Commit
·
f94fdeb
1
Parent(s):
ecdeb30
Upload 2 files
Browse files- causallm-to-hub.py +51 -0
- dpo-qlora-4bit.py +83 -0
causallm-to-hub.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Usage: python upload.py --dir <dir> --hub-name <hub_name>
|
2 |
+
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
import torch
|
5 |
+
|
6 |
+
import argparse
|
7 |
+
|
8 |
+
|
9 |
+
def get_args():
|
10 |
+
parser = argparse.ArgumentParser()
|
11 |
+
parser.add_argument("--path", type=str)
|
12 |
+
parser.add_argument("--hub-name", type=str)
|
13 |
+
return parser.parse_args()
|
14 |
+
|
15 |
+
|
16 |
+
def main():
|
17 |
+
args = get_args()
|
18 |
+
print(f"Args: {args}")
|
19 |
+
|
20 |
+
print(f"Loading tokenizer from path: {args.path}")
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(args.path)
|
22 |
+
print(f"Pushing the tokenizer to the Hub at {args.hub_name}")
|
23 |
+
tokenizer.push_to_hub(args.hub_name, private=True)
|
24 |
+
|
25 |
+
print(f"Loading model from path: {args.path}")
|
26 |
+
model = AutoModelForCausalLM.from_pretrained(
|
27 |
+
args.path,
|
28 |
+
return_dict=True,
|
29 |
+
torch_dtype=torch.bfloat16,
|
30 |
+
device_map="auto",
|
31 |
+
)
|
32 |
+
print(f"Pushing the model to the Hub at {args.hub_name}")
|
33 |
+
model.push_to_hub(args.hub_name, private=True)
|
34 |
+
|
35 |
+
from huggingface_hub import HfApi
|
36 |
+
|
37 |
+
api = HfApi()
|
38 |
+
for file in ["all_results.json", "eval_results.json"]:
|
39 |
+
try:
|
40 |
+
api.upload_file(
|
41 |
+
path_or_fileobj=f"{args.peft}/{file}",
|
42 |
+
path_in_repo=file,
|
43 |
+
repo_id=args.out,
|
44 |
+
repo_type="model",
|
45 |
+
)
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Failed to upload {file}: {e}")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == "__main__":
|
51 |
+
main()
|
dpo-qlora-4bit.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from datasets import load_dataset
|
3 |
+
from peft import LoraConfig, get_peft_model
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
from trl import DPOTrainer
|
6 |
+
|
7 |
+
|
8 |
+
if __name__ == "__main__":
|
9 |
+
model_name = "..."
|
10 |
+
dataset = load_dataset(...)
|
11 |
+
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
tokenizer.pad_token = tokenizer.eos_token
|
14 |
+
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
model_name,
|
17 |
+
low_cpu_mem_usage=True,
|
18 |
+
torch_dtype=torch.bfloat16,
|
19 |
+
load_in_4bit=True,
|
20 |
+
use_flash_attention_2=True,
|
21 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
22 |
+
bnb_4bit_quant_type="nf4",
|
23 |
+
)
|
24 |
+
model.resize_token_embeddings(len(tokenizer))
|
25 |
+
model.config.pad_token_id = tokenizer.pad_token_id
|
26 |
+
model.config.use_cache = False
|
27 |
+
|
28 |
+
ref_model = AutoModelForCausalLM.from_pretrained(
|
29 |
+
model_name,
|
30 |
+
low_cpu_mem_usage=True,
|
31 |
+
torch_dtype=torch.bfloat16,
|
32 |
+
load_in_4bit=True,
|
33 |
+
use_flash_attention_2=True,
|
34 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
35 |
+
).eval()
|
36 |
+
|
37 |
+
peft_config = LoraConfig(
|
38 |
+
lora_alpha=128,
|
39 |
+
lora_dropout=0.05,
|
40 |
+
r=64,
|
41 |
+
bias="none",
|
42 |
+
task_type="CAUSAL_LM",
|
43 |
+
target_modules=[
|
44 |
+
"q_proj",
|
45 |
+
"k_proj",
|
46 |
+
"v_proj",
|
47 |
+
],
|
48 |
+
)
|
49 |
+
model = get_peft_model(model, peft_config)
|
50 |
+
|
51 |
+
training_args = DPOConfig(
|
52 |
+
num_train_epochs=3,
|
53 |
+
learning_rate=5e-07,
|
54 |
+
per_device_train_batch_size=1,
|
55 |
+
do_eval=True,
|
56 |
+
per_device_eval_batch_size=1,
|
57 |
+
adam_epsilon=1e-08,
|
58 |
+
lr_scheduler_type="linear",
|
59 |
+
warmup_ratio=0.1,
|
60 |
+
seed=42,
|
61 |
+
logging_steps=100,
|
62 |
+
save_steps=500,
|
63 |
+
save_strategy="steps",
|
64 |
+
output_dir="./output-dir",
|
65 |
+
gradient_checkpointing=True,
|
66 |
+
bf16=True,
|
67 |
+
remove_unused_columns=False,
|
68 |
+
)
|
69 |
+
|
70 |
+
dpo_trainer = DPOTrainer(
|
71 |
+
model,
|
72 |
+
ref_model,
|
73 |
+
args=training_args,
|
74 |
+
beta=training_args.beta,
|
75 |
+
train_dataset=dataset["train"],
|
76 |
+
eval_dataset=dataset["test"],
|
77 |
+
tokenizer=tokenizer,
|
78 |
+
max_length=training_args.max_length,
|
79 |
+
max_prompt_length=training_args.max_prompt_length,
|
80 |
+
peft_config=peft_config,
|
81 |
+
)
|
82 |
+
dpo_trainer.train()
|
83 |
+
dpo_trainer.save_model()
|