antitheft159 commited on
Commit
da4e81c
·
verified ·
1 Parent(s): e84e7ba

Upload vecna_159.py

Browse files
Files changed (1) hide show
  1. vecna_159.py +71 -0
vecna_159.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Vecna.159
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1gX09qWUyT9sTqHSCPCRbeAU3veDQ9KOC
8
+ """
9
+
10
+ !pip install neuralprophet
11
+
12
+ import numpy as np
13
+ import pandas as pd
14
+ import matplotlib.pyplot as plt
15
+ from neuralprophet import NeuralProphet
16
+
17
+ import warnings
18
+ warnings.filterwarnings('ignore')
19
+
20
+ import os
21
+ for dirname, _, filenames in os.walk('/content/Meta Dataset.csv'):
22
+ for filename in filenames:
23
+ print(os.path.join(dirname, filename))
24
+
25
+ df = pd.read_csv('/content/Meta Dataset.csv')
26
+
27
+ df.head()
28
+
29
+ df.info()
30
+
31
+ df['Date'] = pd.to_datetime(df['Date'])
32
+
33
+ df.dtypes
34
+
35
+ df = df[['Date', 'Close']]
36
+
37
+ df.head()
38
+
39
+ df.columns = ['ds', 'y']
40
+
41
+ df.head()
42
+
43
+ plt.plot(df['ds'], df['y'], label='actual', c='g')
44
+ plt.title('Meta Stock Prices Over TIme')
45
+ plt.xlabel('Date')
46
+ plt.ylabel('Stock Price')
47
+ plt.show()
48
+
49
+ model = NeuralProphet(
50
+ batch_size=16
51
+ )
52
+
53
+ model.fit(df)
54
+
55
+ future = model.make_future_dataframe(df, periods=365)
56
+
57
+ forecast = model.predict(future)
58
+ forecast
59
+
60
+ actual_prediction = model.predict(df)
61
+
62
+ plt.plot(df['ds'], df['y'], label='actual', c='g')
63
+ plt.plot(actual_prediction['ds'], actual_prediction['yhat1'], label='prediction_actual', c='r')
64
+ plt.plot(forecast['ds'], forecast['yhat1'], label='future_prediction', c='b')
65
+ plt.xlabel('Date')
66
+ plt.ylabel('Stock Price')
67
+ plt.legend()
68
+
69
+ plt.show()
70
+
71
+ model.plot_components(forecast)