Upload secure_pulse.py
Browse files- secure_pulse.py +177 -0
secure_pulse.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Secure Pulse
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1tY1tdoA1k0yP7_rFc5ckKLIYm-50jvYJ
|
8 |
+
"""
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
class FrequencyModulation(nn.Module):
|
15 |
+
def __init__(self, frequency):
|
16 |
+
super(FrequencyModulation, self).__init__()
|
17 |
+
self.frequency = frequency
|
18 |
+
|
19 |
+
def forward(self, x):
|
20 |
+
# Apply a sine function for modulation
|
21 |
+
return torch.sin(2 * torch.pi * self.frequency * x)
|
22 |
+
|
23 |
+
class EncryptionLayer(nn.Module):
|
24 |
+
def __init__(self, key_frequency):
|
25 |
+
super(EncryptionLayer, self).__init__()
|
26 |
+
self.key_frequency = key_frequency
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
# Apply frequency shift as a form of encryption
|
30 |
+
return torch.sin(2 * torch.pi * (self.key_frequency + x))
|
31 |
+
|
32 |
+
class FrequencyHopping(nn.Module):
|
33 |
+
def __init__(self, frequencies):
|
34 |
+
super(FrequencyHopping, self).__init__()
|
35 |
+
self.frequencies = frequencies
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
# Apply frequency hopping
|
39 |
+
for freq in self.frequencies:
|
40 |
+
x = torch.sin(2 * torch.pi * freq * x)
|
41 |
+
return x
|
42 |
+
|
43 |
+
class DecryptionLayer(nn.Module):
|
44 |
+
def __init__(self, key_frequency):
|
45 |
+
super(DecryptionLayer, self).__init__()
|
46 |
+
self.key_frequency = key_frequency
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
# Inverse of the encryption process
|
50 |
+
return torch.asin(x) / (2 * torch.pi * self.key_frequency)
|
51 |
+
|
52 |
+
class FrequencyVPN(nn.Module):
|
53 |
+
def __init__(self, frequency, key_frequency, hopping_frequencies):
|
54 |
+
super(FrequencyVPN, self).__init__()
|
55 |
+
self.modulation = FrequencyModulation(frequency)
|
56 |
+
self.encryption = EncryptionLayer(key_frequency)
|
57 |
+
self.hopping = FrequencyHopping(hopping_frequencies)
|
58 |
+
self.decryption = DecryptionLayer(key_frequency)
|
59 |
+
|
60 |
+
def forward(self, x):
|
61 |
+
x = self.modulation(x)
|
62 |
+
x = self.encryption(x)
|
63 |
+
x = self.hopping(x)
|
64 |
+
return self.decryption(x)
|
65 |
+
|
66 |
+
# Example usage
|
67 |
+
model = FrequencyVPN(frequency=5, key_frequency=10, hopping_frequencies=[15, 20, 25])
|
68 |
+
data = torch.tensor([1.0, 0.5, 0.3]) # Example data
|
69 |
+
encrypted_data = model(data)
|
70 |
+
|
71 |
+
!pip install matplotlib
|
72 |
+
|
73 |
+
import torch
|
74 |
+
import torch.nn as nn
|
75 |
+
import matplotlib.pyplot as plt
|
76 |
+
import numpy as np
|
77 |
+
|
78 |
+
# Define the Frequency Modulation Layer
|
79 |
+
class FrequencyModulation(nn.Module):
|
80 |
+
def __init__(self, frequency):
|
81 |
+
super(FrequencyModulation, self).__init__()
|
82 |
+
self.frequency = frequency
|
83 |
+
|
84 |
+
def forward(self, x):
|
85 |
+
return torch.sin(2 * torch.pi * self.frequency * x)
|
86 |
+
|
87 |
+
# Define the Encryption Layer
|
88 |
+
class EncryptionLayer(nn.Module):
|
89 |
+
def __init__(self, key_frequency):
|
90 |
+
super(EncryptionLayer, self).__init__()
|
91 |
+
self.key_frequency = key_frequency
|
92 |
+
|
93 |
+
def forward(self, x):
|
94 |
+
return torch.sin(2 * torch.pi * (self.key_frequency + x))
|
95 |
+
|
96 |
+
# Define the Frequency Hopping Layer
|
97 |
+
class FrequencyHopping(nn.Module):
|
98 |
+
def __init__(self, frequencies):
|
99 |
+
super(FrequencyHopping, self).__init__()
|
100 |
+
self.frequencies = frequencies
|
101 |
+
|
102 |
+
def forward(self, x):
|
103 |
+
for freq in self.frequencies:
|
104 |
+
x = torch.sin(2 * torch.pi * freq * x)
|
105 |
+
return x
|
106 |
+
|
107 |
+
# Define the Decryption Layer
|
108 |
+
class DecryptionLayer(nn.Module):
|
109 |
+
def __init__(self, key_frequency):
|
110 |
+
super(DecryptionLayer, self).__init__()
|
111 |
+
self.key_frequency = key_frequency
|
112 |
+
|
113 |
+
def forward(self, x):
|
114 |
+
return torch.asin(x) / (2 * torch.pi * self.key_frequency)
|
115 |
+
|
116 |
+
# Define the FrequencyVPN Model
|
117 |
+
class FrequencyVPN(nn.Module):
|
118 |
+
def __init__(self, frequency, key_frequency, hopping_frequencies):
|
119 |
+
super(FrequencyVPN, self).__init__()
|
120 |
+
self.modulation = FrequencyModulation(frequency)
|
121 |
+
self.encryption = EncryptionLayer(key_frequency)
|
122 |
+
self.hopping = FrequencyHopping(hopping_frequencies)
|
123 |
+
self.decryption = DecryptionLayer(key_frequency)
|
124 |
+
|
125 |
+
def forward(self, x):
|
126 |
+
x_modulated = self.modulation(x)
|
127 |
+
x_encrypted = self.encryption(x_modulated)
|
128 |
+
x_hopped = self.hopping(x_encrypted)
|
129 |
+
x_decrypted = self.decryption(x_hopped)
|
130 |
+
return x_modulated, x_encrypted, x_hopped, x_decrypted
|
131 |
+
|
132 |
+
# Set the parameters for the model
|
133 |
+
frequency = 5 # Modulation frequency
|
134 |
+
key_frequency = 10 # Encryption key frequency
|
135 |
+
hopping_frequencies = [15, 20, 25] # Frequencies for hopping
|
136 |
+
|
137 |
+
# Create the FrequencyVPN model
|
138 |
+
model = FrequencyVPN(frequency, key_frequency, hopping_frequencies)
|
139 |
+
|
140 |
+
# Example data (simulating a data packet)
|
141 |
+
data = torch.linspace(0, 1, 100) # 100 data points between 0 and 1
|
142 |
+
|
143 |
+
# Pass the data through the model
|
144 |
+
x_modulated, x_encrypted, x_hopped, x_decrypted = model(data)
|
145 |
+
|
146 |
+
# Convert the torch tensors to numpy arrays for plotting
|
147 |
+
data_np = data.numpy()
|
148 |
+
x_modulated_np = x_modulated.detach().numpy()
|
149 |
+
x_encrypted_np = x_encrypted.detach().numpy()
|
150 |
+
x_hopped_np = x_hopped.detach().numpy()
|
151 |
+
x_decrypted_np = x_decrypted.detach().numpy()
|
152 |
+
|
153 |
+
# Plot the data at each stage
|
154 |
+
plt.figure(figsize=(12, 8))
|
155 |
+
|
156 |
+
plt.subplot(4, 1, 1)
|
157 |
+
plt.plot(data_np, x_modulated_np, label='Modulated Data', color='blue')
|
158 |
+
plt.title('Modulated Data')
|
159 |
+
plt.grid(True)
|
160 |
+
|
161 |
+
plt.subplot(4, 1, 2)
|
162 |
+
plt.plot(data_np, x_encrypted_np, label='Encrypted Data', color='green')
|
163 |
+
plt.title('Encrypted Data')
|
164 |
+
plt.grid(True)
|
165 |
+
|
166 |
+
plt.subplot(4, 1, 3)
|
167 |
+
plt.plot(data_np, x_hopped_np, label='Frequency Hopped Data', color='red')
|
168 |
+
plt.title('Frequency Hopped Data')
|
169 |
+
plt.grid(True)
|
170 |
+
|
171 |
+
plt.subplot(4, 1, 4)
|
172 |
+
plt.plot(data_np, x_decrypted_np, label='Decrypted Data', color='purple')
|
173 |
+
plt.title('Decrypted Data')
|
174 |
+
plt.grid(True)
|
175 |
+
|
176 |
+
plt.tight_layout()
|
177 |
+
plt.show()
|