antitheft159 commited on
Commit
5270eaa
·
verified ·
1 Parent(s): 46ea788

Upload complex_backend_security_with_encrypted_waves_and_anomaly_detection.py

Browse files
complex_backend_security_with_encrypted_waves_and_anomaly_detection.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Complex backend security with encrypted waves and anomaly detection
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1iCPhdZ1rZxxWmNqFPIUGGrtgVUfgcPcI
8
+ """
9
+
10
+ from cryptography.fernet import Fernet
11
+
12
+ # Generate a key for encryption
13
+ key = Fernet.generate_key()
14
+ cipher = Fernet(key)
15
+
16
+ # Example wave data (as a list of floats)
17
+ wave_data = [0.1, 0.5, 0.3, 0.4, 0.9]
18
+
19
+ # Convert wave data to bytes and encrypt
20
+ wave_data_bytes = bytes(str(wave_data), 'utf-8')
21
+ encrypted_wave_data = cipher.encrypt(wave_data_bytes)
22
+
23
+ # Decrypting wave data
24
+ decrypted_wave_data_bytes = cipher.decrypt(encrypted_wave_data)
25
+ decrypted_wave_data = eval(decrypted_wave_data_bytes.decode('utf-8'))
26
+
27
+ print("Original Wave Data:", wave_data)
28
+ print("Encrypted Wave Data:", encrypted_wave_data)
29
+ print("Decrypted Wave Data:", decrypted_wave_data)
30
+
31
+ import torch
32
+ import torch.nn as nn
33
+ import torch.optim as optim
34
+ import numpy as np
35
+
36
+ class Autoencoder(nn.Module):
37
+ def __init__(self):
38
+ super(Autoencoder, self).__init__()
39
+ self.encoder = nn.Sequential(
40
+ nn.Linear(5, 3),
41
+ nn.ReLU(),
42
+ nn.Linear(3, 2),
43
+ nn.ReLU()
44
+ )
45
+ self.decoder = nn.Sequential(
46
+ nn.Linear(2, 3),
47
+ nn.ReLU(),
48
+ nn.Linear(3, 5),
49
+ nn.Sigmoid()
50
+ )
51
+
52
+ def forward(self, x):
53
+ x = self.encoder(x)
54
+ x = self.decoder(x)
55
+ return x
56
+
57
+ # Initialize the model, loss function, and optimizer
58
+ model = Autoencoder()
59
+ criterion = nn.MSELoss()
60
+ optimizer = optim.Adam(model.parameters(), lr=0.01)
61
+
62
+ normal_wave_data = torch.tensor([
63
+ [0.1, 0.2, 0.3, 0.4, 0.5],
64
+ [0.2, 0.3, 0.4, 0.5, 0.6],
65
+ [0.3, 0.4, 0.5, 0.6, 0.7]
66
+ ], dtype=torch.float32)
67
+
68
+ # Training the model
69
+ for epoch in range(1000): # Example training loop
70
+ optimizer.zero_grad()
71
+ outputs = model(normal_wave_data)
72
+ loss = criterion(outputs, normal_wave_data)
73
+ loss.backward()
74
+ optimizer.step()
75
+
76
+ if (epoch+1) % 100 == 0:
77
+ print(f'Epoch [{epoch+1}/1000], Loss: {loss.item():.4f}')
78
+
79
+ # New wave data to check for anomalies
80
+ new_wave_data = torch.tensor([0.9, 0.8, 0.7, 0.6, 0.5], dtype=torch.float32)
81
+
82
+ # Reshape for single input
83
+ new_wave_data = new_wave_data.unsqueeze(0)
84
+
85
+ # Pass through the model
86
+ reconstructed_data = model(new_wave_data)
87
+ loss = criterion(reconstructed_data, new_wave_data)
88
+
89
+ # Set a threshold for anomaly detection
90
+ anomaly_threshold = 0.01
91
+
92
+ if loss.item() > anomaly_threshold:
93
+ print("Anomaly detected!")
94
+ else:
95
+ print("Data is normal.")