agentlans commited on
Commit
40f14de
·
verified ·
1 Parent(s): 6f1bb57

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -13
README.md CHANGED
@@ -17,21 +17,26 @@ This dataset contains **100,000 rows** sampled from the `allenai/c4` English spl
17
 
18
  ## Methods
19
 
20
- ### FastText-based classifiers
21
- The classifiers output probabilities converted to logits log(p). The **quality score** is computed as the difference of logits between the high-quality and low-quality classes.
22
 
23
- - [ibm-granite/GneissWeb.Quality_annotator](https://huggingface.co/ibm-granite/GneissWeb.Quality_annotator)
24
- - [openbmb/Ultra-FineWeb-classifier](https://huggingface.co/openbmb/Ultra-FineWeb-classifier)
 
 
 
 
 
 
 
25
 
26
- ### Transformers-based classifiers
27
- - [HuggingFaceFW/fineweb-edu-classifier](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier): raw logits
28
- - [nvidia/quality-classifier-deberta](https://huggingface.co/nvidia/quality-classifier-deberta): difference of logits (high - low)
29
- - [agentlans/bge-small-en-v1.5-ultrafineweb-vs-pile-classifier](https://huggingface.co/agentlans/bge-small-en-v1.5-ultrafineweb-vs-pile-classifier): difference of logits
30
 
31
  ### Overall score computation
32
- - Scores from all classifiers were centered and scaled.
33
  - Principal Components Analysis (PCA) was applied.
34
- - The **first principal component (PC1)** normalized to z-scores is taken as the overall quality score.
 
35
 
36
  For convenience, the dataset is split into an **80% training set** and a **20% testing set**.
37
 
@@ -42,10 +47,10 @@ For convenience, the dataset is split into an **80% training set** and a **20% t
42
  - The **lower triangle** shows pairwise density plots of classifier scores.
43
  - The **diagonal** presents the distribution of each classifier's scores.
44
  - The **upper triangle** displays correlations between pairs of classifiers.
45
- - `uvp` refers to `agentlans/bge-small-en-v1.5-ultrafineweb-vs-pile-classifier`
46
 
47
- The classifiers' scores show moderate to strong correlations, except for the Nvidia classifier, which is less correlated.
48
- The score correlates well with each individual classifier's quality score.
 
49
 
50
  ## License
51
  This dataset is licensed under the **[Open Data Commons Attribution License (ODC-BY)](https://opendatacommons.org/licenses/by/)**.
 
17
 
18
  ## Methods
19
 
20
+ Classifiers used:
 
21
 
22
+ | Label | Model | Method |
23
+ |---------------|-----------------------------------------------------------------------|----------------|
24
+ | fineweb2hq | [agentlans/multilingual-e5-small-fineweb2hq-vs-c4-classifier](https://huggingface.co/agentlans/multilingual-e5-small-fineweb2hq-vs-c4-classifier) | Logit difference |
25
+ | finewebedu | [HuggingFaceFW/fineweb-edu-classifier](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier) | Raw logits |
26
+ | gneiss | [ibm-granite/GneissWeb.Quality_annotator](https://huggingface.co/ibm-granite/GneissWeb.Quality_annotator) | FastText |
27
+ | nemo | [nvidia/nemocurator-fineweb-nemotron-4-edu-classifier](https://huggingface.co/nvidia/nemocurator-fineweb-nemotron-4-edu-classifier) | Raw logits |
28
+ | nvidia | [nvidia/quality-classifier-deberta](https://huggingface.co/nvidia/quality-classifier-deberta) | Logit difference |
29
+ | ultrafineweb | [openbmb/Ultra-FineWeb-classifier](https://huggingface.co/openbmb/Ultra-FineWeb-classifier) | FastText |
30
+ | uvp | [agentlans/bge-small-en-v1.5-ultrafineweb-vs-pile-classifier](https://huggingface.co/agentlans/bge-small-en-v1.5-ultrafineweb-vs-pile-classifier) | Logit difference |
31
 
32
+ For FastText-based classifiers, the classifiers' output probabilities were converted to logits log(p).
33
+ The **quality score** for those classifiers were computed as the difference of logits between the high-quality and low-quality classes.
 
 
34
 
35
  ### Overall score computation
36
+ - Scores from all classifiers were centreed and scaled.
37
  - Principal Components Analysis (PCA) was applied.
38
+ - The first principal component (PC1) was normalized to z-scores (mean 0, standard deviation 1)
39
+ - The z-score is taken as the overall quality score.
40
 
41
  For convenience, the dataset is split into an **80% training set** and a **20% testing set**.
42
 
 
47
  - The **lower triangle** shows pairwise density plots of classifier scores.
48
  - The **diagonal** presents the distribution of each classifier's scores.
49
  - The **upper triangle** displays correlations between pairs of classifiers.
 
50
 
51
+ - The classifiers' scores show moderate to strong correlations, except for the Nvidia classifier, which is less correlated.
52
+ - The custom-trained classifiers often give bimodal distributions instead of smoothly varying values.
53
+ - Despite the above, the overall score correlates well with each individual classifier's quality score.
54
 
55
  ## License
56
  This dataset is licensed under the **[Open Data Commons Attribution License (ODC-BY)](https://opendatacommons.org/licenses/by/)**.