antitheft159 commited on
Commit
d68daa3
·
verified ·
1 Parent(s): 8cb9d79

Upload secure_pulse.py

Browse files
Files changed (1) hide show
  1. secure_pulse.py +177 -0
secure_pulse.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Secure Pulse
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1tY1tdoA1k0yP7_rFc5ckKLIYm-50jvYJ
8
+ """
9
+
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+
14
+ class FrequencyModulation(nn.Module):
15
+ def __init__(self, frequency):
16
+ super(FrequencyModulation, self).__init__()
17
+ self.frequency = frequency
18
+
19
+ def forward(self, x):
20
+ # Apply a sine function for modulation
21
+ return torch.sin(2 * torch.pi * self.frequency * x)
22
+
23
+ class EncryptionLayer(nn.Module):
24
+ def __init__(self, key_frequency):
25
+ super(EncryptionLayer, self).__init__()
26
+ self.key_frequency = key_frequency
27
+
28
+ def forward(self, x):
29
+ # Apply frequency shift as a form of encryption
30
+ return torch.sin(2 * torch.pi * (self.key_frequency + x))
31
+
32
+ class FrequencyHopping(nn.Module):
33
+ def __init__(self, frequencies):
34
+ super(FrequencyHopping, self).__init__()
35
+ self.frequencies = frequencies
36
+
37
+ def forward(self, x):
38
+ # Apply frequency hopping
39
+ for freq in self.frequencies:
40
+ x = torch.sin(2 * torch.pi * freq * x)
41
+ return x
42
+
43
+ class DecryptionLayer(nn.Module):
44
+ def __init__(self, key_frequency):
45
+ super(DecryptionLayer, self).__init__()
46
+ self.key_frequency = key_frequency
47
+
48
+ def forward(self, x):
49
+ # Inverse of the encryption process
50
+ return torch.asin(x) / (2 * torch.pi * self.key_frequency)
51
+
52
+ class FrequencyVPN(nn.Module):
53
+ def __init__(self, frequency, key_frequency, hopping_frequencies):
54
+ super(FrequencyVPN, self).__init__()
55
+ self.modulation = FrequencyModulation(frequency)
56
+ self.encryption = EncryptionLayer(key_frequency)
57
+ self.hopping = FrequencyHopping(hopping_frequencies)
58
+ self.decryption = DecryptionLayer(key_frequency)
59
+
60
+ def forward(self, x):
61
+ x = self.modulation(x)
62
+ x = self.encryption(x)
63
+ x = self.hopping(x)
64
+ return self.decryption(x)
65
+
66
+ # Example usage
67
+ model = FrequencyVPN(frequency=5, key_frequency=10, hopping_frequencies=[15, 20, 25])
68
+ data = torch.tensor([1.0, 0.5, 0.3]) # Example data
69
+ encrypted_data = model(data)
70
+
71
+ !pip install matplotlib
72
+
73
+ import torch
74
+ import torch.nn as nn
75
+ import matplotlib.pyplot as plt
76
+ import numpy as np
77
+
78
+ # Define the Frequency Modulation Layer
79
+ class FrequencyModulation(nn.Module):
80
+ def __init__(self, frequency):
81
+ super(FrequencyModulation, self).__init__()
82
+ self.frequency = frequency
83
+
84
+ def forward(self, x):
85
+ return torch.sin(2 * torch.pi * self.frequency * x)
86
+
87
+ # Define the Encryption Layer
88
+ class EncryptionLayer(nn.Module):
89
+ def __init__(self, key_frequency):
90
+ super(EncryptionLayer, self).__init__()
91
+ self.key_frequency = key_frequency
92
+
93
+ def forward(self, x):
94
+ return torch.sin(2 * torch.pi * (self.key_frequency + x))
95
+
96
+ # Define the Frequency Hopping Layer
97
+ class FrequencyHopping(nn.Module):
98
+ def __init__(self, frequencies):
99
+ super(FrequencyHopping, self).__init__()
100
+ self.frequencies = frequencies
101
+
102
+ def forward(self, x):
103
+ for freq in self.frequencies:
104
+ x = torch.sin(2 * torch.pi * freq * x)
105
+ return x
106
+
107
+ # Define the Decryption Layer
108
+ class DecryptionLayer(nn.Module):
109
+ def __init__(self, key_frequency):
110
+ super(DecryptionLayer, self).__init__()
111
+ self.key_frequency = key_frequency
112
+
113
+ def forward(self, x):
114
+ return torch.asin(x) / (2 * torch.pi * self.key_frequency)
115
+
116
+ # Define the FrequencyVPN Model
117
+ class FrequencyVPN(nn.Module):
118
+ def __init__(self, frequency, key_frequency, hopping_frequencies):
119
+ super(FrequencyVPN, self).__init__()
120
+ self.modulation = FrequencyModulation(frequency)
121
+ self.encryption = EncryptionLayer(key_frequency)
122
+ self.hopping = FrequencyHopping(hopping_frequencies)
123
+ self.decryption = DecryptionLayer(key_frequency)
124
+
125
+ def forward(self, x):
126
+ x_modulated = self.modulation(x)
127
+ x_encrypted = self.encryption(x_modulated)
128
+ x_hopped = self.hopping(x_encrypted)
129
+ x_decrypted = self.decryption(x_hopped)
130
+ return x_modulated, x_encrypted, x_hopped, x_decrypted
131
+
132
+ # Set the parameters for the model
133
+ frequency = 5 # Modulation frequency
134
+ key_frequency = 10 # Encryption key frequency
135
+ hopping_frequencies = [15, 20, 25] # Frequencies for hopping
136
+
137
+ # Create the FrequencyVPN model
138
+ model = FrequencyVPN(frequency, key_frequency, hopping_frequencies)
139
+
140
+ # Example data (simulating a data packet)
141
+ data = torch.linspace(0, 1, 100) # 100 data points between 0 and 1
142
+
143
+ # Pass the data through the model
144
+ x_modulated, x_encrypted, x_hopped, x_decrypted = model(data)
145
+
146
+ # Convert the torch tensors to numpy arrays for plotting
147
+ data_np = data.numpy()
148
+ x_modulated_np = x_modulated.detach().numpy()
149
+ x_encrypted_np = x_encrypted.detach().numpy()
150
+ x_hopped_np = x_hopped.detach().numpy()
151
+ x_decrypted_np = x_decrypted.detach().numpy()
152
+
153
+ # Plot the data at each stage
154
+ plt.figure(figsize=(12, 8))
155
+
156
+ plt.subplot(4, 1, 1)
157
+ plt.plot(data_np, x_modulated_np, label='Modulated Data', color='blue')
158
+ plt.title('Modulated Data')
159
+ plt.grid(True)
160
+
161
+ plt.subplot(4, 1, 2)
162
+ plt.plot(data_np, x_encrypted_np, label='Encrypted Data', color='green')
163
+ plt.title('Encrypted Data')
164
+ plt.grid(True)
165
+
166
+ plt.subplot(4, 1, 3)
167
+ plt.plot(data_np, x_hopped_np, label='Frequency Hopped Data', color='red')
168
+ plt.title('Frequency Hopped Data')
169
+ plt.grid(True)
170
+
171
+ plt.subplot(4, 1, 4)
172
+ plt.plot(data_np, x_decrypted_np, label='Decrypted Data', color='purple')
173
+ plt.title('Decrypted Data')
174
+ plt.grid(True)
175
+
176
+ plt.tight_layout()
177
+ plt.show()