antitheft159 commited on
Commit
41059d8
·
verified ·
1 Parent(s): 105aaf7

Upload application20.py

Browse files
Files changed (1) hide show
  1. application20.py +73 -0
application20.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ df = pd.read_csv('C:/Users/Donte Patton/Downloads/dataset_2191_sleep.csv')
3
+ df.head()
4
+ import warnings
5
+ warnings.filterwarnings('ignore')
6
+
7
+ print(df.shape)
8
+
9
+ df.isnull().sum().sum()
10
+
11
+ df.isnull().sum()
12
+
13
+ df.dtypes
14
+
15
+ import pandas as pd
16
+ import numpy as np
17
+
18
+ df.replace('?', np.nan, inplace=True)
19
+
20
+ df['max_life_span'] = pd.to_numeric(df['max_life_span'], errors='coerce')
21
+ df['gestation_time'] = pd.to_numeric(df['gestation_time'], errors='coerce')
22
+ df['total_sleep'] = pd.to_numeric(df['total_sleep'], errors='coerce')
23
+
24
+ print(df.info())
25
+
26
+ df.describe()
27
+
28
+ import seaborn as sns
29
+ import matplotlib.pyplot as plt
30
+
31
+ sns.pairplot(df)
32
+ plt.show()
33
+
34
+ print(df["body_weight"].describe())
35
+
36
+ sns.scatterplot(data=df, x="body_weight", y="total_sleep")
37
+ plt.show()
38
+
39
+ import pandas as pd
40
+ import seaborn as sns
41
+ import matplotlib.pyplot as plt
42
+
43
+ Q1 = df["body_weight"].quantile(0.25)
44
+ Q3 = df["body_weight"].quantile(0.75)
45
+ IQR = Q3 - Q1
46
+
47
+ lower_bound = Q1 - 1.5 * IQR
48
+ upper_bound = Q3 + 1.5 * IQR
49
+
50
+ print(f"Lower bound: {lower_bound}")
51
+ print(f"Upper bound: {upper_bound}")
52
+
53
+ outliers = df[(df["body_weight"] < lower_bound) | (df["body_weight"] > upper_bound)]
54
+ print("\n Outliers:")
55
+ print(outliers)
56
+
57
+ filtered_df = df[(df["body_weight"] >= lower_bound) & (df["body_weight"] <=upperbound)]
58
+
59
+ sns.scatterplot(data=filtered_df, x="body_weight", y="total_sleep")
60
+ plt.title("Scatterplot without Outliers")
61
+ plt.xlabel("Body Weight")
62
+ plt.ylabel("Total Sleep")
63
+ plt.grid(True)
64
+ plt.show()
65
+
66
+ print(f"\nOriginal row count: {len(df)}")
67
+ print(f"Filtered row count: {len(filtered_df)}")
68
+
69
+ from sklearn.model_selection import train_test_split
70
+
71
+ X = df.drop(columns='total_sleep')
72
+ y = df['total_sleep']
73
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_sixe=0.2, random_state=42)