from cryptography.fernet import Fernet # Generate a key for encryption key = Fernet.generate_key() cipher = Fernet(key) # Example wave data (as a list of floats) wave_data = [0.1, 0.5, 0.3, 0.4, 0.9] # Convert wave data to bytes and encrypt wave_data_bytes = bytes(str(wave_data), 'utf-8') encrypted_wave_data = cipher.encrypt(wave_data_bytes) # Decrypting wave data decrypted_wave_data_bytes = cipher.decrypt(encrypted_wave_data) decrypted_wave_data = eval(decrypted_wave_data_bytes.decode('utf-8')) print("Original Wave Data:", wave_data) print("Encrypted Wave Data:", encrypted_wave_data) print("Decrypted Wave Data:", decrypted_wave_data) import torch import torch.nn as nn import torch.optim as optim import numpy as np class Autoencoder(nn.Module): def __init__(self): super(Autoencoder, self).__init__() self.encoder = nn.Sequential( nn.Linear(5, 3), nn.ReLU(), nn.Linear(3, 2), nn.ReLU() ) self.decoder = nn.Sequential( nn.Linear(2, 3), nn.ReLU(), nn.Linear(3, 5), nn.Sigmoid() ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x # Initialize the model, loss function, and optimizer model = Autoencoder() criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=0.01) normal_wave_data = torch.tensor([ [0.1, 0.2, 0.3, 0.4, 0.5], [0.2, 0.3, 0.4, 0.5, 0.6], [0.3, 0.4, 0.5, 0.6, 0.7] ], dtype=torch.float32) # Training the model for epoch in range(1000): # Example training loop optimizer.zero_grad() outputs = model(normal_wave_data) loss = criterion(outputs, normal_wave_data) loss.backward() optimizer.step() if (epoch+1) % 100 == 0: print(f'Epoch [{epoch+1}/1000], Loss: {loss.item():.4f}') # New wave data to check for anomalies new_wave_data = torch.tensor([0.9, 0.8, 0.7, 0.6, 0.5], dtype=torch.float32) # Reshape for single input new_wave_data = new_wave_data.unsqueeze(0) # Pass through the model reconstructed_data = model(new_wave_data) loss = criterion(reconstructed_data, new_wave_data) # Set a threshold for anomaly detection anomaly_threshold = 0.01 if loss.item() > anomaly_threshold: print("Anomaly detected!") else: print("Data is normal.")