|
import numpy as np |
|
import pandas as pd |
|
|
|
import os |
|
for dirname, _, filenames in os.walk('/kaggle/input'): |
|
for filename in filenames: |
|
print(os.path.join(dirname, filename)) |
|
|
|
|
|
import numpy as np |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
|
|
import seaborn as sns |
|
import warnings |
|
warnings.filterwarnings('ignore') |
|
|
|
df=pd.read_csv('/content/Amazon Sale Report.csv') |
|
df.shape |
|
|
|
df.head() |
|
|
|
df.tail() |
|
|
|
df.info() |
|
|
|
df.drop(['New', 'PendingS'], axis=1, inplace=True) |
|
|
|
df.info() |
|
|
|
pd.isnull(df) |
|
|
|
pd.isnull(df).sum() |
|
|
|
df.shape |
|
|
|
df.dropna(inplace=True) |
|
df.shape |
|
|
|
df.shape |
|
|
|
df.columns |
|
|
|
df['ship-postal-code']=df['ship-postal-code'].astype('int') |
|
|
|
df['ship-postal-code'].dtype |
|
|
|
df['Date']=pd.to_datetime (df['Date']) |
|
|
|
df.columns |
|
|
|
df.rename(columns={'Qty':'Quantity'}) |
|
|
|
df.describe() |
|
|
|
df.describe(include='object') |
|
|
|
df[['Qty','Amount']].describe() |
|
|
|
df.columns |
|
|
|
ax=sns.countplot(x='Size', data=df) |
|
|
|
ax=sns.countplot(x='Size', data=df) |
|
|
|
for bars in ax.containers: |
|
ax.bar_label(bars) |
|
|
|
df.groupby(['Size'], as_index=False)['Qty'].sum().sort_values(by='Qty',ascending=False) |
|
|
|
S_Qty=df.groupby(['Size'], as_index=False)['Qty'].sum().sort_values(by='Qty', ascending=False) |
|
|
|
sns.barplot(x='Size', y='Qty', data=S_Qty) |
|
|
|
sns.countplot(data=df, x='Courier Status', hue='Status') |
|
|
|
plt.figure(figsize=(10, 5)) |
|
|
|
ax=sns.countplot(data=df, x='Courier Status', hue='Status') |
|
plt.show() |
|
|
|
df['Size'].hist() |
|
|
|
df['Category'] = df['Category'].astype(str) |
|
column_data = df['Category'] |
|
plt.figure(figsize=(10, 5)) |
|
plt.hist(column_data, bins=10, edgecolor='Black') |
|
plt.xticks(rotation=90) |
|
plt.show() |
|
|
|
B2B_Check = df['B2B'].value_counts() |
|
plt.pie(B2B_Check, labels=B2B_Check, autopct='%1.1f%%') |
|
plt.show() |
|
|
|
B2B_Check = df['B2B'].value_counts() |
|
plt.pie(B2B_Check, labels=B2B_Check.index, autopct='%1.1f%%') |
|
plt.show |
|
|
|
a1 = df['Fulfilment'].value_counts() |
|
fig, ax = plt.subplots() |
|
ax.pie(a1, labels=a1.index, autopct='%1.1f%%', radius=0.7, wedgeprops=dict(width=0.6)) |
|
ax.set(aspect="equal") |
|
plt.show() |
|
|
|
x_data = df['Category'] |
|
y_data = df['Size'] |
|
|
|
plt.scatter(x_data, y_data) |
|
plt.xlabel('Category') |
|
plt.ylabel('Size') |
|
plt.title('Scatter Plot') |
|
plt.show() |
|
|
|
plt.figure(figsize=(12, 6)) |
|
sns.countplot(data=df, x='ship-state') |
|
plt.xlabel('ship-state') |
|
plt.ylabel('count') |
|
plt.title('Distribution of State') |
|
plt.xticks(rotation=90) |
|
plt.show() |
|
|
|
top_10_state = df['ship-state'].value_counts().head(10) |
|
plt.figure(figsize=(12, 6)) |
|
sns.countplot(data=df[df['ship-state'].isin(top_10_state.index)], x='ship-state') |
|
plt.xlabel('ship-state') |
|
plt.ylabel('count') |
|
plt.title('Distribution of State') |
|
plt.xticks(rotation=45) |
|
plt.show() |