antitheft159 commited on
Commit
1f3a6e4
·
verified ·
1 Parent(s): 8e9da4a

Upload eda_363.py

Browse files
Files changed (1) hide show
  1. eda_363.py +98 -0
eda_363.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """eda.363
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1LWUvpKSaZSgOHW-h4GzL9_0NM3RRIxTx
8
+ """
9
+
10
+ import numpy as np
11
+ import pandas as pd
12
+ import matplotlib.pyplot as plt
13
+ import seaborn as sns
14
+
15
+ df = pd.read_csv("/content/World-happiness-report-updated_2024.csv", encoding='latin-1')
16
+ df.head(5)
17
+
18
+ df.describe()
19
+
20
+ df.info()
21
+
22
+ df.isnull().sum()
23
+
24
+ numeric_cols = df.select_dtypes(include=np.number).columns
25
+ df[numeric_cols] = df[numeric_cols].fillna(df[numeric_cols].mean())
26
+
27
+ df2024 = pd.read_csv("/content/World-happiness-report-2024.csv", encoding='latin-1')
28
+ df2024.head(5)
29
+
30
+ df2024.describe()
31
+
32
+ df2024.info()
33
+
34
+ df2024.isnull().sum()
35
+
36
+ numeric_cols = df2024.select_dtypes(include=np.number).columns
37
+ df2024[numeric_cols] = df2024[numeric_cols].fillna(df2024[numeric_cols].mean())
38
+
39
+ df2024['Country name'].unique()
40
+
41
+ sns.countplot(x = 'Regional indicator', data = df2024)
42
+ plt.xticks(rotation = 60)
43
+ plt.show()
44
+
45
+ list_features = ['Social support', 'Freedom to make life choices', 'Generosity', 'Perceptions of corruption']
46
+ sns.boxplot(data=df2024.loc[:,list_features],orient='h',palette = 'Set3')
47
+ plt.show()
48
+
49
+ list_features = ['Ladder score', 'Log GDP per capita']
50
+ sns.boxplot(data=df2024.loc[:,list_features],orient='h',palette = 'Set3')
51
+ plt.show()
52
+
53
+ df2024_happiest_unhappiest = df2024[(df2024.loc[:,'Ladder score']>7.4) | (df2024.loc[:,'Ladder score']<3.5)]
54
+ sns.barplot(x = 'Ladder score', y= 'Country name', data = df2024_happiest_unhappiest, palette = 'coolwarm')
55
+ plt.title('Happiest and Unhappiest Countries in 2024')
56
+ plt.show()
57
+
58
+ plt.figure(figsize=(15,8))
59
+ sns.kdeplot(x=df2024['Ladder score'], hue = df2024['Regional indicator'], fill = True, linewidth = 2)
60
+ plt.axvline(df2024['Ladder score'].mean(),c= 'black')
61
+ plt.title('Ladder Score Distribution by Regional Indicator')
62
+ plt.show()
63
+
64
+ import plotly.express as px
65
+ fig = px.choropleth(df.sort_values('year'),
66
+ locations='Country name',
67
+ color='Life Ladder',
68
+ locationmode = 'country names',
69
+ animation_frame = 'year')
70
+ fig.update_layout(title = 'Life Ladder Comparison by Countires')
71
+
72
+ df2024_generosity = df2024[(df2024.loc[:,'Generosity']>0.6)|(df2024.loc[:,'Generosity']<0.05)]
73
+ sns.barplot(x = 'Generosity', y = 'Country name', data = df2024_generosity, palette= 'coolwarm')
74
+ plt.title('Most Generous and Most Ungenerous Countries in 2024')
75
+ plt.show()
76
+
77
+ fig = px.choropleth(df.sort_values('year'),
78
+ locations = 'Country name',
79
+ color = 'Generosity',
80
+ locationmode = 'country names',
81
+ animation_frame = 'year')
82
+ fig.update_layout(title = 'Generosity Comparison by Countries')
83
+ fig.show()
84
+
85
+ sns.swarmplot(x = "Regional indicator", y = "Generosity", data = df2024, palette="Set1")
86
+ plt.xticks(rotation = 90)
87
+ plt.title("Generous Distribution by Regional Indicator in 2021")
88
+ plt.show()
89
+
90
+ non_numeric_columns = df.select_dtypes(exclude=['float64', 'int64']).columns
91
+ df_numeric = df.drop(columns=non_numeric_columns)
92
+ correlation_matrix = df_numeric.corr()
93
+ sns.heatmap(correlation_matrix, annot = True, fmt ='.2f', linewidth = .7)
94
+ plt.title('Relationship Between Features')
95
+ plt.show()
96
+
97
+ sns.clustermap(correlation_matrix, center = 0, cmap = 'vlag', dendrogram_ratio = (0.1,0.2), annot = True, linewidth = .7, figsize=(10,10))
98
+ plt.show()