from functools import partial import itertools from multiprocessing import Pool from typing import Any, Callable, Dict, Iterable, Tuple, Union import numpy as np import tensorflow as tf import tensorflow_datasets as tfds from tensorflow_datasets.core import ( dataset_builder, download, example_serializer, file_adapters, naming, ) from tensorflow_datasets.core import split_builder as split_builder_lib from tensorflow_datasets.core import splits as splits_lib from tensorflow_datasets.core import utils from tensorflow_datasets.core import writer as writer_lib Key = Union[str, int] # The nested example dict passed to `features.encode_example` Example = Dict[str, Any] KeyExample = Tuple[Key, Example] class MultiThreadedAdhocDatasetBuilder(tfds.core.dataset_builders.AdhocBuilder): """Multithreaded adhoc dataset builder.""" def __init__( self, *args, generator_fcn, n_workers, max_episodes_in_memory, **kwargs ): super().__init__(*args, **kwargs) self._generator_fcn = generator_fcn self._n_workers = n_workers self._max_episodes_in_memory = max_episodes_in_memory def _download_and_prepare( # pytype: disable=signature-mismatch # overriding-parameter-type-checks self, dl_manager: download.DownloadManager, download_config: download.DownloadConfig, ) -> None: """Generate all splits and returns the computed split infos.""" assert ( self._max_episodes_in_memory % self._n_workers == 0 ) # need to divide max_episodes by workers split_builder = ParallelSplitBuilder( split_dict=self._split_datasets, features=self.info.features, dataset_size=self.info.dataset_size, max_examples_per_split=download_config.max_examples_per_split, beam_options=download_config.beam_options, beam_runner=download_config.beam_runner, file_format=self.info.file_format, shard_config=download_config.get_shard_config(), generator_fcn=self._generator_fcn, n_workers=self._n_workers, max_episodes_in_memory=self._max_episodes_in_memory, ) split_generators = self._split_generators(dl_manager) split_generators = split_builder.normalize_legacy_split_generators( split_generators=split_generators, generator_fn=self._generate_examples, is_beam=False, ) dataset_builder._check_split_names(split_generators.keys()) # Start generating data for all splits path_suffix = file_adapters.ADAPTER_FOR_FORMAT[ self.info.file_format ].FILE_SUFFIX split_info_futures = [] for split_name, generator in utils.tqdm( split_generators.items(), desc="Generating splits...", unit=" splits", leave=False, ): filename_template = naming.ShardedFileTemplate( split=split_name, dataset_name=self.name, data_dir=self.data_path, filetype_suffix=path_suffix, ) future = split_builder.submit_split_generation( split_name=split_name, generator=generator, filename_template=filename_template, disable_shuffling=self.info.disable_shuffling, ) split_info_futures.append(future) # Finalize the splits (after apache beam completed, if it was used) split_infos = [future.result() for future in split_info_futures] # Update the info object with the splits. split_dict = splits_lib.SplitDict(split_infos) self.info.set_splits(split_dict) def _split_generators(self, dl_manager: tfds.download.DownloadManager): """Define dummy split generators.""" def dummy_generator(): yield None return {split: dummy_generator() for split in self._split_datasets} class _SplitInfoFuture: """Future containing the `tfds.core.SplitInfo` result.""" def __init__(self, callback: Callable[[], splits_lib.SplitInfo]): self._callback = callback def result(self) -> splits_lib.SplitInfo: return self._callback() def parse_examples_from_generator( episodes, max_episodes, fcn, split_name, total_num_examples, features, serializer ): upper = episodes[-1] + 1 upper_str = f'{upper}' if upper < max_episodes else '' generator = fcn(split=split_name + f"[{episodes[0]}:{upper_str}]") outputs = [] for key, sample in utils.tqdm( zip(episodes, generator), desc=f"Generating {split_name} examples...", unit=" examples", total=total_num_examples, leave=False, mininterval=1.0, ): if sample is None: continue try: sample = features.encode_example(sample) except Exception as e: # pylint: disable=broad-except utils.reraise(e, prefix=f"Failed to encode example:\n{sample}\n") outputs.append((str(key), serializer.serialize_example(sample))) return outputs class ParallelSplitBuilder(split_builder_lib.SplitBuilder): def __init__( self, *args, generator_fcn, n_workers, max_episodes_in_memory, **kwargs ): super().__init__(*args, **kwargs) self._generator_fcn = generator_fcn self._n_workers = n_workers self._max_episodes_in_memory = max_episodes_in_memory def _build_from_generator( self, split_name: str, generator: Iterable[KeyExample], filename_template: naming.ShardedFileTemplate, disable_shuffling: bool, ) -> _SplitInfoFuture: """Split generator for example generators. Args: split_name: str, generator: Iterable[KeyExample], filename_template: Template to format the filename for a shard. disable_shuffling: Specifies whether to shuffle the examples, Returns: future: The future containing the `tfds.core.SplitInfo`. """ total_num_examples = None serialized_info = self._features.get_serialized_info() writer = writer_lib.Writer( serializer=example_serializer.ExampleSerializer(serialized_info), filename_template=filename_template, hash_salt=split_name, disable_shuffling=disable_shuffling, file_format=self._file_format, shard_config=self._shard_config, ) del generator # use parallel generators instead episode_lists = chunk_max( list(np.arange(self._split_dict[split_name].num_examples)), self._n_workers, self._max_episodes_in_memory, ) # generate N episode lists print(f"Generating with {self._n_workers} workers!") pool = Pool(processes=self._n_workers) for i, episodes in enumerate(episode_lists): print(f"Processing chunk {i + 1} of {len(episode_lists)}.") results = pool.map( partial( parse_examples_from_generator, fcn=self._generator_fcn, split_name=split_name, total_num_examples=total_num_examples, serializer=writer._serializer, features=self._features, max_episodes=self._split_dict[split_name].num_examples, ), episodes, ) # write results to shuffler --> this will automatically offload to disk if necessary print("Writing conversion results...") for result in itertools.chain(*results): key, serialized_example = result writer._shuffler.add(key, serialized_example) writer._num_examples += 1 pool.close() print("Finishing split conversion...") shard_lengths, total_size = writer.finalize() split_info = splits_lib.SplitInfo( name=split_name, shard_lengths=shard_lengths, num_bytes=total_size, filename_template=filename_template, ) return _SplitInfoFuture(lambda: split_info) def dictlist2listdict(DL): "Converts a dict of lists to a list of dicts" return [dict(zip(DL, t)) for t in zip(*DL.values())] def chunks(l, n): """Yield n number of sequential chunks from l.""" d, r = divmod(len(l), n) for i in range(n): si = (d + 1) * (i if i < r else r) + d * (0 if i < r else i - r) yield l[si : si + (d + 1 if i < r else d)] def chunk_max(l, n, max_chunk_sum): out = [] for _ in range(int(np.ceil(len(l) / max_chunk_sum))): out.append([c for c in chunks(l[:max_chunk_sum], n) if c]) l = l[max_chunk_sum:] return out