|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import os |
|
import torch |
|
from diffusers import AutoPipelineForText2Image |
|
from huggingface_hub import HfApi, login |
|
from slugify import slugify |
|
|
|
def main(prompt: str, repo: str, hf_token: str = None): |
|
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") |
|
|
|
if HF_TOKEN: |
|
login(token=HF_TOKEN) |
|
|
|
name = slugify(prompt) |
|
filename = f"{name}.png" |
|
model_id = "stabilityai/stable-diffusion-xl-base-1.0" |
|
api = HfApi() |
|
|
|
print(f"Loading model: {model_id}...") |
|
pipe = AutoPipelineForText2Image.from_pretrained( |
|
model_id, torch_dtype=torch.float16, variant="fp16" |
|
).to("cuda") |
|
|
|
print(f"Generating image for prompt: '{prompt}'...") |
|
image = pipe(prompt=prompt).images[0] |
|
temp_image_path = f"/tmp/{filename}" |
|
image.save(temp_image_path) |
|
print(f"Image saved temporarily to {temp_image_path}") |
|
|
|
print(f"Uploading {filename} to dataset repository: {repo}...") |
|
api.upload_file( |
|
path_or_fileobj=temp_image_path, |
|
path_in_repo=filename, |
|
repo_id=repo, |
|
repo_type="dataset", |
|
commit_message=f"add {filename}" |
|
) |
|
repo_url = f"https://huggingface.co/datasets/{repo}/tree/main" |
|
print(f"View it here: {repo_url}") |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Generate a single image using HF Jobs.") |
|
parser.add_argument("--prompt", required=True, help="The text prompt to generate an image from.") |
|
parser.add_argument("--repo", required=True, help="Your destination dataset repository ID.") |
|
parser.add_argument("--hf-token", help="Hugging Face API token.") |
|
args = parser.parse_args() |
|
main(prompt=args.prompt, repo=args.repo, hf_token=args.hf_token) |
|
|