import pandas as pd df = pd.read_csv('C:/Users/Donte Patton/Downloads/dataset_2191_sleep.csv') df.head() import warnings warnings.filterwarnings('ignore') print(df.shape) df.isnull().sum().sum() df.isnull().sum() df.dtypes import pandas as pd import numpy as np df.replace('?', np.nan, inplace=True) df['max_life_span'] = pd.to_numeric(df['max_life_span'], errors='coerce') df['gestation_time'] = pd.to_numeric(df['gestation_time'], errors='coerce') df['total_sleep'] = pd.to_numeric(df['total_sleep'], errors='coerce') print(df.info()) df.describe() import seaborn as sns import matplotlib.pyplot as plt sns.pairplot(df) plt.show() print(df["body_weight"].describe()) sns.scatterplot(data=df, x="body_weight", y="total_sleep") plt.show() import pandas as pd import seaborn as sns import matplotlib.pyplot as plt Q1 = df["body_weight"].quantile(0.25) Q3 = df["body_weight"].quantile(0.75) IQR = Q3 - Q1 lower_bound = Q1 - 1.5 * IQR upper_bound = Q3 + 1.5 * IQR print(f"Lower bound: {lower_bound}") print(f"Upper bound: {upper_bound}") outliers = df[(df["body_weight"] < lower_bound) | (df["body_weight"] > upper_bound)] print("\n Outliers:") print(outliers) filtered_df = df[(df["body_weight"] >= lower_bound) & (df["body_weight"] <=upperbound)] sns.scatterplot(data=filtered_df, x="body_weight", y="total_sleep") plt.title("Scatterplot without Outliers") plt.xlabel("Body Weight") plt.ylabel("Total Sleep") plt.grid(True) plt.show() print(f"\nOriginal row count: {len(df)}") print(f"Filtered row count: {len(filtered_df)}") from sklearn.model_selection import train_test_split X = df.drop(columns='total_sleep') y = df['total_sleep'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_sixe=0.2, random_state=42)