import torch import torch.nn as nn import torch.nn.functional as F class FrequencyModulation(nn.Module): def __init__(self, frequency): super(FrequencyModulation, self).__init__() self.frequency = frequency def forward(self, x): # Apply a sine function for modulation return torch.sin(2 * torch.pi * self.frequency * x) class EncryptionLayer(nn.Module): def __init__(self, key_frequency): super(EncryptionLayer, self).__init__() self.key_frequency = key_frequency def forward(self, x): # Apply frequency shift as a form of encryption return torch.sin(2 * torch.pi * (self.key_frequency + x)) class FrequencyHopping(nn.Module): def __init__(self, frequencies): super(FrequencyHopping, self).__init__() self.frequencies = frequencies def forward(self, x): # Apply frequency hopping for freq in self.frequencies: x = torch.sin(2 * torch.pi * freq * x) return x class DecryptionLayer(nn.Module): def __init__(self, key_frequency): super(DecryptionLayer, self).__init__() self.key_frequency = key_frequency def forward(self, x): # Inverse of the encryption process return torch.asin(x) / (2 * torch.pi * self.key_frequency) class FrequencyVPN(nn.Module): def __init__(self, frequency, key_frequency, hopping_frequencies): super(FrequencyVPN, self).__init__() self.modulation = FrequencyModulation(frequency) self.encryption = EncryptionLayer(key_frequency) self.hopping = FrequencyHopping(hopping_frequencies) self.decryption = DecryptionLayer(key_frequency) def forward(self, x): x = self.modulation(x) x = self.encryption(x) x = self.hopping(x) return self.decryption(x) # Example usage model = FrequencyVPN(frequency=5, key_frequency=10, hopping_frequencies=[15, 20, 25]) data = torch.tensor([1.0, 0.5, 0.3]) # Example data encrypted_data = model(data) !pip install matplotlib import torch import torch.nn as nn import matplotlib.pyplot as plt import numpy as np # Define the Frequency Modulation Layer class FrequencyModulation(nn.Module): def __init__(self, frequency): super(FrequencyModulation, self).__init__() self.frequency = frequency def forward(self, x): return torch.sin(2 * torch.pi * self.frequency * x) # Define the Encryption Layer class EncryptionLayer(nn.Module): def __init__(self, key_frequency): super(EncryptionLayer, self).__init__() self.key_frequency = key_frequency def forward(self, x): return torch.sin(2 * torch.pi * (self.key_frequency + x)) # Define the Frequency Hopping Layer class FrequencyHopping(nn.Module): def __init__(self, frequencies): super(FrequencyHopping, self).__init__() self.frequencies = frequencies def forward(self, x): for freq in self.frequencies: x = torch.sin(2 * torch.pi * freq * x) return x # Define the Decryption Layer class DecryptionLayer(nn.Module): def __init__(self, key_frequency): super(DecryptionLayer, self).__init__() self.key_frequency = key_frequency def forward(self, x): return torch.asin(x) / (2 * torch.pi * self.key_frequency) # Define the FrequencyVPN Model class FrequencyVPN(nn.Module): def __init__(self, frequency, key_frequency, hopping_frequencies): super(FrequencyVPN, self).__init__() self.modulation = FrequencyModulation(frequency) self.encryption = EncryptionLayer(key_frequency) self.hopping = FrequencyHopping(hopping_frequencies) self.decryption = DecryptionLayer(key_frequency) def forward(self, x): x_modulated = self.modulation(x) x_encrypted = self.encryption(x_modulated) x_hopped = self.hopping(x_encrypted) x_decrypted = self.decryption(x_hopped) return x_modulated, x_encrypted, x_hopped, x_decrypted # Set the parameters for the model frequency = 5 # Modulation frequency key_frequency = 10 # Encryption key frequency hopping_frequencies = [15, 20, 25] # Frequencies for hopping # Create the FrequencyVPN model model = FrequencyVPN(frequency, key_frequency, hopping_frequencies) # Example data (simulating a data packet) data = torch.linspace(0, 1, 100) # 100 data points between 0 and 1 # Pass the data through the model x_modulated, x_encrypted, x_hopped, x_decrypted = model(data) # Convert the torch tensors to numpy arrays for plotting data_np = data.numpy() x_modulated_np = x_modulated.detach().numpy() x_encrypted_np = x_encrypted.detach().numpy() x_hopped_np = x_hopped.detach().numpy() x_decrypted_np = x_decrypted.detach().numpy() # Plot the data at each stage plt.figure(figsize=(12, 8)) plt.subplot(4, 1, 1) plt.plot(data_np, x_modulated_np, label='Modulated Data', color='blue') plt.title('Modulated Data') plt.grid(True) plt.subplot(4, 1, 2) plt.plot(data_np, x_encrypted_np, label='Encrypted Data', color='green') plt.title('Encrypted Data') plt.grid(True) plt.subplot(4, 1, 3) plt.plot(data_np, x_hopped_np, label='Frequency Hopped Data', color='red') plt.title('Frequency Hopped Data') plt.grid(True) plt.subplot(4, 1, 4) plt.plot(data_np, x_decrypted_np, label='Decrypted Data', color='purple') plt.title('Decrypted Data') plt.grid(True) plt.tight_layout() plt.show()