Datasets:

Size:
n<1K
ArXiv:
Tags:
music
License:
yoyolicoris commited on
Commit
b250889
·
1 Parent(s): 7c90e55

feat: modules folder to load the effects

Browse files
Files changed (4) hide show
  1. modules/functional.py +229 -0
  2. modules/fx.py +1061 -0
  3. modules/rt.py +150 -0
  4. modules/utils.py +64 -0
modules/functional.py ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ from torchcomp import compexp_gain, db2amp
4
+ from torchlpc import sample_wise_lpc
5
+ from typing import List, Tuple, Union, Any, Optional
6
+ import math
7
+
8
+
9
+ def inv_22(a, b, c, d):
10
+ return torch.stack([d, -b, -c, a]).view(2, 2) / (a * d - b * c)
11
+
12
+
13
+ def eig_22(a, b, c, d):
14
+ # https://croninprojects.org/Vince/Geodesy/FindingEigenvectors.pdf
15
+ T = a + d
16
+ D = a * d - b * c
17
+ half_T = T * 0.5
18
+ root = torch.sqrt(half_T * half_T - D) # + 0j)
19
+ L = torch.stack([half_T + root, half_T - root])
20
+
21
+ y = (L - a) / b
22
+ # y = c / L
23
+ V = torch.stack([torch.ones_like(y), y])
24
+ return L, V / V.abs().square().sum(0).sqrt()
25
+
26
+
27
+ def fir(x, b):
28
+ padded = F.pad(x.reshape(-1, 1, x.size(-1)), (b.size(0) - 1, 0))
29
+ return F.conv1d(padded, b.flip(0).view(1, 1, -1)).view(*x.shape)
30
+
31
+
32
+ def allpole(x: torch.Tensor, a: torch.Tensor):
33
+ h = x.reshape(-1, x.shape[-1])
34
+ return sample_wise_lpc(
35
+ h,
36
+ a.broadcast_to(h.shape + a.shape),
37
+ ).reshape(*x.shape)
38
+
39
+
40
+ def biquad(x: torch.Tensor, b0, b1, b2, a0, a1, a2):
41
+ b0 = b0 / a0
42
+ b1 = b1 / a0
43
+ b2 = b2 / a0
44
+ a1 = a1 / a0
45
+ a2 = a2 / a0
46
+
47
+ beta1 = b1 - b0 * a1
48
+ beta2 = b2 - b0 * a2
49
+
50
+ tmp = a1.square() - 4 * a2
51
+ if tmp < 0:
52
+ pole = 0.5 * (-a1 + 1j * torch.sqrt(-tmp))
53
+ u = -1j * x[..., :-1]
54
+ h = sample_wise_lpc(
55
+ u.reshape(-1, u.shape[-1]),
56
+ -pole.broadcast_to(u.shape).reshape(-1, u.shape[-1], 1),
57
+ ).reshape(*u.shape)
58
+ h = (
59
+ h.real * (beta1 * pole.real / pole.imag + beta2 / pole.imag)
60
+ - beta1 * h.imag
61
+ )
62
+ else:
63
+ L, V = eig_22(-a1, -a2, torch.ones_like(a1), torch.zeros_like(a1))
64
+ inv_V = inv_22(*V.view(-1))
65
+
66
+ C = torch.stack([beta1, beta2]) @ V
67
+
68
+ # project input to eigen space
69
+ h = x[..., :-1].unsqueeze(-2) * inv_V[:, :1]
70
+ L = L.unsqueeze(-1).broadcast_to(h.shape)
71
+
72
+ h = (
73
+ sample_wise_lpc(h.reshape(-1, h.shape[-1]), -L.reshape(-1, L.shape[-1], 1))
74
+ .reshape(*h.shape)
75
+ .transpose(-2, -1)
76
+ ) @ C
77
+ tmp = b0 * x
78
+ y = torch.cat([tmp[..., :1], h + tmp[..., 1:]], -1)
79
+ return y
80
+
81
+
82
+ def highpass_biquad_coef(
83
+ sample_rate: int,
84
+ cutoff_freq: torch.Tensor,
85
+ Q: torch.Tensor,
86
+ ):
87
+ w0 = 2 * torch.pi * cutoff_freq / sample_rate
88
+ alpha = torch.sin(w0) / 2.0 / Q
89
+
90
+ b0 = (1 + torch.cos(w0)) / 2
91
+ b1 = -1 - torch.cos(w0)
92
+ b2 = b0
93
+ a0 = 1 + alpha
94
+ a1 = -2 * torch.cos(w0)
95
+ a2 = 1 - alpha
96
+ return b0, b1, b2, a0, a1, a2
97
+
98
+
99
+ def apply_biquad(bq):
100
+ return lambda waveform, *args, **kwargs: biquad(waveform, *bq(*args, **kwargs))
101
+
102
+
103
+ highpass_biquad = apply_biquad(highpass_biquad_coef)
104
+
105
+
106
+ def lowpass_biquad_coef(
107
+ sample_rate: int,
108
+ cutoff_freq: torch.Tensor,
109
+ Q: torch.Tensor,
110
+ ):
111
+ w0 = 2 * torch.pi * cutoff_freq / sample_rate
112
+ alpha = torch.sin(w0) / 2 / Q
113
+
114
+ b0 = (1 - torch.cos(w0)) / 2
115
+ b1 = 1 - torch.cos(w0)
116
+ b2 = b0
117
+ a0 = 1 + alpha
118
+ a1 = -2 * torch.cos(w0)
119
+ a2 = 1 - alpha
120
+ return b0, b1, b2, a0, a1, a2
121
+
122
+
123
+ def equalizer_biquad_coef(
124
+ sample_rate: int,
125
+ center_freq: torch.Tensor,
126
+ gain: torch.Tensor,
127
+ Q: torch.Tensor,
128
+ ):
129
+
130
+ w0 = 2 * torch.pi * center_freq / sample_rate
131
+ A = torch.exp(gain / 40.0 * math.log(10))
132
+ alpha = torch.sin(w0) / 2 / Q
133
+
134
+ b0 = 1 + alpha * A
135
+ b1 = -2 * torch.cos(w0)
136
+ b2 = 1 - alpha * A
137
+
138
+ a0 = 1 + alpha / A
139
+ a1 = -2 * torch.cos(w0)
140
+ a2 = 1 - alpha / A
141
+ return b0, b1, b2, a0, a1, a2
142
+
143
+
144
+ def lowshelf_biquad_coef(
145
+ sample_rate: int,
146
+ cutoff_freq: torch.Tensor,
147
+ gain: torch.Tensor,
148
+ Q: torch.Tensor,
149
+ ):
150
+
151
+ w0 = 2 * torch.pi * cutoff_freq / sample_rate
152
+ A = torch.exp(gain / 40.0 * math.log(10))
153
+ alpha = torch.sin(w0) / 2 / Q
154
+ cosw0 = torch.cos(w0)
155
+ sqrtA = torch.sqrt(A)
156
+
157
+ b0 = A * (A + 1 - (A - 1) * cosw0 + 2 * alpha * sqrtA)
158
+ b1 = 2 * A * (A - 1 - (A + 1) * cosw0)
159
+ b2 = A * (A + 1 - (A - 1) * cosw0 - 2 * alpha * sqrtA)
160
+
161
+ a0 = A + 1 + (A - 1) * cosw0 + 2 * alpha * sqrtA
162
+ a1 = -2 * (A - 1 + (A + 1) * cosw0)
163
+ a2 = A + 1 + (A - 1) * cosw0 - 2 * alpha * sqrtA
164
+
165
+ return b0, b1, b2, a0, a1, a2
166
+
167
+
168
+ def highshelf_biquad_coef(
169
+ sample_rate: int,
170
+ cutoff_freq: torch.Tensor,
171
+ gain: torch.Tensor,
172
+ Q: torch.Tensor,
173
+ ):
174
+
175
+ w0 = 2 * torch.pi * cutoff_freq / sample_rate
176
+ A = torch.exp(gain / 40.0 * math.log(10))
177
+ alpha = torch.sin(w0) / 2 / Q
178
+ cosw0 = torch.cos(w0)
179
+ sqrtA = torch.sqrt(A)
180
+
181
+ b0 = A * (A + 1 + (A - 1) * cosw0 + 2 * alpha * sqrtA)
182
+ b1 = -2 * A * (A - 1 + (A + 1) * cosw0)
183
+ b2 = A * (A + 1 + (A - 1) * cosw0 - 2 * alpha * sqrtA)
184
+
185
+ a0 = A + 1 - (A - 1) * cosw0 + 2 * alpha * sqrtA
186
+ a1 = 2 * (A - 1 - (A + 1) * cosw0)
187
+ a2 = A + 1 - (A - 1) * cosw0 - 2 * alpha * sqrtA
188
+
189
+ return b0, b1, b2, a0, a1, a2
190
+
191
+
192
+ highpass_biquad = apply_biquad(highpass_biquad_coef)
193
+ lowpass_biquad = apply_biquad(lowpass_biquad_coef)
194
+ highshelf_biquad = apply_biquad(highshelf_biquad_coef)
195
+ lowshelf_biquad = apply_biquad(lowshelf_biquad_coef)
196
+ equalizer_biquad = apply_biquad(equalizer_biquad_coef)
197
+
198
+
199
+ def avg(rms: torch.Tensor, avg_coef: torch.Tensor):
200
+ assert torch.all(avg_coef > 0) and torch.all(avg_coef <= 1)
201
+
202
+ h = rms * avg_coef
203
+
204
+ return sample_wise_lpc(
205
+ h,
206
+ (avg_coef - 1).broadcast_to(h.shape).unsqueeze(-1),
207
+ )
208
+
209
+
210
+ def avg_rms(audio: torch.Tensor, avg_coef) -> torch.Tensor:
211
+ return avg(audio.square().clamp_min(1e-8), avg_coef).sqrt()
212
+
213
+
214
+ def compressor_expander(
215
+ x: torch.Tensor,
216
+ avg_coef: Union[torch.Tensor, float],
217
+ cmp_th: Union[torch.Tensor, float],
218
+ cmp_ratio: Union[torch.Tensor, float],
219
+ exp_th: Union[torch.Tensor, float],
220
+ exp_ratio: Union[torch.Tensor, float],
221
+ at: Union[torch.Tensor, float],
222
+ rt: Union[torch.Tensor, float],
223
+ make_up: torch.Tensor,
224
+ lookahead_func=lambda x: x,
225
+ ):
226
+ rms = avg_rms(x, avg_coef=avg_coef)
227
+ gain = compexp_gain(rms, cmp_th, cmp_ratio, exp_th, exp_ratio, at, rt)
228
+ gain = lookahead_func(gain)
229
+ return x * gain * db2amp(make_up).broadcast_to(x.shape[0], 1)
modules/fx.py ADDED
@@ -0,0 +1,1061 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torch.nn.functional as F
4
+ from torch.nn.utils.parametrize import register_parametrization
5
+ from torchcomp import ms2coef, coef2ms, db2amp, amp2db
6
+ from torchaudio.transforms import Spectrogram, InverseSpectrogram
7
+
8
+ from typing import List, Tuple, Union, Any, Optional, Callable
9
+ import math
10
+ from torch_fftconv import fft_conv1d
11
+ from functools import reduce
12
+
13
+ from .functional import (
14
+ compressor_expander,
15
+ lowpass_biquad,
16
+ highpass_biquad,
17
+ equalizer_biquad,
18
+ lowshelf_biquad,
19
+ highshelf_biquad,
20
+ lowpass_biquad_coef,
21
+ highpass_biquad_coef,
22
+ highshelf_biquad_coef,
23
+ lowshelf_biquad_coef,
24
+ equalizer_biquad_coef,
25
+ )
26
+ from .utils import chain_functions
27
+
28
+
29
+ class Clip(nn.Module):
30
+ def __init__(self, max: Optional[float] = None, min: Optional[float] = None):
31
+ super().__init__()
32
+ self.min = min
33
+ self.max = max
34
+
35
+ def forward(self, x):
36
+ if self.min is not None:
37
+ x = torch.clip(x, min=self.min)
38
+ if self.max is not None:
39
+ x = torch.clip(x, max=self.max)
40
+ return x
41
+
42
+
43
+ def clip_delay_eq_Q(m: nn.Module, Q: float):
44
+ if isinstance(m, Delay) and isinstance(m.eq, LowPass):
45
+ register_parametrization(m.eq.params, "Q", Clip(max=Q))
46
+ return m
47
+
48
+
49
+ float2param = lambda x: nn.Parameter(
50
+ torch.tensor(x, dtype=torch.float32) if not isinstance(x, torch.Tensor) else x
51
+ )
52
+
53
+ STEREO_NORM = math.sqrt(2)
54
+
55
+
56
+ def broadcast2stereo(m, args):
57
+ x, *_ = args
58
+ return x.expand(-1, 2, -1) if x.shape[1] == 1 else x
59
+
60
+
61
+ hadamard = lambda x: torch.stack([x.sum(1), x[:, 0] - x[:, 1]], 1) / STEREO_NORM
62
+
63
+
64
+ class Hadamard(nn.Module):
65
+ def forward(self, x):
66
+ return hadamard(x)
67
+
68
+
69
+ class FX(nn.Module):
70
+ def __init__(self, **kwargs) -> None:
71
+ super().__init__()
72
+
73
+ self.params = nn.ParameterDict({k: float2param(v) for k, v in kwargs.items()})
74
+
75
+ def toJSON(self) -> dict[str, Any]:
76
+ return {k: v.item() for k, v in self.params.items() if v.numel() == 1}
77
+
78
+
79
+ class SmoothingCoef(nn.Module):
80
+ def forward(self, x):
81
+ return x.sigmoid()
82
+
83
+ def right_inverse(self, y):
84
+ return (y / (1 - y)).log()
85
+
86
+
87
+ class CompRatio(nn.Module):
88
+ def forward(self, x):
89
+ return x.exp() + 1
90
+
91
+ def right_inverse(self, y):
92
+ return torch.log(y - 1)
93
+
94
+
95
+ class MinMax(nn.Module):
96
+ def __init__(self, min=0.0, max: Union[float, torch.Tensor] = 1.0):
97
+ super().__init__()
98
+ if isinstance(min, torch.Tensor):
99
+ self.register_buffer("min", min, persistent=False)
100
+ else:
101
+ self.min = min
102
+
103
+ if isinstance(max, torch.Tensor):
104
+ self.register_buffer("max", max, persistent=False)
105
+ else:
106
+ self.max = max
107
+
108
+ self._m = SmoothingCoef()
109
+
110
+ def forward(self, x):
111
+ return self._m(x) * (self.max - self.min) + self.min
112
+
113
+ def right_inverse(self, y):
114
+ return self._m.right_inverse((y - self.min) / (self.max - self.min))
115
+
116
+
117
+ class WrappedPositive(nn.Module):
118
+ def __init__(self, period):
119
+ super().__init__()
120
+ self.period = period
121
+
122
+ def forward(self, x):
123
+ return x.abs() % self.period
124
+
125
+ def right_inverse(self, y):
126
+ return y
127
+
128
+
129
+ class CompressorExpander(FX):
130
+ cmp_ratio_min: float = 1
131
+ cmp_ratio_max: float = 20
132
+
133
+ def __init__(
134
+ self,
135
+ sr: int,
136
+ cmp_ratio: float = 2.0,
137
+ exp_ratio: float = 0.5,
138
+ at_ms: float = 50.0,
139
+ rt_ms: float = 50.0,
140
+ avg_coef: float = 0.3,
141
+ cmp_th: float = -18.0,
142
+ exp_th: float = -54.0,
143
+ make_up: float = 0.0,
144
+ delay: int = 0,
145
+ lookahead: bool = False,
146
+ max_lookahead: float = 15.0,
147
+ ):
148
+ super().__init__(
149
+ cmp_th=cmp_th,
150
+ exp_th=exp_th,
151
+ make_up=make_up,
152
+ avg_coef=avg_coef,
153
+ cmp_ratio=cmp_ratio,
154
+ exp_ratio=exp_ratio,
155
+ )
156
+ # deprecated, please use lookahead instead
157
+ self.delay = delay
158
+ self.sr = sr
159
+
160
+ self.params["at"] = nn.Parameter(ms2coef(torch.tensor(at_ms), sr))
161
+ self.params["rt"] = nn.Parameter(ms2coef(torch.tensor(rt_ms), sr))
162
+
163
+ if lookahead:
164
+ self.params["lookahead"] = nn.Parameter(torch.ones(1) / sr * 1000)
165
+ register_parametrization(
166
+ self.params, "lookahead", WrappedPositive(max_lookahead)
167
+ )
168
+ sinc_length = int(sr * (max_lookahead + 1) * 0.001) + 1
169
+ left_pad_size = int(sr * 0.001)
170
+ self._pad_size = (left_pad_size, sinc_length - left_pad_size - 1)
171
+ self.register_buffer(
172
+ "_arange",
173
+ torch.arange(sinc_length) - left_pad_size,
174
+ persistent=False,
175
+ )
176
+ self.lookahead = lookahead
177
+
178
+ register_parametrization(self.params, "at", SmoothingCoef())
179
+ register_parametrization(self.params, "rt", SmoothingCoef())
180
+ register_parametrization(self.params, "avg_coef", SmoothingCoef())
181
+ register_parametrization(
182
+ self.params, "cmp_ratio", MinMax(self.cmp_ratio_min, self.cmp_ratio_max)
183
+ )
184
+ register_parametrization(self.params, "exp_ratio", SmoothingCoef())
185
+
186
+ def extra_repr(self) -> str:
187
+ with torch.no_grad():
188
+ s = (
189
+ f"attack: {coef2ms(self.params.at, self.sr).item()} (ms)\n"
190
+ f"release: {coef2ms(self.params.rt, self.sr).item()} (ms)\n"
191
+ f"avg_coef: {self.params.avg_coef.item()}\n"
192
+ f"compressor_ratio: {self.params.cmp_ratio.item()}\n"
193
+ f"expander_ratio: {self.params.exp_ratio.item()}\n"
194
+ f"compressor_threshold: {self.params.cmp_th.item()} (dB)\n"
195
+ f"expander_threshold: {self.params.exp_th.item()} (dB)\n"
196
+ f"make_up: {self.params.make_up.item()} (dB)"
197
+ )
198
+ if self.lookahead:
199
+ s += f"\nlookahead: {self.params.lookahead.item()} (ms)"
200
+ return s
201
+
202
+ def toJSON(self) -> dict[str, Any]:
203
+ return {
204
+ "Attack (ms)": coef2ms(self.params.at, self.sr).item(),
205
+ "Release (ms)": coef2ms(self.params.rt, self.sr).item(),
206
+ "Average Coefficient": self.params.avg_coef.item(),
207
+ "Compressor Ratio": self.params.cmp_ratio.item(),
208
+ "Expander Ratio": self.params.exp_ratio.item(),
209
+ "Compressor Threshold (dB)": self.params.cmp_th.item(),
210
+ "Expander Threshold (dB)": self.params.exp_th.item(),
211
+ "Make Up (dB)": self.params.make_up.item(),
212
+ } | ({"Lookahead (ms)": self.params.lookahead.item()} if self.lookahead else {})
213
+
214
+ def forward(self, x):
215
+ if self.lookahead:
216
+ lookahead_in_samples = self.params.lookahead * 0.001 * self.sr
217
+ sinc_filter = torch.sinc(self._arange - lookahead_in_samples)
218
+ lookahead_func = lambda gain: F.conv1d(
219
+ F.pad(
220
+ gain.view(-1, 1, gain.size(-1)), self._pad_size, mode="replicate"
221
+ ),
222
+ sinc_filter[None, None, :],
223
+ ).view(*gain.shape)
224
+ else:
225
+ lookahead_func = lambda x: x
226
+
227
+ return compressor_expander(
228
+ x.reshape(-1, x.shape[-1]),
229
+ lookahead_func=lookahead_func,
230
+ **{k: v for k, v in self.params.items() if k != "lookahead"},
231
+ ).view(*x.shape)
232
+
233
+
234
+ class Panning(FX):
235
+ def __init__(self, pan: float = 0.0):
236
+ assert pan <= 100 and pan >= -100
237
+ super().__init__(pan=(pan + 100) / 200)
238
+
239
+ register_parametrization(self.params, "pan", SmoothingCoef())
240
+
241
+ self.register_forward_pre_hook(broadcast2stereo)
242
+
243
+ def extra_repr(self) -> str:
244
+ with torch.no_grad():
245
+ s = f"pan: {self.params.pan.item() * 200 - 100}"
246
+ return s
247
+
248
+ def toJSON(self) -> dict[str, Any]:
249
+ return {
250
+ "Pan": self.params.pan.item() * 200 - 100,
251
+ }
252
+
253
+ def forward(self, x: torch.Tensor):
254
+ angle = self.params.pan.view(1) * torch.pi * 0.5
255
+ amp = torch.concat([angle.cos(), angle.sin()]).view(2, 1) * STEREO_NORM
256
+ return x * amp
257
+
258
+
259
+ class StereoWidth(Panning):
260
+ def forward(self, x: torch.Tensor):
261
+ return chain_functions(hadamard, super().forward, hadamard)(x)
262
+
263
+
264
+ class ImpulseResponse(nn.Module):
265
+ def forward(self, h):
266
+ return torch.cat([torch.ones_like(h[..., :1]), h], dim=-1)
267
+
268
+
269
+ class FIR(FX):
270
+ def __init__(
271
+ self,
272
+ length: int,
273
+ channels: int = 2,
274
+ conv_method: str = "direct",
275
+ ):
276
+ super().__init__(kernel=torch.zeros(channels, length - 1))
277
+ self._padding = length - 1
278
+ self.channels = channels
279
+
280
+ match conv_method:
281
+ case "direct":
282
+ self.conv_func = F.conv1d
283
+ case "fft":
284
+ self.conv_func = fft_conv1d
285
+ case _:
286
+ raise ValueError(f"Unknown conv_method: {conv_method}")
287
+
288
+ if channels == 2:
289
+ self.register_forward_pre_hook(broadcast2stereo)
290
+
291
+ def forward(self, x: torch.Tensor):
292
+ zero_padded = F.pad(x[..., :-1], (self._padding, 0), "constant", 0)
293
+ return x + self.conv_func(
294
+ zero_padded, self.params.kernel.flip(1).unsqueeze(1), groups=self.channels
295
+ )
296
+
297
+
298
+ class QFactor(nn.Module):
299
+ def forward(self, x):
300
+ return x.exp()
301
+
302
+ def right_inverse(self, y):
303
+ return y.log()
304
+
305
+
306
+ class LowPass(FX):
307
+ def __init__(
308
+ self,
309
+ sr: int,
310
+ freq: float = 17500.0,
311
+ Q: float = 0.707,
312
+ min_freq: float = 200.0,
313
+ max_freq: float = 18000,
314
+ min_Q: float = 0.5,
315
+ max_Q: float = 10.0,
316
+ ):
317
+ super().__init__(freq=freq, Q=Q)
318
+
319
+ self.sr = sr
320
+ register_parametrization(self.params, "freq", MinMax(min_freq, max_freq))
321
+ register_parametrization(self.params, "Q", MinMax(min_Q, max_Q))
322
+
323
+ def forward(self, x):
324
+ return lowpass_biquad(
325
+ x, sample_rate=self.sr, cutoff_freq=self.params.freq, Q=self.params.Q
326
+ )
327
+
328
+ def extra_repr(self) -> str:
329
+ with torch.no_grad():
330
+ s = f"freq: {self.params.freq.item():.4f}, Q: {self.params.Q.item():.4f}"
331
+ return s
332
+
333
+ def toJSON(self) -> dict[str, Any]:
334
+ return {
335
+ "Frequency (Hz)": self.params.freq.item(),
336
+ "Q": self.params.Q.item(),
337
+ }
338
+
339
+
340
+ class HighPass(LowPass):
341
+ def __init__(
342
+ self,
343
+ *args,
344
+ freq: float = 200.0,
345
+ min_freq: float = 16.0,
346
+ max_freq: float = 5300.0,
347
+ **kwargs,
348
+ ):
349
+ super().__init__(
350
+ *args, freq=freq, min_freq=min_freq, max_freq=max_freq, **kwargs
351
+ )
352
+
353
+ def forward(self, x):
354
+ return highpass_biquad(
355
+ x, sample_rate=self.sr, cutoff_freq=self.params.freq, Q=self.params.Q
356
+ )
357
+
358
+
359
+ class Peak(FX):
360
+ def __init__(
361
+ self,
362
+ sr: int,
363
+ gain: float = 0.0,
364
+ freq: float = 2000.0,
365
+ Q: float = 0.707,
366
+ min_freq: float = 33.0,
367
+ max_freq: float = 17500.0,
368
+ min_Q: float = 0.2,
369
+ max_Q: float = 20,
370
+ ):
371
+ super().__init__(freq=freq, Q=Q, gain=gain)
372
+
373
+ self.sr = sr
374
+
375
+ register_parametrization(self.params, "freq", MinMax(min_freq, max_freq))
376
+ register_parametrization(self.params, "Q", MinMax(min_Q, max_Q))
377
+
378
+ def forward(self, x):
379
+ return equalizer_biquad(
380
+ x,
381
+ sample_rate=self.sr,
382
+ center_freq=self.params.freq,
383
+ Q=self.params.Q,
384
+ gain=self.params.gain,
385
+ )
386
+
387
+ def extra_repr(self) -> str:
388
+ with torch.no_grad():
389
+ s = f"freq: {self.params.freq.item():.4f}, gain: {self.params.gain.item():.4f}, Q: {self.params.Q.item():.4f}"
390
+ return s
391
+
392
+ def toJSON(self) -> dict[str, Any]:
393
+ return {
394
+ "Frequency (Hz)": self.params.freq.item(),
395
+ "Gain (dB)": self.params.gain.item(),
396
+ "Q": self.params.Q.item(),
397
+ }
398
+
399
+
400
+ class LowShelf(FX):
401
+ def __init__(
402
+ self,
403
+ sr: int,
404
+ gain: float = 0.0,
405
+ freq: float = 115.0,
406
+ min_freq: float = 30,
407
+ max_freq: float = 200,
408
+ ):
409
+ super().__init__(freq=freq, gain=gain)
410
+
411
+ self.sr = sr
412
+ register_parametrization(self.params, "freq", MinMax(min_freq, max_freq))
413
+
414
+ self.register_buffer("Q", torch.tensor(0.707), persistent=False)
415
+
416
+ def forward(self, x):
417
+ return lowshelf_biquad(
418
+ x,
419
+ sample_rate=self.sr,
420
+ cutoff_freq=self.params.freq,
421
+ gain=self.params.gain,
422
+ Q=self.Q,
423
+ )
424
+
425
+ def extra_repr(self) -> str:
426
+ with torch.no_grad():
427
+ s = f"freq: {self.params.freq.item():.4f}, gain: {self.params.gain.item():.4f}"
428
+ return s
429
+
430
+ def toJSON(self) -> dict[str, Any]:
431
+ return {
432
+ "Frequency (Hz)": self.params.freq.item(),
433
+ "Gain (dB)": self.params.gain.item(),
434
+ }
435
+
436
+
437
+ class HighShelf(LowShelf):
438
+ def __init__(
439
+ self,
440
+ *args,
441
+ freq: float = 4525,
442
+ min_freq: float = 750,
443
+ max_freq: float = 8300,
444
+ **kwargs,
445
+ ):
446
+ super().__init__(
447
+ *args, freq=freq, min_freq=min_freq, max_freq=max_freq, **kwargs
448
+ )
449
+
450
+ def forward(self, x):
451
+ return highshelf_biquad(
452
+ x,
453
+ sample_rate=self.sr,
454
+ cutoff_freq=self.params.freq,
455
+ gain=self.params.gain,
456
+ Q=self.Q,
457
+ )
458
+
459
+
460
+ def module2coeffs(
461
+ m: Union[LowPass, HighPass, Peak, LowShelf, HighShelf],
462
+ ) -> Tuple[
463
+ torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor
464
+ ]:
465
+ match m:
466
+ case LowPass():
467
+ return lowpass_biquad_coef(m.sr, m.params.freq, m.params.Q)
468
+ case HighPass():
469
+ return highpass_biquad_coef(m.sr, m.params.freq, m.params.Q)
470
+ case Peak():
471
+ return equalizer_biquad_coef(m.sr, m.params.freq, m.params.Q, m.params.gain)
472
+ case LowShelf():
473
+ return lowshelf_biquad_coef(m.sr, m.params.freq, m.params.gain, m.Q)
474
+ case HighShelf():
475
+ return highshelf_biquad_coef(m.sr, m.params.freq, m.params.gain, m.Q)
476
+ case _:
477
+ raise ValueError(f"Unknown module: {m}")
478
+
479
+
480
+ class AlwaysNegative(nn.Module):
481
+ def forward(self, x):
482
+ return -F.softplus(x)
483
+
484
+ def right_inverse(self, y):
485
+ return torch.log(y.neg().exp() - 1)
486
+
487
+
488
+ class Reverb(FX):
489
+ def __init__(self, ir_len=60000, n_fft=384, hop_length=192, downsample_factor=1):
490
+ super().__init__(
491
+ log_mag=torch.full((2, n_fft // downsample_factor // 2 + 1), -1.0),
492
+ log_mag_delta=torch.full((2, n_fft // downsample_factor // 2 + 1), -5.0),
493
+ )
494
+
495
+ self.steps = (ir_len - n_fft + hop_length - 1) // hop_length
496
+ self.n_fft = n_fft
497
+ self.hop_length = hop_length
498
+ self.downsample_factor = downsample_factor
499
+
500
+ self._noise_angle = nn.Parameter(
501
+ torch.rand(2, n_fft // 2 + 1, self.steps) * 2 * torch.pi
502
+ )
503
+
504
+ self.register_buffer(
505
+ "_arange", torch.arange(self.steps, dtype=torch.float32), persistent=False
506
+ )
507
+ self.spec_forward = Spectrogram(n_fft, hop_length=hop_length, power=None)
508
+ self.spec_inverse = InverseSpectrogram(
509
+ n_fft,
510
+ hop_length=hop_length,
511
+ )
512
+
513
+ register_parametrization(self.params, "log_mag", AlwaysNegative())
514
+ register_parametrization(self.params, "log_mag_delta", AlwaysNegative())
515
+
516
+ self.register_forward_pre_hook(broadcast2stereo)
517
+
518
+ def forward(self, x):
519
+ h = x
520
+ H = self.spec_forward(h)
521
+
522
+ log_mag = self.params.log_mag
523
+ log_mag_delta = self.params.log_mag_delta
524
+
525
+ if self.downsample_factor > 1:
526
+ log_mag = F.interpolate(
527
+ log_mag.unsqueeze(0),
528
+ size=self._noise_angle.size(1),
529
+ align_corners=True,
530
+ mode="linear",
531
+ ).squeeze(0)
532
+ log_mag_delta = F.interpolate(
533
+ log_mag_delta.unsqueeze(0),
534
+ size=self._noise_angle.size(1),
535
+ align_corners=True,
536
+ mode="linear",
537
+ ).squeeze(0)
538
+
539
+ ir_2d = torch.exp(
540
+ log_mag.unsqueeze(-1)
541
+ + log_mag_delta.unsqueeze(-1) * self._arange
542
+ + self._noise_angle * 1j
543
+ )
544
+
545
+ padded_H = F.pad(H.flatten(1, 2), (ir_2d.shape[-1] - 1, 0))
546
+
547
+ H = F.conv1d(
548
+ padded_H,
549
+ hadamard(ir_2d.unsqueeze(0)).flatten(1, 2).flip(-1).transpose(0, 1),
550
+ groups=H.shape[2] * 2,
551
+ ).view(*H.shape)
552
+
553
+ h = self.spec_inverse(H)
554
+ return h
555
+
556
+
557
+ class Delay(FX):
558
+ min_delay: float = 100
559
+ max_delay: float = 1000
560
+
561
+ def __init__(
562
+ self,
563
+ sr: int,
564
+ delay=200.0,
565
+ feedback=0.1,
566
+ gain=0.1,
567
+ ir_duration: float = 2,
568
+ eq: Optional[nn.Module] = None,
569
+ recursive_eq=False,
570
+ ):
571
+ super().__init__(
572
+ delay=delay,
573
+ feedback=feedback,
574
+ gain=gain,
575
+ )
576
+ self.sr = sr
577
+ self.ir_length = int(sr * max(ir_duration, self.max_delay * 0.002))
578
+
579
+ register_parametrization(
580
+ self.params, "delay", MinMax(self.min_delay, self.max_delay)
581
+ )
582
+ register_parametrization(self.params, "feedback", SmoothingCoef())
583
+ register_parametrization(self.params, "gain", SmoothingCoef())
584
+
585
+ self.eq = eq
586
+ self.recursive_eq = recursive_eq
587
+
588
+ self.register_buffer(
589
+ "_arange", torch.arange(self.ir_length, dtype=torch.float32)
590
+ )
591
+
592
+ self.odd_pan = Panning(0)
593
+ self.even_pan = Panning(0)
594
+
595
+ def forward(self, x):
596
+ assert x.size(1) == 1, x.size()
597
+ delay_in_samples = self.sr * self.params.delay * 0.001
598
+ num_delays = self.ir_length // int(delay_in_samples.item() + 1)
599
+ series = torch.arange(1, num_delays + 1, device=x.device)
600
+ decays = self.params.feedback ** (series - 1)
601
+
602
+ if self.recursive_eq and self.eq is not None:
603
+ sinc_index = self._arange - delay_in_samples
604
+ single_sinc_filter = torch.sinc(sinc_index)
605
+ eq_sinc_filter = self.eq(single_sinc_filter)
606
+ H = torch.fft.rfft(eq_sinc_filter)
607
+ H_powered = torch.polar(
608
+ H.abs() ** series.unsqueeze(-1), H.angle() * series.unsqueeze(-1)
609
+ )
610
+ sinc_filters = torch.fft.irfft(H_powered, n=self.ir_length)
611
+ else:
612
+ delays_in_samples = delay_in_samples * series
613
+ sinc_indexes = self._arange - delays_in_samples.unsqueeze(-1)
614
+ sinc_filters = torch.sinc(sinc_indexes)
615
+
616
+ decayed_sinc_filters = sinc_filters * decays.unsqueeze(-1)
617
+ return self._filter(x, decayed_sinc_filters)
618
+
619
+ def _filter(self, x: torch.Tensor, decayed_sinc_filters: torch.Tensor):
620
+ odd_delay_filters = torch.sum(decayed_sinc_filters[::2], 0)
621
+ even_delay_filters = torch.sum(decayed_sinc_filters[1::2], 0)
622
+ stacked_filters = torch.stack([odd_delay_filters, even_delay_filters])
623
+
624
+ if self.eq is not None and not self.recursive_eq:
625
+ stacked_filters = self.eq(stacked_filters)
626
+
627
+ gained_odd_even_filters = stacked_filters * self.params.gain
628
+ padded_x = F.pad(x, (gained_odd_even_filters.size(-1) - 1, 0))
629
+ conv1d = F.conv1d if x.size(-1) > 44100 * 20 else fft_conv1d
630
+ return sum(
631
+ [
632
+ panner(s)
633
+ for panner, s in zip(
634
+ [self.odd_pan, self.even_pan],
635
+ # fft_conv1d(
636
+ conv1d(
637
+ padded_x,
638
+ gained_odd_even_filters.flip(-1).unsqueeze(1),
639
+ ).chunk(2, 1),
640
+ )
641
+ ]
642
+ )
643
+
644
+ def extra_repr(self) -> str:
645
+ with torch.no_grad():
646
+ s = (
647
+ f"delay: {self.sr * self.params.delay.item() * 0.001} (samples)\n"
648
+ f"feedback: {self.params.feedback.item()}\n"
649
+ f"gain: {self.params.gain.item()}"
650
+ )
651
+ return s
652
+
653
+ def toJSON(self) -> dict[str, Any]:
654
+ return {
655
+ "Delay (ms)": self.params.delay.item(),
656
+ "Feedback (dB)": self.params.feedback.log10().mul(20).item(),
657
+ "Gain (dB)": self.params.gain.log10().mul(20).item(),
658
+ "Odd delays": self.odd_pan.toJSON(),
659
+ "Even delays": self.even_pan.toJSON(),
660
+ }
661
+
662
+
663
+ class SurrogateDelay(Delay):
664
+ def __init__(self, *args, dropout=0.5, straight_through=False, **kwargs):
665
+ super().__init__(*args, **kwargs)
666
+
667
+ self.dropout = dropout
668
+ self.straight_through = straight_through
669
+ self.log_damp = nn.Parameter(torch.ones(1) * -0.01)
670
+ register_parametrization(self, "log_damp", AlwaysNegative())
671
+
672
+ def forward(self, x):
673
+ assert x.size(1) == 1, x.size()
674
+ if not self.training:
675
+ return super().forward(x)
676
+
677
+ log_damp = self.log_damp
678
+ delay_in_samples = self.sr * self.params.delay * 0.001
679
+ num_delays = self.ir_length // int(delay_in_samples.item() + 1)
680
+ series = torch.arange(1, num_delays + 1, device=x.device)
681
+ decays = self.params.feedback ** (series - 1)
682
+
683
+ if self.recursive_eq and self.eq is not None:
684
+ exp_factor = self._arange[: self.ir_length // 2 + 1]
685
+ damped_exp = torch.exp(
686
+ log_damp * exp_factor
687
+ - 1j * delay_in_samples / self.ir_length * 2 * torch.pi * exp_factor
688
+ )
689
+ sinc_filter = torch.fft.irfft(damped_exp, n=self.ir_length)
690
+ if self.straight_through:
691
+ sinc_index = self._arange - delay_in_samples
692
+ hard_sinc_filter = torch.sinc(sinc_index)
693
+ sinc_filter = sinc_filter + (hard_sinc_filter - sinc_filter).detach()
694
+
695
+ eq_sinc_filter = self.eq(sinc_filter)
696
+ H = torch.fft.rfft(eq_sinc_filter)
697
+
698
+ # use polar form to avoid NaN
699
+ H_powered = torch.polar(
700
+ H.abs() ** series.unsqueeze(-1), H.angle() * series.unsqueeze(-1)
701
+ )
702
+ sinc_filters = torch.fft.irfft(H_powered, n=self.ir_length)
703
+ else:
704
+ exp_factors = series.unsqueeze(-1) * self._arange[: self.ir_length // 2 + 1]
705
+ damped_exps = torch.exp(
706
+ log_damp * exp_factors
707
+ - 1j * delay_in_samples / self.ir_length * 2 * torch.pi * exp_factors
708
+ )
709
+ sinc_filters = torch.fft.irfft(damped_exps, n=self.ir_length)
710
+ if self.straight_through:
711
+ delays_in_samples = delay_in_samples * series
712
+ sinc_indexes = self._arange - delays_in_samples.unsqueeze(-1)
713
+ hard_sinc_filters = torch.sinc(sinc_indexes)
714
+ sinc_filters = (
715
+ sinc_filters + (hard_sinc_filters - sinc_filters).detach()
716
+ )
717
+
718
+ decayed_sinc_filters = sinc_filters * decays.unsqueeze(-1)
719
+
720
+ dropout_mask = torch.rand(x.size(0), device=x.device) < self.dropout
721
+ if not torch.any(dropout_mask):
722
+ return self._filter(x, decayed_sinc_filters)
723
+ elif torch.all(dropout_mask):
724
+ return super().forward(x)
725
+
726
+ out = torch.zeros((x.size(0), 2, x.size(2)), device=x.device)
727
+ out[~dropout_mask] = self._filter(x[~dropout_mask], decayed_sinc_filters)
728
+ out[dropout_mask] = super().forward(x[dropout_mask])
729
+ return out
730
+
731
+ def extra_repr(self) -> str:
732
+ with torch.no_grad():
733
+ return super().extra_repr() + f"\ndamp: {self.log_damp.exp().item()}"
734
+
735
+
736
+ class FSDelay(FX):
737
+ def __init__(
738
+ self,
739
+ sr: int,
740
+ delay=200.0,
741
+ feedback=0.1,
742
+ gain=0.1,
743
+ ir_duration: float = 6,
744
+ eq: Optional[LowPass] = None,
745
+ recursive_eq=False,
746
+ ):
747
+ super().__init__(
748
+ delay=delay,
749
+ feedback=feedback,
750
+ gain=gain,
751
+ )
752
+ self.sr = sr
753
+ self.ir_length = int(sr * max(ir_duration, Delay.max_delay * 0.002))
754
+
755
+ register_parametrization(
756
+ self.params, "delay", MinMax(Delay.min_delay, Delay.max_delay)
757
+ )
758
+ register_parametrization(self.params, "gain", SmoothingCoef())
759
+
760
+ T_60 = ir_duration * 0.75
761
+ max_delay_in_samples = sr * Delay.max_delay * 0.001
762
+ maximum_decay = db2amp(torch.tensor(-60 / sr / T_60 * max_delay_in_samples))
763
+ register_parametrization(self.params, "feedback", MinMax(0, maximum_decay))
764
+
765
+ self.eq = eq
766
+ self.recursive_eq = recursive_eq
767
+
768
+ self.odd_pan = Panning(0)
769
+ self.even_pan = Panning(0)
770
+
771
+ self.register_buffer(
772
+ "_arange", torch.arange(self.ir_length, dtype=torch.float32)
773
+ )
774
+
775
+ def _get_h(self):
776
+ freqs = self._arange[: self.ir_length // 2 + 1] / self.ir_length * 2 * torch.pi
777
+ delay_in_samples = self.sr * self.params.delay * 0.001
778
+
779
+ # construct it like a fdn
780
+ Dinv = torch.exp(1j * freqs * delay_in_samples)
781
+ Dinv2 = torch.exp(2j * freqs * delay_in_samples)
782
+ if self.recursive_eq and self.eq is not None:
783
+ b0, b1, b2, a0, a1, a2 = module2coeffs(self.eq)
784
+ z_inv = torch.exp(-1j * freqs)
785
+ z_inv2 = torch.exp(-2j * freqs)
786
+ eq_H = (b0 + b1 * z_inv + b2 * z_inv2) / (a0 + a1 * z_inv + a2 * z_inv2)
787
+ damp = eq_H * self.params.feedback
788
+ det = Dinv2 - damp * damp
789
+ else:
790
+ damp = torch.full_like(Dinv, self.params.feedback) + 0j
791
+ det = Dinv2 - self.params.feedback.square()
792
+ inv_Dinv_m_A = torch.stack([Dinv, damp], 0) / det
793
+ h = torch.fft.irfft(inv_Dinv_m_A, n=self.ir_length) * self.params.gain
794
+
795
+ if self.eq is not None and not self.recursive_eq:
796
+ h = self.eq(h)
797
+ return h
798
+
799
+ def forward(self, x):
800
+ assert x.size(1) == 1, x.size()
801
+ h = self._get_h()
802
+
803
+ padded_x = F.pad(x, (h.size(-1) - 1, 0))
804
+ conv1d = F.conv1d if x.size(-1) > 44100 * 20 else fft_conv1d
805
+ return sum(
806
+ [
807
+ panner(s)
808
+ for panner, s in zip(
809
+ [self.odd_pan, self.even_pan],
810
+ conv1d(
811
+ padded_x,
812
+ h.flip(-1).unsqueeze(1),
813
+ ).chunk(2, 1),
814
+ )
815
+ ]
816
+ )
817
+
818
+ def extra_repr(self) -> str:
819
+ with torch.no_grad():
820
+ s = (
821
+ f"delay: {self.sr * self.params.delay.item() * 0.001} (samples)\n"
822
+ f"feedback: {self.params.feedback.item()}\n"
823
+ f"gain: {self.params.gain.item()}"
824
+ )
825
+ return s
826
+
827
+
828
+ class FSSurrogateDelay(FSDelay):
829
+ def __init__(self, *args, straight_through=False, **kwargs):
830
+ super().__init__(*args, **kwargs)
831
+
832
+ self.straight_through = straight_through
833
+ self.log_damp = nn.Parameter(torch.ones(1) * -0.0001)
834
+ register_parametrization(self, "log_damp", AlwaysNegative())
835
+
836
+ def _get_h(self):
837
+ if not self.training:
838
+ return super()._get_h()
839
+
840
+ log_damp = self.log_damp
841
+ delay_in_samples = self.sr * self.params.delay * 0.001
842
+
843
+ exp_factor = self._arange[: self.ir_length // 2 + 1]
844
+ freqs = exp_factor / self.ir_length * 2 * torch.pi
845
+ D = torch.exp(log_damp * exp_factor - 1j * delay_in_samples * freqs)
846
+ D2 = torch.exp(log_damp * exp_factor * 2 - 2j * delay_in_samples * freqs)
847
+
848
+ if self.straight_through:
849
+ D_orig = torch.exp(-1j * delay_in_samples * freqs)
850
+ D2_orig = torch.exp(-2j * delay_in_samples * freqs)
851
+ D = torch.stack([D, D_orig], 0)
852
+ D2 = torch.stack([D2, D2_orig], 0)
853
+
854
+ if self.recursive_eq and self.eq is not None:
855
+ b0, b1, b2, a0, a1, a2 = module2coeffs(self.eq)
856
+ z_inv = torch.exp(-1j * freqs)
857
+ z_inv2 = torch.exp(-2j * freqs)
858
+ eq_H = (b0 + b1 * z_inv + b2 * z_inv2) / (a0 + a1 * z_inv + a2 * z_inv2)
859
+ damp = eq_H * self.params.feedback
860
+ odd_H = D / (1 - damp * damp * D2)
861
+ even_H = odd_H * D * damp
862
+ else:
863
+ damp = torch.full_like(D, self.params.feedback) + 0j
864
+ odd_H = D / (1 - self.params.feedback.square() * D2)
865
+ even_H = odd_H * D * self.params.feedback
866
+
867
+ inv_Dinv_m_A = torch.stack([odd_H, even_H], 0)
868
+ h = torch.fft.irfft(inv_Dinv_m_A, n=self.ir_length)
869
+
870
+ if self.straight_through:
871
+ damped_h, orig_h = h.unbind(1)
872
+ h = damped_h + (orig_h - damped_h).detach()
873
+
874
+ if self.eq is not None and not self.recursive_eq:
875
+ h = self.eq(h)
876
+ return h * self.params.gain
877
+
878
+ def extra_repr(self) -> str:
879
+ with torch.no_grad():
880
+ return super().extra_repr() + f"\ndamp: {self.log_damp.exp().item()}"
881
+
882
+
883
+ class SendFXsAndSum(FX):
884
+ def __init__(self, *args, cross_send=True, pan_direct=False):
885
+ super().__init__(
886
+ **(
887
+ {
888
+ f"sends_{i}": torch.full([len(args) - i - 1], 0.01)
889
+ for i in range(len(args) - 1)
890
+ }
891
+ if cross_send
892
+ else {}
893
+ )
894
+ )
895
+ self.effects = nn.ModuleList(args)
896
+ if pan_direct:
897
+ self.pan = Panning()
898
+
899
+ if cross_send:
900
+ for i in range(len(args) - 1):
901
+ register_parametrization(self.params, f"sends_{i}", SmoothingCoef())
902
+
903
+ def forward(self, x):
904
+ if hasattr(self, "pan"):
905
+ di = self.pan(x)
906
+ else:
907
+ di = x
908
+
909
+ if len(self.params) == 0:
910
+ return di, reduce(
911
+ lambda x, y: x[..., : y.shape[-1]] + y[..., : x.shape[-1]],
912
+ map(lambda f: f(x), self.effects),
913
+ )
914
+
915
+ def f(states, ps):
916
+ x, cum_sends = states
917
+ m, send_gains = ps
918
+ h = m(cum_sends[0])
919
+ return (
920
+ x[..., : h.shape[-1]] + h[..., : x.shape[-1]],
921
+ (
922
+ None
923
+ if cum_sends.size(0) == 1
924
+ else cum_sends[1:, ..., : h.shape[-1]]
925
+ + send_gains[:, None, None, None] * h[..., : cum_sends.shape[-1]]
926
+ ),
927
+ )
928
+
929
+ return (
930
+ di,
931
+ reduce(
932
+ f,
933
+ zip(
934
+ self.effects,
935
+ [self.params[f"sends_{i}"] for i in range(len(self.effects) - 1)]
936
+ + [None],
937
+ ),
938
+ (
939
+ torch.zeros_like(x),
940
+ x.unsqueeze(0).expand(len(self.effects), -1, -1, -1),
941
+ ),
942
+ )[0],
943
+ )
944
+
945
+
946
+ class UniLossLess(nn.Module):
947
+ def forward(self, x):
948
+ tri = x.triu(1)
949
+ return torch.linalg.matrix_exp(tri - tri.T)
950
+
951
+
952
+ class FDN(FX):
953
+ max_delay = 100
954
+
955
+ def __init__(
956
+ self,
957
+ sr: int,
958
+ ir_duration: float = 1.0,
959
+ delays=(997, 1153, 1327, 1559, 1801, 2099),
960
+ trainable_delay=False,
961
+ num_decay_freq=1,
962
+ delay_independent_decay=False,
963
+ eq: Optional[nn.Module] = None,
964
+ ):
965
+ # beta = torch.distributions.Beta(1.1, 6)
966
+ num_delays = len(delays)
967
+ super().__init__(
968
+ b=torch.ones(num_delays, 2) / num_delays,
969
+ c=torch.zeros(2, num_delays),
970
+ U=torch.randn(num_delays, num_delays) / num_delays**0.5,
971
+ gamma=torch.rand(
972
+ num_decay_freq, num_delays if not delay_independent_decay else 1
973
+ )
974
+ * 0.2
975
+ + 0.4,
976
+ # delays=beta.sample((num_delays,)) * 64,
977
+ )
978
+
979
+ self.sr = sr
980
+ self.ir_length = int(sr * ir_duration)
981
+
982
+ # ir_duration = T_60
983
+ T_60 = ir_duration * 0.75
984
+ delays = torch.tensor(delays)
985
+ if delay_independent_decay:
986
+ gamma_max = db2amp(-60 / sr / T_60 * delays.min())
987
+ else:
988
+ gamma_max = db2amp(-60 / sr / T_60 * delays)
989
+
990
+ register_parametrization(self.params, "gamma", MinMax(0, gamma_max))
991
+ register_parametrization(self.params, "U", UniLossLess())
992
+
993
+ if not trainable_delay:
994
+ self.register_buffer(
995
+ "delays",
996
+ delays,
997
+ )
998
+ else:
999
+ self.params["delays"] = nn.Parameter(delays / sr * 1000)
1000
+ register_parametrization(self.params, "delays", MinMax(0, self.max_delay))
1001
+
1002
+ self.register_forward_pre_hook(broadcast2stereo)
1003
+
1004
+ self.eq = eq
1005
+
1006
+ def forward(self, x):
1007
+ conv1d = F.conv1d if x.size(-1) > 44100 * 20 else fft_conv1d
1008
+
1009
+ c = self.params.c + 0j
1010
+ b = self.params.b + 0j
1011
+
1012
+ gamma = self.params.gamma
1013
+ delays = self.delays if hasattr(self, "delays") else self.params.delays
1014
+
1015
+ if gamma.size(0) > 1:
1016
+ gamma = F.interpolate(
1017
+ gamma.T.unsqueeze(1),
1018
+ size=self.ir_length // 2 + 1,
1019
+ align_corners=True,
1020
+ mode="linear",
1021
+ ).transpose(0, 2)
1022
+
1023
+ if gamma.size(2) == 1:
1024
+ gamma = gamma ** (delays / delays.min())
1025
+
1026
+ A = self.params.U * gamma
1027
+
1028
+ freqs = (
1029
+ torch.arange(self.ir_length // 2 + 1, device=x.device)
1030
+ / self.ir_length
1031
+ * 2
1032
+ * torch.pi
1033
+ )
1034
+ invD = torch.exp(1j * freqs[:, None] * delays)
1035
+ # H = c @ torch.linalg.inv(torch.diag_embed(invD) - A) @ b
1036
+ H = c @ torch.linalg.solve(torch.diag_embed(invD) - A, b)
1037
+
1038
+ h = torch.fft.irfft(H.permute(1, 2, 0), n=self.ir_length)
1039
+
1040
+ if self.eq is not None:
1041
+ h = self.eq(h)
1042
+
1043
+ # return fft_conv1d(
1044
+ return conv1d(
1045
+ F.pad(x, (self.ir_length - 1, 0)),
1046
+ h.flip(-1),
1047
+ )
1048
+
1049
+ def toJSON(self) -> dict[str, Any]:
1050
+ return {
1051
+ "T60 (s)": {
1052
+ f"{f:.2f} Hz": g.item()
1053
+ for f, g in zip(
1054
+ torch.linspace(0, 22050, self.params.gamma.numel()),
1055
+ -60 * self.delays.min() / amp2db(self.params.gamma) / 44100,
1056
+ )
1057
+ },
1058
+ "Gain (dB, approx)": amp2db(
1059
+ torch.linalg.norm(self.params.b) * torch.linalg.norm(self.params.c)
1060
+ ).item(),
1061
+ }
modules/rt.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from numba import njit, prange
3
+ from scipy.signal import firwin2
4
+ import torch
5
+
6
+ from .fx import Delay, FDN, module2coeffs
7
+
8
+
9
+ @njit
10
+ def rt_fdn(
11
+ x: np.ndarray,
12
+ delay_steps: np.ndarray,
13
+ firs: np.ndarray,
14
+ U: np.ndarray,
15
+ ):
16
+ _, T = x.shape
17
+ M = delay_steps.shape[0]
18
+ order = firs.shape[1]
19
+ y = np.zeros_like(x)
20
+ buf_size = delay_steps.max() + order
21
+ delay_buf = np.zeros((M, buf_size), dtype=x.dtype)
22
+ read_pointer = 0
23
+
24
+ for t in range(T):
25
+ # out = delay_buf[(range(M), read_pointers)]
26
+ # for i in prange(M):
27
+ # out[i] = delay_buf[i, read_pointers[i]]
28
+ out = delay_buf[:, read_pointer]
29
+ y[:, t] = out
30
+
31
+ s = out * firs[:, 0]
32
+ # indexes = (read_pointers[:, None] - np.arange(1, order)) % buf_sizes[:, None]
33
+ # reg = np.take_along_axis(delay_buf, indexes, axis=1)
34
+ # s += firs[:, 1:] @ reg.T
35
+ # for j in prange(M):
36
+ # s[j] += firs[j, 1:] @ delay_buf[j, indexes[j]]
37
+ for i in prange(M):
38
+ for j in prange(1, order):
39
+ s[i] += firs[i, j] * delay_buf[i, (read_pointer - j) % buf_size]
40
+ # for i in prange(1, order):
41
+ # s += firs[:, i] * delay_buf[:, (read_pointer - i) % buf_size]
42
+
43
+ feedback = U @ s + x[:, t]
44
+ w_pointers = (read_pointer + delay_steps) % buf_size
45
+ # delay_buf[(range(M), w_pointers)] = s + B @ x[:, t]
46
+ for i in prange(M):
47
+ delay_buf[i, w_pointers[i]] = feedback[i]
48
+ read_pointer = (read_pointer + 1) % buf_size
49
+
50
+ return y
51
+
52
+
53
+ @njit
54
+ def rt_delay(
55
+ x: np.ndarray,
56
+ delay_step: int,
57
+ b0: float,
58
+ b1: float,
59
+ b2: float,
60
+ a1: float,
61
+ a2: float,
62
+ ):
63
+ T = x.shape[0]
64
+ y = np.zeros((2, T), dtype=x.dtype)
65
+ buf_size = delay_step + 1
66
+ read_pointer = 0
67
+ delay_buf = np.zeros((2, buf_size), dtype=x.dtype)
68
+ bq_buf = np.zeros((2, 2), dtype=x.dtype)
69
+
70
+ for t in range(T):
71
+ out = delay_buf[:, read_pointer]
72
+ y[:, t] = out
73
+
74
+ s = bq_buf[:, 0] + b0 * out
75
+ bq_buf[:, 0] = bq_buf[:, 1] + b1 * out - a1 * s
76
+ bq_buf[:, 1] = b2 * out - a2 * s
77
+
78
+ w_pointer = (read_pointer + delay_step) % buf_size
79
+ # cross feeding because of ping-pong delay
80
+ delay_buf[0, w_pointer] = s[1] + x[t]
81
+ delay_buf[1, w_pointer] = s[0]
82
+
83
+ read_pointer = (read_pointer + 1) % buf_size
84
+
85
+ return y
86
+
87
+
88
+ class RealTimeDelay(Delay):
89
+ def forward(self, x):
90
+ assert x.size(1) == 1, x.size()
91
+ assert x.size(0) == 1, x.size()
92
+ with torch.no_grad():
93
+ delay_in_samples = round(self.sr * self.params.delay.item() * 0.001)
94
+ feedback = self.params.feedback.item()
95
+
96
+ if self.recursive_eq and self.eq is not None:
97
+ b0, b1, b2, a0, a1, a2 = [p.item() for p in module2coeffs(self.eq)]
98
+ b0, b1, b2, a1, a2 = b0 / a0, b1 / a0, b2 / a0, a1 / a0, a2 / a0
99
+ else:
100
+ b0, b1, b2, a1, a2 = 1.0, 0.0, 0.0, 0.0, 0.0
101
+
102
+ b0 = b0 * feedback
103
+ b1 = b1 * feedback
104
+ b2 = b2 * feedback
105
+ x_numpy = x.squeeze().cpu().numpy()
106
+ y_numpy = rt_delay(x_numpy, delay_in_samples, b0, b1, b2, a1, a2)
107
+ y = torch.from_numpy(y_numpy).unsqueeze(0).to(x.device) * self.params.gain
108
+ return self.odd_pan(y[:, :1]) + self.even_pan(y[:, 1:])
109
+
110
+
111
+ class RealTimeFDN(FDN):
112
+ def forward(self, x):
113
+ assert x.size(1) == 2, x.size()
114
+ assert x.size(0) == 1, x.size()
115
+ with torch.no_grad():
116
+ delays = self.delays if hasattr(self, "delays") else self.params.delays
117
+
118
+ c = self.params.c
119
+ b = self.params.b
120
+ gamma = self.params.gamma.clone()
121
+
122
+ if gamma.size(1) == 1:
123
+ gamma = gamma ** (delays / delays.min())
124
+
125
+ freqs = np.linspace(0, 1, gamma.size(0))
126
+ firs = np.apply_along_axis(
127
+ lambda x: firwin2(gamma.size(0) * 2 - 1, freqs, x, fs=2),
128
+ 1,
129
+ gamma.cpu().numpy().T,
130
+ ).astype(np.float32)
131
+ shifted_delays = delays - firs.shape[1] // 2
132
+
133
+ U = self.params.U
134
+
135
+ x = b @ x.squeeze()
136
+
137
+ y_numpy = rt_fdn(
138
+ x.cpu().numpy(),
139
+ # delays.cpu().numpy(),
140
+ shifted_delays.cpu().numpy(),
141
+ # firs.cpu().numpy(),
142
+ firs,
143
+ U.cpu().numpy(),
144
+ )
145
+ y = c @ torch.from_numpy(y_numpy).to(x.device)
146
+ y = y.unsqueeze(0)
147
+
148
+ if self.eq is not None:
149
+ y = self.eq(y)
150
+ return y
modules/utils.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ from functools import reduce, partial
4
+ from operator import mul
5
+ from torch.nn.utils.parametrize import is_parametrized, remove_parametrizations
6
+
7
+
8
+ def chain_functions(*functions):
9
+ return lambda initial: reduce(lambda x, f: f(x), functions, initial)
10
+
11
+
12
+ def remove_fx_parametrisation(fx):
13
+ def remover(m):
14
+ if not is_parametrized(m):
15
+ return
16
+ for k in list(m.parametrizations.keys()):
17
+ remove_parametrizations(m, k)
18
+
19
+ fx.apply(remover)
20
+ return fx
21
+
22
+
23
+ def get_chunks(keys, original_shapes):
24
+ (position, _), *_ = filter(lambda i_k: "U.original" in i_k[1], enumerate(keys))
25
+ original_chunks = list(map(partial(reduce, mul), original_shapes))
26
+ U_matrix_shape = original_shapes[position]
27
+
28
+ dimensions_not_need = np.ravel_multi_index(
29
+ np.tril_indices(**dict(zip(("n", "m"), U_matrix_shape))), U_matrix_shape
30
+ ) + sum(original_chunks[:position])
31
+
32
+ selected_chunks = (
33
+ original_chunks[:position]
34
+ + [original_chunks[position] - dimensions_not_need.size]
35
+ + original_chunks[position + 1 :]
36
+ )
37
+ return selected_chunks, position, U_matrix_shape, dimensions_not_need
38
+
39
+
40
+ def vec2statedict(
41
+ x: torch.Tensor,
42
+ keys,
43
+ original_shapes,
44
+ selected_chunks,
45
+ position,
46
+ U_matrix_shape,
47
+ ):
48
+ chunks = list(torch.split(x, selected_chunks))
49
+ U = x.new_zeros(reduce(mul, U_matrix_shape))
50
+ U[
51
+ np.ravel_multi_index(
52
+ np.triu_indices(n=U_matrix_shape[0], k=1, m=U_matrix_shape[1]),
53
+ U_matrix_shape,
54
+ )
55
+ ] = chunks[position]
56
+ chunks[position] = U
57
+
58
+ state_dict = dict(
59
+ zip(
60
+ keys,
61
+ map(lambda x, shape: x.reshape(*shape), chunks, original_shapes),
62
+ )
63
+ )
64
+ return state_dict