Datasets:
Size:
10K<n<100K
License:
File size: 7,597 Bytes
5a009ef fed1122 b0a80e9 34fbdcc 09039e6 9d195cb b0a80e9 04a1354 9d195cb b0a80e9 de764b8 6052bc2 de764b8 09039e6 5a009ef 09039e6 b0a80e9 d1d93e5 b0a80e9 d1d93e5 b0a80e9 d1d93e5 b0a80e9 d1d93e5 09039e6 5a009ef baa822b 5a009ef b0a80e9 5a009ef b0a80e9 5a009ef b0a80e9 5a009ef e3e0292 b25e96b d1d93e5 85f592d a4f75a2 d1d93e5 85f592d 4e8d166 41da041 4dc4127 4e8d166 4dc4127 b25e96b e3e0292 b0a80e9 de764b8 b25e96b 5a009ef b0a80e9 de764b8 c2447c9 be55668 c2447c9 b0a80e9 de764b8 5a009ef b0a80e9 abd471b b0a80e9 13f81de b0a80e9 d638aaf b0a80e9 13f81de b0a80e9 13f81de baa822b 13f81de fed1122 e3e0292 fed1122 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import io
from PIL import Image
from datasets import GeneratorBasedBuilder, DatasetInfo, Features, SplitGenerator, Value, Array2D, Split
import datasets
import numpy as np
import h5py
from huggingface_hub import HfFileSystem
import time
import os
import hashlib
from pathlib import Path
class CustomConfig(datasets.BuilderConfig):
def __init__(self, extract, remove_tar, chunk, **kwargs):
super().__init__(**kwargs)
self.dataset_type = kwargs.pop("name", "all")
self.extract = kwargs.pop("extract", extract)
self.remove_tar = kwargs.pop("remove_tar", remove_tar)
self.chunk = kwargs.pop("chunk", chunk)
_metadata_urls = {
"train":"https://huggingface.co/datasets/XingjianLi/tomatotest/resolve/main/train.txt",
"val":"https://huggingface.co/datasets/XingjianLi/tomatotest/resolve/main/val.txt"
}
class RGBSemanticDepthDataset(GeneratorBasedBuilder):
BUILDER_CONFIGS = [
CustomConfig(name="full", version="1.0.0", description="download and extract the dataset to h5 pairs (all tar files automatically removed by default, 160GB)",
extract=True, remove_tar=True, chunk=1),
CustomConfig(name="sample", version="1.0.0", description="load both segmentation and depth (for 1 tar file, 870MB)",
extract=False, remove_tar=False, chunk=1),
CustomConfig(name="depth", version="1.0.0", description="only load depth (sample)",
extract=False, remove_tar=False, chunk=1),
CustomConfig(name="seg", version="1.0.0", description="only load segmentation (sample)",
extract=False, remove_tar=False, chunk=1),
] # Configs initialization
BUILDER_CONFIG_CLASS = CustomConfig
def _info(self):
return DatasetInfo(
features=Features({
"left_rgb": datasets.Image(),
"right_rgb": datasets.Image(),
"left_semantic": datasets.Image(),
"left_instance": datasets.Image(),
"left_depth": datasets.Image(),
"right_depth": datasets.Image(),
})
)
def _h5_loader(self, fileobj, type_dataset):
# Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L8-L13
file_bytes = fileobj.read()
file_bytes = io.BytesIO(file_bytes)
with h5py.File(file_bytes, "r") as h5f:
left_rgb = self._read_jpg(h5f['rgb_left'][:])
if type_dataset == 'depth':
right_rgb = self._read_jpg(h5f['rgb_right'][:])
left_depth = h5f['depth_left'][:].astype(np.float32)
right_depth = h5f['depth_right'][:].astype(np.float32)
return left_rgb, right_rgb, np.zeros((1,1)), np.zeros((1,1)), left_depth, right_depth
elif type_dataset == 'seg':
seg_left = h5f['seg_left'][:]
left_semantic = seg_left[:,:,2]
left_instance = seg_left[:,:,0] + seg_left[:,:,1] * 256
return left_rgb, np.zeros((1,1)), left_semantic, left_instance, np.zeros((1,1)), np.zeros((1,1))
else:
right_rgb = self._read_jpg(h5f['rgb_right'][:])
seg_left = h5f['seg_left'][:]
left_semantic = seg_left[:,:,2]
left_instance = seg_left[:,:,0] + seg_left[:,:,1] * 256
left_depth = h5f['depth_left'][:].astype(np.float32)
right_depth = h5f['depth_right'][:].astype(np.float32)
return left_rgb, right_rgb, left_semantic, left_instance, left_depth, right_depth
def _read_jpg(self, bytes_stream):
img = Image.open(io.BytesIO(bytes_stream))
return img
def _split_generators(self, dl_manager):
if 'full' == self.config.dataset_type:
dataset_names = self._get_dataset_filenames()
if self.config.extract:
dataset_chunk_list = [dataset_names[i:i+self.config.chunk] for i in range(0, len(dataset_names), self.config.chunk)]
for dataset_chunk in dataset_chunk_list:
print(self.config.chunk)
print(dataset_chunk)
archives = dl_manager.download({"train":dataset_chunk,
"val":dataset_chunk})
for archive, tar_file_name in zip(archives["train"], dataset_chunk):
extracted_dir = dl_manager.extract(archive)
print(f"\tExtracted {archive} to {extracted_dir}")
if self.config.remove_tar and os.path.exists(archive):
os.remove(archive)
print(f"\tDeleted tar file {archive}")
blob_folder = '/'.join(archive.replace("snapshots","blobs").split('/')[:-3])
if self.config.remove_tar and os.path.exists(blob_folder):
for filename in os.listdir(blob_folder):
filepath = os.path.join(blob_folder, filename)
os.remove(filepath)
print(f"\tDeleted tar file {blob_folder}")
print("All extracted. exiting")
exit()
archives = dl_manager.download({"train":self._get_dataset_filenames(),
"val":self._get_dataset_filenames()})
else:
archives = dl_manager.download({"train":self._get_dataset_filenames()[0:2],
"val":self._get_dataset_filenames()[0:2]})
split_metadata = dl_manager.download(_metadata_urls)
train_archives = [dl_manager.iter_archive(archive) for archive in archives["train"]]
val_archives = [dl_manager.iter_archive(archive) for archive in archives["val"]]
return [
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={
"archives": train_archives,
"split_txt": split_metadata["train"]
},
),
SplitGenerator(
name=Split.VALIDATION,
gen_kwargs={
"archives": val_archives,
"split_txt": split_metadata["val"]
},
),
]
def _generate_examples(self, archives, split_txt):
with open(split_txt, encoding="utf-8") as split_f:
all_splits = set(split_f.read().split('\n'))
for archive in archives:
for path, file in archive:
archive_start_time = time.time()
if path.split('/')[-1][:-3] not in all_splits:
# skip the image pairs not in train.txt or val.txt
continue
left_rgb, right_rgb, left_semantic, left_instance, left_depth, right_depth = self._h5_loader(file, self.config.dataset_type)
yield path, {
"left_rgb": left_rgb,
"right_rgb": right_rgb,
"left_semantic": left_semantic,
"left_instance": left_instance,
"left_depth": left_depth,
"right_depth": right_depth,
}
def _get_dataset_filenames(self):
fs = HfFileSystem()
all_files = fs.ls("datasets/xingjianli/tomatotest/data")
filenames = sorted(['/'.join(f['name'].split('/')[-2:]) for f in all_files])
return filenames |