Upload vecna_159.py
Browse files- vecna_159.py +71 -0
vecna_159.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Vecna.159
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1gX09qWUyT9sTqHSCPCRbeAU3veDQ9KOC
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install neuralprophet
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import pandas as pd
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
from neuralprophet import NeuralProphet
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
warnings.filterwarnings('ignore')
|
19 |
+
|
20 |
+
import os
|
21 |
+
for dirname, _, filenames in os.walk('/content/Meta Dataset.csv'):
|
22 |
+
for filename in filenames:
|
23 |
+
print(os.path.join(dirname, filename))
|
24 |
+
|
25 |
+
df = pd.read_csv('/content/Meta Dataset.csv')
|
26 |
+
|
27 |
+
df.head()
|
28 |
+
|
29 |
+
df.info()
|
30 |
+
|
31 |
+
df['Date'] = pd.to_datetime(df['Date'])
|
32 |
+
|
33 |
+
df.dtypes
|
34 |
+
|
35 |
+
df = df[['Date', 'Close']]
|
36 |
+
|
37 |
+
df.head()
|
38 |
+
|
39 |
+
df.columns = ['ds', 'y']
|
40 |
+
|
41 |
+
df.head()
|
42 |
+
|
43 |
+
plt.plot(df['ds'], df['y'], label='actual', c='g')
|
44 |
+
plt.title('Meta Stock Prices Over TIme')
|
45 |
+
plt.xlabel('Date')
|
46 |
+
plt.ylabel('Stock Price')
|
47 |
+
plt.show()
|
48 |
+
|
49 |
+
model = NeuralProphet(
|
50 |
+
batch_size=16
|
51 |
+
)
|
52 |
+
|
53 |
+
model.fit(df)
|
54 |
+
|
55 |
+
future = model.make_future_dataframe(df, periods=365)
|
56 |
+
|
57 |
+
forecast = model.predict(future)
|
58 |
+
forecast
|
59 |
+
|
60 |
+
actual_prediction = model.predict(df)
|
61 |
+
|
62 |
+
plt.plot(df['ds'], df['y'], label='actual', c='g')
|
63 |
+
plt.plot(actual_prediction['ds'], actual_prediction['yhat1'], label='prediction_actual', c='r')
|
64 |
+
plt.plot(forecast['ds'], forecast['yhat1'], label='future_prediction', c='b')
|
65 |
+
plt.xlabel('Date')
|
66 |
+
plt.ylabel('Stock Price')
|
67 |
+
plt.legend()
|
68 |
+
|
69 |
+
plt.show()
|
70 |
+
|
71 |
+
model.plot_components(forecast)
|