Datasets:
Formats:
imagefolder
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
1K - 10K
License:
from ultralytics import YOLO | |
from ultralytics.data import build_dataloader | |
from ultralytics.data.dataset import YOLODataset | |
import torch | |
import cv2 | |
class CustomYOLODataset(YOLODataset): | |
def __init__(self, *args, **kwargs): | |
kwargs["data"] = dict(kwargs.get("data", {}), channels=4) | |
super().__init__(*args, **kwargs) | |
def __getitem__(self, index): | |
img_path = self.im_files[index] | |
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) | |
assert img.shape[-1] == 4, f"Image {img_path} has {img.shape[-1]} channels" | |
return super().__getitem__(index) | |
def build_dataloader_override(cfg, batch, img_size, stride, single_cls=False, hyp=None, augment=False, cache=False, pad=0.0, rect=False, rank=-1, workers=8, shuffle=False, data_info=None): | |
dataset = CustomYOLODataset( | |
data=data_info, | |
img_size=img_size, | |
batch_size=batch, | |
augment=augment, | |
hyp=hyp, | |
rect=rect, | |
cache=cache, | |
single_cls=single_cls, | |
stride=int(stride), | |
pad=pad, | |
rank=rank, | |
) | |
loader = torch.utils.data.DataLoader( | |
dataset=dataset, | |
batch_size=batch, | |
shuffle=shuffle, | |
num_workers=workers, | |
sampler=None, | |
pin_memory=True, | |
collate_fn=getattr(dataset, "collate_fn", None), | |
) | |
return loader | |
build_dataloader.build_dataloader = build_dataloader_override | |
# Initialize model | |
model = YOLO("yolo11_rgbd.yaml") # Ensure YAML has ch=4 | |
# ---- Load Pretrained Weights ---- | |
# pretrained = YOLO("yolo11l.pt").model.state_dict() | |
pretrained = YOLO("yolo11n.pt").model.state_dict() | |
model_state = model.model.state_dict() | |
filtered_pretrained = {k: v for k, v in pretrained.items() if not k.startswith(("model.23", "model.0.conv"))} | |
model_state.update(filtered_pretrained) | |
with torch.no_grad(): | |
rgb_weights = pretrained["model.0.conv.weight"][:, :3] | |
depth_weights = torch.randn(64, 1, 3, 3) * 0.1 # FOr Yolov11l model | |
# depth_weights = torch.randn(16, 1, 3, 3) * 0.1 # For Yolov11n model | |
model_state["model.0.conv.weight"] = torch.cat([rgb_weights, depth_weights], dim=1) | |
model.model.load_state_dict(model_state, strict=False) | |
# ---- Critical Warmup Fix ---- | |
def custom_warmup(self, imgsz=(1, 4, 640, 640)): # Force 4-channel input | |
self.forward(torch.zeros(imgsz).to(self.device)) | |
model.model.warmup = custom_warmup.__get__(model.model) | |
# Train | |
model.train( | |
data="usplf_rgbd_dataset.yaml", | |
epochs=200, | |
imgsz=640, | |
batch=10, | |
device="0", | |
name="yolov11_rgbd_pretrained" | |
) | |