Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
Arabic
Size:
10K - 100K
Tags:
poetry-classification
License:
| # coding=utf-8 | |
| # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Lint as: python3 | |
| """Arabic Poetry Metric dataset.""" | |
| import os | |
| import datasets | |
| from datasets.tasks import TextClassification | |
| _DESCRIPTION = """\ | |
| Arabic Poetry Metric Classification. | |
| The dataset contains the verses and their corresponding meter classes.\ | |
| Meter classes are represented as numbers from 0 to 13. \ | |
| The dataset can be highly useful for further research in order to improve the field of Arabic poems’ meter classification.\ | |
| The train dataset contains 47,124 records and the test dataset contains 8316 records. | |
| """ | |
| _CITATION = """\ | |
| @article{metrec2020, | |
| title={MetRec: A dataset for meter classification of arabic poetry}, | |
| author={Al-shaibani, Maged S and Alyafeai, Zaid and Ahmad, Irfan}, | |
| journal={Data in Brief}, | |
| year={2020}, | |
| publisher={Elsevier} | |
| } | |
| """ | |
| _DOWNLOAD_URL = "https://raw.githubusercontent.com/zaidalyafeai/MetRec/master/baits.zip" | |
| class MetRecConfig(datasets.BuilderConfig): | |
| """BuilderConfig for MetRec.""" | |
| def __init__(self, **kwargs): | |
| """BuilderConfig for MetRec. | |
| Args: | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| super(MetRecConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) | |
| class Metrec(datasets.GeneratorBasedBuilder): | |
| """Metrec dataset.""" | |
| BUILDER_CONFIGS = [ | |
| MetRecConfig( | |
| name="plain_text", | |
| description="Plain text", | |
| ) | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "text": datasets.Value("string"), | |
| "label": datasets.features.ClassLabel( | |
| names=[ | |
| "saree", | |
| "kamel", | |
| "mutakareb", | |
| "mutadarak", | |
| "munsareh", | |
| "madeed", | |
| "mujtath", | |
| "ramal", | |
| "baseet", | |
| "khafeef", | |
| "taweel", | |
| "wafer", | |
| "hazaj", | |
| "rajaz", | |
| ] | |
| ), | |
| } | |
| ), | |
| supervised_keys=None, | |
| homepage="https://github.com/zaidalyafeai/MetRec", | |
| citation=_CITATION, | |
| task_templates=[TextClassification(text_column="text", label_column="label")], | |
| ) | |
| def _vocab_text_gen(self, archive): | |
| for _, ex in self._generate_examples(archive, os.path.join("final_baits", "train.txt")): | |
| yield ex["text"] | |
| def _split_generators(self, dl_manager): | |
| arch_path = dl_manager.download_and_extract(_DOWNLOAD_URL) | |
| data_dir = os.path.join(arch_path, "final_baits") | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, gen_kwargs={"directory": os.path.join(data_dir, "train.txt")} | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, gen_kwargs={"directory": os.path.join(data_dir, "test.txt")} | |
| ), | |
| ] | |
| def _generate_examples(self, directory, labeled=True): | |
| """Generate examples.""" | |
| # For labeled examples, extract the label from the path. | |
| with open(directory, encoding="UTF-8") as f: | |
| for id_, record in enumerate(f.read().splitlines()): | |
| label, bait = record.split(" ", 1) | |
| yield str(id_), {"text": bait, "label": int(label)} | |