|
"year": "", |
|
"venue": null, |
|
"identifiers": {}, |
|
"abstract": "", |
|
"pdf_parse": { |
|
"paper_id": "2020", |
|
"_pdf_hash": "", |
|
"abstract": [], |
|
"body_text": [ |
|
{ |
|
"text": "The W-NUT 2020 workshop focuses on a core set of natural language processing tasks on top of noisy user-generated text, such as that found on social media, web forums and online reviews. Recent years have seen a significant increase of interest in these areas. The internet has democratized content creation leading to an explosion of informal user-generated text, publicly available in electronic format, motivating the need for NLP on noisy text to enable new data analytics applications. ", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": null |
|
} |
|
], |
|
"back_matter": [ |
|
{ |
|
"text": "WNUT 2020 Shared Task-1: Conditional Random Field(CRF) based Named Entity Recognition (NER) ", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "No Day Set (continued)", |
|
"sec_num": null |
|
} |
|
], |
|
"bib_entries": { |
|
"BIBREF0": { |
|
"ref_id": "b0", |
|
"title": "PublishInCovid19 at WNUT 2020 Shared Task-1: Entity Recognition in Wet Lab Protocols using Structured Learning Ensemble and Contextualised Embeddings Janvijay Singh and", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "PublishInCovid19 at WNUT 2020 Shared Task-1: Entity Recognition in Wet Lab Protocols using Struc- tured Learning Ensemble and Contextualised Embeddings Janvijay Singh and Anshul Wadhawan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273", |
|
"links": null |
|
}, |
|
"BIBREF1": { |
|
"ref_id": "b1", |
|
"title": "Shared Task-1: Conditional Random Field(CRF) based Named Entity Recognition(NER) for Wet Lab Protocols Kaushik Acharya", |
|
"authors": [ |
|
{ |
|
"first": ".", |
|
"middle": [ |
|
". ." |
|
], |
|
"last": "Soroush Vosoughi", |
|
"suffix": "" |
|
} |
|
], |
|
"year": null, |
|
"venue": "286 mgsohrab at WNUT 2020 Shared Task-1: Neural Exhaustive Approach for Entity and Relation Recognition Over Wet Lab Protocols Mohammad Golam Sohrab, Anh-Khoa Duong Nguyen, Makoto Miwa and Hiroya Takamura", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Big Green at WNUT 2020 Shared Task-1: Relation Extraction as Contextualized Sequence Classification Chris Miller and Soroush Vosoughi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 WNUT 2020 Shared Task-1: Conditional Random Field(CRF) based Named Entity Recognition(NER) for Wet Lab Protocols Kaushik Acharya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 mgsohrab at WNUT 2020 Shared Task-1: Neural Exhaustive Approach for Entity and Relation Recogni- tion Over Wet Lab Protocols Mohammad Golam Sohrab, Anh-Khoa Duong Nguyen, Makoto Miwa and Hiroya Takamura . . 290", |
|
"links": null |
|
}, |
|
"BIBREF2": { |
|
"ref_id": "b2", |
|
"title": "Fancy Man Launches Zippo at WNUT 2020 Shared Task-1: A Bert Case Model for Wet Lab Entity Extraction Qingcheng Zeng, Xiaoyang Fang, Zhexin Liang and Haoding Meng", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Fancy Man Launches Zippo at WNUT 2020 Shared Task-1: A Bert Case Model for Wet Lab Entity Extraction Qingcheng Zeng, Xiaoyang Fang, Zhexin Liang and Haoding Meng . . . . . . . . . . . . . . . . . . . . . . . . 299", |
|
"links": null |
|
}, |
|
"BIBREF3": { |
|
"ref_id": "b3", |
|
"title": "BiTeM at WNUT 2020 Shared Task-1: Named Entity Recognition over Wet Lab Protocols using an Ensemble of Contextual Language Models Julien Knafou", |
|
"authors": [ |
|
{ |
|
"first": "Patrick", |
|
"middle": [], |
|
"last": "Teodoro", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [ |
|
". . . . . . . . . ." |
|
], |
|
"last": "Ruch", |
|
"suffix": "" |
|
} |
|
], |
|
"year": null, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "BiTeM at WNUT 2020 Shared Task-1: Named Entity Recognition over Wet Lab Protocols using an Ensemble of Contextual Language Models Julien Knafou, Nona Naderi, Jenny Copara, Douglas Teodoro and Patrick Ruch . . . . . . . . . . . . . . 305", |
|
"links": null |
|
}, |
|
"BIBREF4": { |
|
"ref_id": "b4", |
|
"title": "Identification of Informative COVID-19", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "WNUT-2020 Task 2: Identification of Informative COVID-19 English Tweets Dat Quoc Nguyen, Thanh Vu, Afshin Rahimi, Mai Hoang Dao, Linh The Nguyen and Long Doan", |
|
"links": null |
|
}, |
|
"BIBREF5": { |
|
"ref_id": "b5", |
|
"title": "319 NHK_STRL at WNUT-2020 Task 2: GATs with Syntactic Dependencies as Edges and CTC-based Loss for Text Classification Yuki Yasuda, Taichi Ishiwatari, Taro Miyazaki and", |
|
"authors": [ |
|
{ |
|
"first": ".", |
|
"middle": [ |
|
". ." |
|
], |
|
"last": "Tuan Nguyen", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [ |
|
". ." |
|
], |
|
"last": "Goto", |
|
"suffix": "" |
|
} |
|
], |
|
"year": null, |
|
"venue": "TATL at WNUT-2020 Task 2: A Transformer-based Baseline System for Identification of Informative COVID-19 English Tweets Anh", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "TATL at WNUT-2020 Task 2: A Transformer-based Baseline System for Identification of Informative COVID-19 English Tweets Anh Tuan Nguyen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 NHK_STRL at WNUT-2020 Task 2: GATs with Syntactic Dependencies as Edges and CTC-based Loss for Text Classification Yuki Yasuda, Taichi Ishiwatari, Taro Miyazaki and Jun Goto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324", |
|
"links": null |
|
}, |
|
"BIBREF6": { |
|
"ref_id": "b6", |
|
"title": "NLP North at WNUT-2020 Task 2: Pre-training versus Ensembling for Detection of Informative COVID", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "NLP North at WNUT-2020 Task 2: Pre-training versus Ensembling for Detection of Informative COVID-", |
|
"links": null |
|
}, |
|
"BIBREF8": { |
|
"ref_id": "b8", |
|
"title": "337 IIITBH at WNUT-2020 Task 2: Exploiting the best of both worlds Saichethan Reddy and", |
|
"authors": [], |
|
"year": null, |
|
"venue": "Siva at WNUT-2020 Task 2: Fine-tuning Transformer Neural Networks for Identification of Informative Covid-19 Tweets Siva Sai", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Siva at WNUT-2020 Task 2: Fine-tuning Transformer Neural Networks for Identification of Informative Covid-19 Tweets Siva Sai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 IIITBH at WNUT-2020 Task 2: Exploiting the best of both worlds Saichethan Reddy and Pradeep Biswal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342", |
|
"links": null |
|
}, |
|
"BIBREF9": { |
|
"ref_id": "b9", |
|
"title": "347 CXP949 at WNUT-2020 Task 2: Extracting Informative COVID-19 Tweets -RoBERTa Ensembles and The Continued Relevance of Handcrafted Features Calum Perrio and Harish Tayyar Madabushi", |
|
"authors": [ |
|
{ |
|
"first": "", |
|
"middle": [ |
|
". ." |
|
], |
|
"last": "Wadhawan", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Thanh", |
|
"middle": [], |
|
"last": "Luan", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Son", |
|
"middle": [ |
|
"T" |
|
], |
|
"last": "Luan", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": ".", |
|
"middle": [ |
|
"." |
|
], |
|
"last": "Luu", |
|
"suffix": "" |
|
} |
|
], |
|
"year": null, |
|
"venue": "Phonemer at WNUT-2020 Task 2: Sequence Classification Using COVID Twitter BERT and Bagging Ensemble Technique based on Plurality Voting Anshul", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Phonemer at WNUT-2020 Task 2: Sequence Classification Using COVID Twitter BERT and Bagging Ensemble Technique based on Plurality Voting Anshul Wadhawan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 CXP949 at WNUT-2020 Task 2: Extracting Informative COVID-19 Tweets -RoBERTa Ensembles and The Continued Relevance of Handcrafted Features Calum Perrio and Harish Tayyar Madabushi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 xi InfoMiner at WNUT-2020 Task 2: Transformer-based Covid-19 Informative Tweet Extraction Hansi Hettiarachchi and Tharindu Ranasinghe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 BANANA at WNUT-2020 Task 2: Identifying COVID-19 Information on Twitter by Combining Deep Learning and Transfer Learning Models Tin Huynh, Luan Thanh Luan and Son T. Luu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366", |
|
"links": null |
|
}, |
|
"BIBREF10": { |
|
"ref_id": "b10", |
|
"title": "DATAMAFIA at WNUT-2020 Task 2: A Study of Pre-trained Language Models along with Regularization Techniques for Downstream Tasks Ayan Sengupta", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "DATAMAFIA at WNUT-2020 Task 2: A Study of Pre-trained Language Models along with Regulariza- tion Techniques for Downstream Tasks Ayan Sengupta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371", |
|
"links": null |
|
}, |
|
"BIBREF11": { |
|
"ref_id": "b11", |
|
"title": "UPennHLP at WNUT-2020 Task 2 : Transformer models for classification of COVID19 posts on Twitter Arjun Magge", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "UPennHLP at WNUT-2020 Task 2 : Transformer models for classification of COVID19 posts on Twitter Arjun Magge, Varad Pimpalkhute, Divya Rallapalli, David Siguenza and Graciela Gonzalez-Hernandez", |
|
"links": null |
|
}, |
|
"BIBREF12": { |
|
"ref_id": "b12", |
|
"title": "Exploiting CT-BERT for Identifying COVID-19 Information on the Twitter Social Network", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "UIT-HSE at WNUT-2020 Task 2: Exploiting CT-BERT for Identifying COVID-19 Information on the Twitter Social Network Khiem Tran, Hao Phan, Kiet Nguyen and Ngan Luu Thuy Nguyen . . . . . . . . . . . . . . . . . . . . . . . . . 383", |
|
"links": null |
|
}, |
|
"BIBREF13": { |
|
"ref_id": "b13", |
|
"title": "Combining Pretrained Deep Learning Models and Feature Enrichment for Informative Tweet Identification Yuting Guo", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Emory at WNUT-2020 Task 2: Combining Pretrained Deep Learning Models and Feature Enrichment for Informative Tweet Identification Yuting Guo, Mohammed Ali Al-Garadi and Abeed Sarker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388", |
|
"links": null |
|
}, |
|
"BIBREF14": { |
|
"ref_id": "b14", |
|
"title": "Exploiting Ensemble of Transfer Learning and Hand-crafted Features for Identification of Informative COVID-19 English Tweets Fareen Tasneem, Jannatun Naim, Radiathun Tasnia, Tashin Hossain and Abu Nowshed Chy", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "2", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "CSECU-DSG at WNUT-2020 Task 2: Exploiting Ensemble of Transfer Learning and Hand-crafted Fea- tures for Identification of Informative COVID-19 English Tweets Fareen Tasneem, Jannatun Naim, Radiathun Tasnia, Tashin Hossain and Abu Nowshed Chy . . . 394", |
|
"links": null |
|
}, |
|
"BIBREF15": { |
|
"ref_id": "b15", |
|
"title": "Task 2: Identification of informative COVID-19 English Tweets using BERT Supriya Chanda, Eshita Nandy and Sukomal Pal", |
|
"authors": [ |
|
{ |
|
"first": "@", |
|
"middle": [], |
|
"last": "Irlab", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "Iitbhu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "Wnut-", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 2020, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "IRLab@IITBHU at WNUT-2020 Task 2: Identification of informative COVID-19 English Tweets using BERT Supriya Chanda, Eshita Nandy and Sukomal Pal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399", |
|
"links": null |
|
}, |
|
"BIBREF16": { |
|
"ref_id": "b16", |
|
"title": "Robustly Identifying Informative COVID-19 Tweets using Ensembling and Adversarial Training Priyanshu Kumar and", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "NutCracker at WNUT-2020 Task 2: Robustly Identifying Informative COVID-19 Tweets using Ensem- bling and Adversarial Training Priyanshu Kumar and Aadarsh Singh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404", |
|
"links": null |
|
}, |
|
"BIBREF17": { |
|
"ref_id": "b17", |
|
"title": "Detection of COVID-19 informative tweets using RoBERTa Sirigireddy Dhana Laxmi, Rohit Agarwal and Aman Sinha", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "2", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "DSC-IIT ISM at WNUT-2020 Task 2: Detection of COVID-19 informative tweets using RoBERTa Sirigireddy Dhana Laxmi, Rohit Agarwal and Aman Sinha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409", |
|
"links": null |
|
}, |
|
"BIBREF18": { |
|
"ref_id": "b18", |
|
"title": "Informative Tweet Identification using Progressive Trained Language Models and Data Augmentation Vasudev Awatramani and", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Linguist Geeks on WNUT-2020 Task 2: COVID-19 Informative Tweet Identification using Progressive Trained Language Models and Data Augmentation Vasudev Awatramani and Anupam Kumar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414", |
|
"links": null |
|
}, |
|
"BIBREF19": { |
|
"ref_id": "b19", |
|
"title": "ELMo-based System for Identification of COVID-19", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "2", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "NLPRL at WNUT-2020 Task 2: ELMo-based System for Identification of COVID-19 Tweets Rajesh Kumar Mundotiya, Rupjyoti Baruah, Bhavana Srivastava and Anil Kumar Singh . . . . . . 419", |
|
"links": null |
|
}, |
|
"BIBREF20": { |
|
"ref_id": "b20", |
|
"title": "The Ensemble Models Kenan Fayoumi and", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "SU-NLP at WNUT-2020 Task 2: The Ensemble Models Kenan Fayoumi and Reyyan Yeniterzi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423", |
|
"links": null |
|
}, |
|
"BIBREF21": { |
|
"ref_id": "b21", |
|
"title": "IDSOU at WNUT-2020 Task 2: Identification of Informative COVID-19 English Tweets Sora", |
|
"authors": [ |
|
{ |
|
"first": "Tomoyuki", |
|
"middle": [], |
|
"last": "Ohashi", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Chenhui", |
|
"middle": [], |
|
"last": "Kajiwara", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Noriko", |
|
"middle": [], |
|
"last": "Chu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Yuta", |
|
"middle": [], |
|
"last": "Takemura", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "Nakashima", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": ".", |
|
"middle": [ |
|
"." |
|
], |
|
"last": "Hajime Nagahara", |
|
"suffix": "" |
|
} |
|
], |
|
"year": null, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "IDSOU at WNUT-2020 Task 2: Identification of Informative COVID-19 English Tweets Sora Ohashi, Tomoyuki Kajiwara, Chenhui Chu, Noriko Takemura, Yuta Nakashima and Hajime Nagahara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428", |
|
"links": null |
|
}, |
|
"BIBREF22": { |
|
"ref_id": "b22", |
|
"title": "434 xii NEU at WNUT-2020 Task 2: Data Augmentation To Tell BERT That Death Is Not Necessarily Informative Kumud Chauhan", |
|
"authors": [ |
|
{ |
|
"first": "Jacob", |
|
"middle": [], |
|
"last": "Danovitch", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Albert", |
|
"middle": [ |
|
"Orozco" |
|
], |
|
"last": "Camacho", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Reihaneh", |
|
"middle": [ |
|
". . . . ." |
|
], |
|
"last": "Rabbany", |
|
"suffix": "" |
|
} |
|
], |
|
"year": null, |
|
"venue": "ComplexDataLab at W-NUT 2020 Task 2: Detecting Informative COVID-19 Tweets by Attending over Linked Documents Kellin Pelrine", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "ComplexDataLab at W-NUT 2020 Task 2: Detecting Informative COVID-19 Tweets by Attending over Linked Documents Kellin Pelrine, Jacob Danovitch, Albert Orozco Camacho and Reihaneh Rabbany . . . . . . . . . . . . 434 xii NEU at WNUT-2020 Task 2: Data Augmentation To Tell BERT That Death Is Not Necessarily Informative Kumud Chauhan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440", |
|
"links": null |
|
}, |
|
"BIBREF23": { |
|
"ref_id": "b23", |
|
"title": "Semi-Supervised Learning for Identification of Informative COVID", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "2", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "LynyrdSkynyrd at WNUT-2020 Task 2: Semi-Supervised Learning for Identification of Informative COVID-", |
|
"links": null |
|
}, |
|
"BIBREF25": { |
|
"ref_id": "b25", |
|
"title": "Deep Learning Model RoBERTa for Identify Informative COVID", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "2", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "NIT_COVID-19 at WNUT-2020 Task 2: Deep Learning Model RoBERTa for Identify Informative COVID-", |
|
"links": null |
|
}, |
|
"BIBREF27": { |
|
"ref_id": "b27", |
|
"title": "EdinburghNLP at WNUT-2020 Task 2: Leveraging Transformers with Generalized Augmentation for Identifying Informativeness in COVID-19 Tweets Nickil Maveli", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "EdinburghNLP at WNUT-2020 Task 2: Leveraging Transformers with Generalized Augmentation for Identifying Informativeness in COVID-19 Tweets Nickil Maveli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455", |
|
"links": null |
|
}, |
|
"BIBREF28": { |
|
"ref_id": "b28", |
|
"title": "BERT-Based Models for the Detection of Informativeness in English COVID-19 Related Tweets Hanna Varachkina, Stefan Ziehe, Tillmann D\u00f6nicke and Franziska Pannach", |
|
"authors": [ |
|
{ |
|
"first": "#", |
|
"middle": [], |
|
"last": "Gcdh", |
|
"suffix": "" |
|
} |
|
], |
|
"year": null, |
|
"venue": "", |
|
"volume": "2", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "#GCDH at WNUT-2020 Task 2: BERT-Based Models for the Detection of Informativeness in English COVID-19 Related Tweets Hanna Varachkina, Stefan Ziehe, Tillmann D\u00f6nicke and Franziska Pannach . . . . . . . . . . . . . . . . . 462", |
|
"links": null |
|
}, |
|
"BIBREF29": { |
|
"ref_id": "b29", |
|
"title": "466 CIA_NITT at WNUT-2020 Task 2: Classification of COVID-19 Tweets Using Pre-trained Language Models Yandrapati Prakash Babu and Rajagopal Eswari", |
|
"authors": [ |
|
{ |
|
"first": "Phuong", |
|
"middle": [], |
|
"last": "Vu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": ".", |
|
"middle": [ |
|
"." |
|
], |
|
"last": "", |
|
"suffix": "" |
|
} |
|
], |
|
"year": null, |
|
"venue": "Not-NUTs at WNUT-2020 Task 2: A BERT-based System in Identifying Informative COVID-19 English Tweets Thai Hoang and", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Not-NUTs at WNUT-2020 Task 2: A BERT-based System in Identifying Informative COVID-19 English Tweets Thai Hoang and Phuong Vu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466 CIA_NITT at WNUT-2020 Task 2: Classification of COVID-19 Tweets Using Pre-trained Language Models Yandrapati Prakash Babu and Rajagopal Eswari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471", |
|
"links": null |
|
}, |
|
"BIBREF30": { |
|
"ref_id": "b30", |
|
"title": "UET at WNUT-2020 Task 2: A Study of Combining Transfer Learning Methods for Text Classification with RoBERTa Huy Dao Quang and", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "UET at WNUT-2020 Task 2: A Study of Combining Transfer Learning Methods for Text Classification with RoBERTa Huy Dao Quang and Tam Nguyen Minh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475", |
|
"links": null |
|
}, |
|
"BIBREF31": { |
|
"ref_id": "b31", |
|
"title": "Dartmouth CS at WNUT-2020 Task 2: Fine tuning BERT for Tweet classification Dylan Whang and", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Dartmouth CS at WNUT-2020 Task 2: Fine tuning BERT for Tweet classification Dylan Whang and Soroush Vosoughi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480", |
|
"links": null |
|
}, |
|
"BIBREF32": { |
|
"ref_id": "b32", |
|
"title": "SunBear at WNUT-2020 Task 2: Improving BERT-Based Noisy Text Classification with Knowledge of the Data domain Linh Doan Bao, Viet Anh Nguyen and Quang Pham Huu", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "SunBear at WNUT-2020 Task 2: Improving BERT-Based Noisy Text Classification with Knowledge of the Data domain Linh Doan Bao, Viet Anh Nguyen and Quang Pham Huu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485", |
|
"links": null |
|
}, |
|
"BIBREF33": { |
|
"ref_id": "b33", |
|
"title": "Task 2: Identification of Informative COVID-19 English Tweets using BERT and FastText Embeddings Wava Carissa Putri, Rani Aulia Hidayat, Isnaini Nurul Khasanah and Rahmad Mahendra", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "ISWARA at WNUT-2020 Task 2: Identification of Informative COVID-19 English Tweets using BERT and FastText Embeddings Wava Carissa Putri, Rani Aulia Hidayat, Isnaini Nurul Khasanah and Rahmad Mahendra . . . . . 491", |
|
"links": null |
|
}, |
|
"BIBREF34": { |
|
"ref_id": "b34", |
|
"title": "COVCOR20 at WNUT-2020 Task 2: An Attempt to Combine Deep Learning and Expert rules", |
|
"authors": [ |
|
{ |
|
"first": "Ali", |
|
"middle": [], |
|
"last": "H\u00fcrriyetoglu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Ali", |
|
"middle": [], |
|
"last": "Safaya", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Osman", |
|
"middle": [], |
|
"last": "Mutlu", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Nelleke", |
|
"middle": [], |
|
"last": "Oostdijk", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Erdem", |
|
"middle": [ |
|
". . . . . ." |
|
], |
|
"last": "Y\u00f6r\u00fck", |
|
"suffix": "" |
|
} |
|
], |
|
"year": null, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "COVCOR20 at WNUT-2020 Task 2: An Attempt to Combine Deep Learning and Expert rules Ali H\u00fcrriyetoglu, Ali Safaya, Osman Mutlu, Nelleke Oostdijk and Erdem Y\u00f6r\u00fck . . . . . . . . . . . . . 495", |
|
"links": null |
|
}, |
|
"BIBREF35": { |
|
"ref_id": "b35", |
|
"title": "TEST_POSITIVE at W-NUT 2020 Shared Task-3: Cross-task modeling Chacha Chen", |
|
"authors": [ |
|
{ |
|
"first": "Chieh-Yang", |
|
"middle": [], |
|
"last": "Huang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Yaqi", |
|
"middle": [], |
|
"last": "Hou", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Yang", |
|
"middle": [], |
|
"last": "Shi", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Enyan", |
|
"middle": [], |
|
"last": "Dai", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "Jiaqi", |
|
"middle": [ |
|
". . . . ." |
|
], |
|
"last": "Wang", |
|
"suffix": "" |
|
} |
|
], |
|
"year": null, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "TEST_POSITIVE at W-NUT 2020 Shared Task-3: Cross-task modeling Chacha Chen, Chieh-Yang Huang, Yaqi Hou, Yang Shi, Enyan Dai and Jiaqi Wang . . . . . . . . . . . 499", |
|
"links": null |
|
}, |
|
"BIBREF36": { |
|
"ref_id": "b36", |
|
"title": "A multilabel BERT-based system for predicting COVID-19 events Xiangyu Yang, Giannis Bekoulis and Nikos Deligiannis", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "imec-ETRO-VUB at W-NUT 2020 Shared Task-3: A multilabel BERT-based system for predicting COVID- 19 events Xiangyu Yang, Giannis Bekoulis and Nikos Deligiannis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505", |
|
"links": null |
|
}, |
|
"BIBREF37": { |
|
"ref_id": "b37", |
|
"title": "514 xiii Winners at W-NUT 2020 Shared Task-3: Leveraging Event Specific and Chunk Span information for Extracting COVID Entities from Tweets Ayush Kaushal and Tejas Vaidhya", |
|
"authors": [ |
|
{ |
|
"first": "David", |
|
"middle": [], |
|
"last": "Wang", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": ".", |
|
"middle": [ |
|
"." |
|
], |
|
"last": "Lillis", |
|
"suffix": "" |
|
} |
|
], |
|
"year": null, |
|
"venue": "UCD-CS at W-NUT 2020 Shared Task-3: A Text to Text Approach for COVID-19 Event Extraction on Social Media Congcong", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "UCD-CS at W-NUT 2020 Shared Task-3: A Text to Text Approach for COVID-19 Event Extraction on Social Media Congcong Wang and David Lillis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514 xiii Winners at W-NUT 2020 Shared Task-3: Leveraging Event Specific and Chunk Span information for Extracting COVID Entities from Tweets Ayush Kaushal and Tejas Vaidhya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522", |
|
"links": null |
|
}, |
|
"BIBREF38": { |
|
"ref_id": "b38", |
|
"title": "Event Extraction from Twitter Using Multi-Task Hopfield Pooling Maxwell Weinzierl and", |
|
"authors": [], |
|
"year": null, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "HLTRI at W-NUT 2020 Shared Task-3: COVID-19 Event Extraction from Twitter Using Multi-Task Hop- field Pooling Maxwell Weinzierl and Sanda Harabagiu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530 xiv", |
|
"links": null |
|
} |
|
}, |
|
"ref_entries": { |
|
"TABREF1": { |
|
"content": "<table/>", |
|
"text": "May I Ask Who's Calling? Named Entity Recognition on Call Center Transcripts for Privacy Law Compliance Micaela Kaplan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 \"Did you really mean what you said?\" : Sarcasm Detection in Hindi-English Code-Mixed Data using Bilingual Word Embeddings Akshita Aggarwal, Anshul Wadhawan, Anshima Chaudhary and Kavita Maurya . . . . . . . . . . . . . . . 7", |
|
"html": null, |
|
"num": null, |
|
"type_str": "table" |
|
} |
|
} |
|
} |
|
} |