|
import os |
|
import pandas as pd |
|
import datasets |
|
from glob import glob |
|
import zipfile |
|
|
|
class NewDataset(datasets.GeneratorBasedBuilder): |
|
def _info(self): |
|
return datasets.DatasetInfo(features=datasets.Features({'name':datasets.Value('string'),'age':datasets.Value('string'),'label': datasets.features.ClassLabel(names=['male', 'female'])})) |
|
|
|
def extract_all(self, dir): |
|
zip_files = glob(dir+'/**/**.zip', recursive=True) |
|
for file in zip_files: |
|
with zipfile.ZipFile(file) as item: |
|
item.extractall('/'.join(file.split('/')[:-1])) |
|
|
|
|
|
def get_all_files(self, dir): |
|
files = [] |
|
valid_file_ext = ['txt', 'csv', 'tsv', 'xlsx', 'xls', 'xml', 'json', 'jsonl', 'html', 'wav', 'mp3'] |
|
for ext in valid_file_ext: |
|
files += glob(f"{dir}/**/**.{ext}", recursive = True) |
|
return files |
|
|
|
def _split_generators(self, dl_manager): |
|
url = [os.path.abspath(os.path.expanduser(dl_manager.manual_dir))] |
|
downloaded_files = url |
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'filepaths': {'inputs':downloaded_files} })] |
|
|
|
|
|
def _generate_examples(self, filepaths): |
|
_id = 0 |
|
for i,filepath in enumerate(filepaths['inputs']): |
|
df = pd.read_csv(open(filepath, 'rb'), sep = r',', skiprows = 0, error_bad_lines = False, header = 0) |
|
if len(df.columns) != 3: |
|
continue |
|
df.columns = ['name', 'age', 'gender'] |
|
for _, record in df.iterrows(): |
|
yield str(_id), {'name':record['name'],'age':record['age'],'label':str(record['gender'])} |
|
_id += 1 |
|
|
|
|