applied-ai-018's picture
Add files using upload-large-folder tool
076fce5 verified
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/hpu/__init__.py:158: UserWarning: torch.hpu.setDeterministic is deprecated and will be removed in next release. Please use torch.use_deterministic_algorithms instead.
warnings.warn(
[2024-04-03 22:02:56,583] [INFO] [real_accelerator.py:178:get_accelerator] Setting ds_accelerator to hpu (auto detect)
[2024-04-03 22:02:57,638] [WARNING] [runner.py:206:fetch_hostfile] Unable to find hostfile, will proceed with training with local resources only.
[2024-04-03 22:02:57,702] [INFO] [runner.py:585:main] cmd = /usr/bin/python3 -u -m deepspeed.launcher.launch --world_info=eyJsb2NhbGhvc3QiOiBbMCwgMSwgMiwgMywgNCwgNSwgNiwgN119 --master_addr=127.0.0.1 --master_port=29500 --no_python --no_local_rank --enable_each_rank_log=None /usr/bin/bash -c cd /Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed && python3 -u ./pretrain_llama.py --deepspeed --tensor-model-parallel-size 2 --pipeline-model-parallel-size 2 --position-embedding-type rotary --no-bias --layernorm-type rmsnorm --activation-func-type swiglu --layernorm-epsilon 1e-6 --num-layers 40 --hidden-size 5120 --ffn-hidden-size 13824 --num-attention-heads 40 --seq-length 2048 --micro-batch-size 1 --global-batch-size 256 --train-iters 10000 --log-interval 10 --eval-iters 10 --eval-interval 100 --data-path /data/arxiv/tokenized_text_document --vocab-file /data/arxiv/gpt2-vocab.json --merge-file /data/arxiv/gpt2-merges.txt --optimizer adamw --adam-beta1 0.9 --adam-beta2 0.95 --adam-eps 1e-6 --lr 3e-4 --lr-decay-style cosine --lr-warmup-iters 2000 --clip-grad 1.0 --weight-decay 0.1 --attention-dropout 0.1 --hidden-dropout 0.1 --tensorboard-dir /data/output/132node/tensorboard --log-validation-ppl-to-tensorboard --log-batch-size-to-tensorboard --log-timers-to-tensorboard --load /data/output/132node/checkpoints --deepspeed_config=/data/output/132node/ds_config.json --zero-stage=0 --exit-interval 0 --no-masked-softmax-fusion --no-bias-gelu-fusion --no-bias-dropout-fusion --use-torch-compile false --use-fused-sdpa true --use-fused-sdpa-with-recompute false --bf16 --use_hpu --distributed-backend=hccl --hpu-deterministic --sequence-parallel --save /data/output/132node/checkpoints --save-interval 2000 --verify-checkpoint --verify-checkpoint-model-type LLAMA
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/hpu/__init__.py:158: UserWarning: torch.hpu.setDeterministic is deprecated and will be removed in next release. Please use torch.use_deterministic_algorithms instead.
warnings.warn(
[2024-04-03 22:02:59,064] [INFO] [real_accelerator.py:178:get_accelerator] Setting ds_accelerator to hpu (auto detect)
[2024-04-03 22:03:00,115] [INFO] [launch.py:146:main] WORLD INFO DICT: {'localhost': [0, 1, 2, 3, 4, 5, 6, 7]}
[2024-04-03 22:03:00,115] [INFO] [launch.py:152:main] nnodes=1, num_local_procs=8, node_rank=0
[2024-04-03 22:03:00,115] [INFO] [launch.py:163:main] global_rank_mapping=defaultdict(<class 'list'>, {'localhost': [0, 1, 2, 3, 4, 5, 6, 7]})
[2024-04-03 22:03:00,115] [INFO] [launch.py:164:main] dist_world_size=8
[2024-04-03 22:03:00,115] [INFO] [launch.py:166:main] Setting CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/hpu/__init__.py:158: UserWarning: torch.hpu.setDeterministic is deprecated and will be removed in next release. Please use torch.use_deterministic_algorithms instead.
warnings.warn(
[2024-04-03 22:03:01,731] [INFO] [real_accelerator.py:178:get_accelerator] Setting ds_accelerator to hpu (auto detect)
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/hpu/__init__.py:158: UserWarning: torch.hpu.setDeterministic is deprecated and will be removed in next release. Please use torch.use_deterministic_algorithms instead.
warnings.warn(
[2024-04-03 22:03:01,736] [INFO] [real_accelerator.py:178:get_accelerator] Setting ds_accelerator to hpu (auto detect)
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/hpu/__init__.py:158: UserWarning: torch.hpu.setDeterministic is deprecated and will be removed in next release. Please use torch.use_deterministic_algorithms instead.
warnings.warn(
[2024-04-03 22:03:01,736] [INFO] [real_accelerator.py:178:get_accelerator] Setting ds_accelerator to hpu (auto detect)
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/hpu/__init__.py:158: UserWarning: torch.hpu.setDeterministic is deprecated and will be removed in next release. Please use torch.use_deterministic_algorithms instead.
warnings.warn(
[2024-04-03 22:03:01,738] [INFO] [real_accelerator.py:178:get_accelerator] Setting ds_accelerator to hpu (auto detect)
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/hpu/__init__.py:158: UserWarning: torch.hpu.setDeterministic is deprecated and will be removed in next release. Please use torch.use_deterministic_algorithms instead.
warnings.warn(
[2024-04-03 22:03:01,740] [INFO] [real_accelerator.py:178:get_accelerator] Setting ds_accelerator to hpu (auto detect)
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/hpu/__init__.py:158: UserWarning: torch.hpu.setDeterministic is deprecated and will be removed in next release. Please use torch.use_deterministic_algorithms instead.
warnings.warn(
[2024-04-03 22:03:01,749] [INFO] [real_accelerator.py:178:get_accelerator] Setting ds_accelerator to hpu (auto detect)
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/hpu/__init__.py:158: UserWarning: torch.hpu.setDeterministic is deprecated and will be removed in next release. Please use torch.use_deterministic_algorithms instead.
warnings.warn(
[2024-04-03 22:03:01,830] [INFO] [real_accelerator.py:178:get_accelerator] Setting ds_accelerator to hpu (auto detect)
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/hpu/__init__.py:158: UserWarning: torch.hpu.setDeterministic is deprecated and will be removed in next release. Please use torch.use_deterministic_algorithms instead.
warnings.warn(
[2024-04-03 22:03:01,845] [INFO] [real_accelerator.py:178:get_accelerator] Setting ds_accelerator to hpu (auto detect)
--------------------------------------------------
DeepSpeed C++/CUDA extension op report
--------------------------------------------------
NOTE: Ops not installed will be just-in-time (JIT) compiled at
runtime if needed. Op compatibility means that your system
meet the required dependencies to JIT install the op.
--------------------------------------------------
JIT compiled ops requires ninja
ninja .................. [OKAY]
--------------------------------------------------
op name ................ installed .. compatible
--------------------------------------------------
cpu_adam ............... [NO] ....... [OKAY]
fused_adam ............. [NO] ....... [OKAY]
deepspeed_not_implemented [NO] ....... [OKAY]
transformer_inference .. [NO] ....... [OKAY]
--------------------------------------------------
DeepSpeed general environment info:
torch install path ............... ['/usr/local/lib/python3.10/dist-packages/torch']
torch version .................... 2.1.1a0+gitb51c9f6
deepspeed install path ........... ['/usr/local/lib/python3.10/dist-packages/deepspeed']
deepspeed info ................... 0.12.4+hpu.synapse.v1.14.0, fad45b2, 1.14.0
deepspeed wheel compiled w. ...... torch 2.1
shared memory (/dev/shm) size .... 503.72 GB
fatal: detected dubious ownership in repository at '/Model-References'
To add an exception for this directory, call:
git config --global --add safe.directory /Model-References
**** Git info for Megatron: git_hash=unknown git_branch=unknown ****
--------------------------------------------------
DeepSpeed C++/CUDA extension op report
--------------------------------------------------
NOTE: Ops not installed will be just-in-time (JIT) compiled at
runtime if needed. Op compatibility means that your system
meet the required dependencies to JIT install the op.
--------------------------------------------------
JIT compiled ops requires ninja
ninja .................. [OKAY]
--------------------------------------------------
op name ................ installed .. compatible
--------------------------------------------------
cpu_adam ............... [NO] ....... [OKAY]
fused_adam ............. [NO] ....... [OKAY]
deepspeed_not_implemented [NO] ....... [OKAY]
transformer_inference .. [NO] ....... [OKAY]
--------------------------------------------------
DeepSpeed general environment info:
torch install path ............... ['/usr/local/lib/python3.10/dist-packages/torch']
torch version .................... 2.1.1a0+gitb51c9f6
deepspeed install path ........... ['/usr/local/lib/python3.10/dist-packages/deepspeed']
deepspeed info ................... 0.12.4+hpu.synapse.v1.14.0, fad45b2, 1.14.0
deepspeed wheel compiled w. ...... torch 2.1
shared memory (/dev/shm) size .... 503.72 GB
fatal: detected dubious ownership in repository at '/Model-References'
To add an exception for this directory, call:
git config --global --add safe.directory /Model-References
**** Git info for Megatron: git_hash=unknown git_branch=unknown ****
--------------------------------------------------
DeepSpeed C++/CUDA extension op report
--------------------------------------------------
NOTE: Ops not installed will be just-in-time (JIT) compiled at
runtime if needed. Op compatibility means that your system
meet the required dependencies to JIT install the op.
--------------------------------------------------
JIT compiled ops requires ninja
ninja .................. [OKAY]
--------------------------------------------------
op name ................ installed .. compatible
--------------------------------------------------
cpu_adam ............... [NO] ....... [OKAY]
fused_adam ............. [NO] ....... [OKAY]
deepspeed_not_implemented [NO] ....... [OKAY]
transformer_inference .. [NO] ....... [OKAY]
--------------------------------------------------
DeepSpeed general environment info:
torch install path ............... ['/usr/local/lib/python3.10/dist-packages/torch']
torch version .................... 2.1.1a0+gitb51c9f6
deepspeed install path ........... ['/usr/local/lib/python3.10/dist-packages/deepspeed']
deepspeed info ................... 0.12.4+hpu.synapse.v1.14.0, fad45b2, 1.14.0
deepspeed wheel compiled w. ...... torch 2.1
shared memory (/dev/shm) size .... 503.72 GB
--------------------------------------------------
DeepSpeed C++/CUDA extension op report
--------------------------------------------------
NOTE: Ops not installed will be just-in-time (JIT) compiled at
runtime if needed. Op compatibility means that your system
meet the required dependencies to JIT install the op.
--------------------------------------------------
JIT compiled ops requires ninja
ninja .................. [OKAY]
--------------------------------------------------
op name ................ installed .. compatible
--------------------------------------------------
cpu_adam ............... [NO] ....... [OKAY]
fused_adam ............. [NO] ....... [OKAY]
deepspeed_not_implemented [NO] ....... [OKAY]
transformer_inference .. [NO] ....... [OKAY]
--------------------------------------------------
DeepSpeed general environment info:
torch install path ............... ['/usr/local/lib/python3.10/dist-packages/torch']
torch version .................... 2.1.1a0+gitb51c9f6
deepspeed install path ........... ['/usr/local/lib/python3.10/dist-packages/deepspeed']
deepspeed info ................... 0.12.4+hpu.synapse.v1.14.0, fad45b2, 1.14.0
deepspeed wheel compiled w. ...... torch 2.1
shared memory (/dev/shm) size .... 503.72 GB
--------------------------------------------------
DeepSpeed C++/CUDA extension op report
--------------------------------------------------
NOTE: Ops not installed will be just-in-time (JIT) compiled at
runtime if needed. Op compatibility means that your system
meet the required dependencies to JIT install the op.
--------------------------------------------------
JIT compiled ops requires ninja
ninja .................. [OKAY]
--------------------------------------------------
op name ................ installed .. compatible
--------------------------------------------------
cpu_adam ............... [NO] ....... [OKAY]
fused_adam ............. [NO] ....... [OKAY]
deepspeed_not_implemented [NO] ....... [OKAY]
transformer_inference .. [NO] ....... [OKAY]
--------------------------------------------------
DeepSpeed general environment info:
torch install path ............... ['/usr/local/lib/python3.10/dist-packages/torch']
torch version .................... 2.1.1a0+gitb51c9f6
deepspeed install path ........... ['/usr/local/lib/python3.10/dist-packages/deepspeed']
deepspeed info ................... 0.12.4+hpu.synapse.v1.14.0, fad45b2, 1.14.0
deepspeed wheel compiled w. ...... torch 2.1
shared memory (/dev/shm) size .... 503.72 GB
fatal: detected dubious ownership in repository at '/Model-References'
To add an exception for this directory, call:
git config --global --add safe.directory /Model-References
**** Git info for Megatron: git_hash=unknown git_branch=unknown ****
fatal: detected dubious ownership in repository at '/Model-References'
To add an exception for this directory, call:
git config --global --add safe.directory /Model-References
**** Git info for Megatron: git_hash=unknown git_branch=unknown ****
fatal: detected dubious ownership in repository at '/Model-References'
To add an exception for this directory, call:
git config --global --add safe.directory /Model-References
**** Git info for Megatron: git_hash=unknown git_branch=unknown ****
--------------------------------------------------
DeepSpeed C++/CUDA extension op report
--------------------------------------------------
NOTE: Ops not installed will be just-in-time (JIT) compiled at
runtime if needed. Op compatibility means that your system
meet the required dependencies to JIT install the op.
--------------------------------------------------
JIT compiled ops requires ninja
ninja .................. [OKAY]
--------------------------------------------------
op name ................ installed .. compatible
--------------------------------------------------
cpu_adam ............... [NO] ....... [OKAY]
fused_adam ............. [NO] ....... [OKAY]
deepspeed_not_implemented [NO] ....... [OKAY]
transformer_inference .. [NO] ....... [OKAY]
--------------------------------------------------
DeepSpeed general environment info:
torch install path ............... ['/usr/local/lib/python3.10/dist-packages/torch']
torch version .................... 2.1.1a0+gitb51c9f6
deepspeed install path ........... ['/usr/local/lib/python3.10/dist-packages/deepspeed']
deepspeed info ................... 0.12.4+hpu.synapse.v1.14.0, fad45b2, 1.14.0
deepspeed wheel compiled w. ...... torch 2.1
shared memory (/dev/shm) size .... 503.72 GB
--------------------------------------------------
DeepSpeed C++/CUDA extension op report
--------------------------------------------------
NOTE: Ops not installed will be just-in-time (JIT) compiled at
runtime if needed. Op compatibility means that your system
meet the required dependencies to JIT install the op.
--------------------------------------------------
JIT compiled ops requires ninja
ninja .................. [OKAY]
--------------------------------------------------
op name ................ installed .. compatible
--------------------------------------------------
cpu_adam ............... [NO] ....... [OKAY]
fused_adam ............. [NO] ....... [OKAY]
deepspeed_not_implemented [NO] ....... [OKAY]
transformer_inference .. [NO] ....... [OKAY]
--------------------------------------------------
DeepSpeed general environment info:
torch install path ............... ['/usr/local/lib/python3.10/dist-packages/torch']
torch version .................... 2.1.1a0+gitb51c9f6
deepspeed install path ........... ['/usr/local/lib/python3.10/dist-packages/deepspeed']
deepspeed info ................... 0.12.4+hpu.synapse.v1.14.0, fad45b2, 1.14.0
deepspeed wheel compiled w. ...... torch 2.1
shared memory (/dev/shm) size .... 503.72 GB
fatal: detected dubious ownership in repository at '/Model-References'
To add an exception for this directory, call:
git config --global --add safe.directory /Model-References
**** Git info for Megatron: git_hash=unknown git_branch=unknown ****
using world size: 8, data-parallel-size: 2, tensor-model-parallel size: 2, pipeline-model-parallel size: 2
accumulate and all-reduce gradients in fp32 for bfloat16 data type.
using torch.bfloat16 for parameters ...
------------------------ arguments ------------------------
accumulate_allreduce_grads_in_fp32 .............. True
activation_func_type ............................ swiglu
adam_beta1 ...................................... 0.9
adam_beta2 ...................................... 0.95
adam_eps ........................................ 1e-06
adlr_autoresume ................................. False
adlr_autoresume_interval ........................ 1000
aml_data_download_path .......................... None
apply_layernorm_weight_plus_one ................. False
apply_query_key_layer_scaling ................... True
apply_residual_connection_post_layernorm ........ False
attention_dropout ............................... 0.1
attention_softmax_in_fp32 ....................... False
bert_binary_head ................................ True
bert_load ....................................... None
bf16 ............................................ True
bias_dropout_fusion ............................. False
bias_gelu_fusion ................................ False
biencoder_projection_dim ........................ 0
biencoder_shared_query_context_model ............ False
block_data_path ................................. None
cache_fp8_weight ................................ False
cache_fp8_weight_fwd ............................ True
checkpoint_activations .......................... False
checkpoint_activations_granularity .............. full
checkpoint_in_cpu ............................... False
checkpoint_num_layers ........................... 1
clearml_config_path ............................. None
clearml_continue_exp ............................ False
clearml_exp_name ................................ None
clip_grad ....................................... 1.0
compression_training ............................ False
consumed_train_samples .......................... 0
consumed_train_tokens ........................... 0
consumed_valid_samples .......................... 0
contigious_checkpointing ........................ False
cpu_optimizer ................................... False
cpu_torch_adam .................................. False
create_moe_param_group .......................... False
curriculum_learning ............................. False
data_idx_path ................................... None
data_impl ....................................... infer
data_parallel_size .............................. 2
data_path ....................................... ['/data/arxiv/tokenized_text_document']
data_sharding ................................... True
dataloader_type ................................. single
DDP_impl ........................................ local
decoder_seq_length .............................. None
deepscale ....................................... False
deepscale_config ................................ None
deepspeed ....................................... True
deepspeed_activation_checkpointing .............. False
deepspeed_config ................................ /data/output/132node/ds_config.json
deepspeed_mpi ................................... False
distribute_checkpointed_activations ............. False
distributed_backend ............................. hccl
do_layernorm_bias_weight_decay .................. False
do_pretrain_validation .......................... False
ds_inference .................................... False
ds_pipeline_enabled ............................. True
embed_layernorm ................................. False
embedding_path .................................. None
enable_expert_tensor_parallelism ................ False
encoder_seq_length .............................. 2048
eod_mask_loss ................................... False
eval_interval ................................... 100
eval_iters ...................................... 10
eval_loss_exit_value ............................ None
eval_micro_batch_size ........................... 1
evidence_data_path .............................. None
exit_duration_in_mins ........................... None
exit_interval ................................... 0
expert_interval ................................. 2
ffn_hidden_coeff ................................ 2.6666666666666665
ffn_hidden_size ................................. 13824
finetune ........................................ False
fix_position_emb_redundant_alloc ................ False
flatten_linear_operands ......................... False
fp16 ............................................ False
fp16_lm_cross_entropy ........................... False
fp32_residual_connection ........................ False
global_batch_size ............................... 256
hidden_dropout .................................. 0.1
hidden_size ..................................... 5120
hidden_size_teacher ............................. None
hpu_deterministic ............................... True
hpu_fp8_format .................................. e5m2
hpu_fp8_measure_interval ........................ 10
hysteresis ...................................... 2
ict_head_size ................................... None
ict_load ........................................ None
img_dim ......................................... 224
indexer_batch_size .............................. 128
indexer_log_interval ............................ 1000
inference ....................................... False
init_method_std ................................. 0.02
init_method_xavier_uniform ...................... False
initial_loss_scale .............................. 4294967296
kd .............................................. False
kd_alpha_ce ..................................... 1
kd_beta_ce ...................................... 1
kd_temp ......................................... 1.0
kill_switch_path ................................ None
kv_channels ..................................... 128
layernorm_epsilon ............................... 1e-06
layernorm_type .................................. rmsnorm
lazy_mpu_init ................................... None
load ............................................ /data/output/132node/checkpoints
load_teacher .................................... None
local_rank ...................................... 0
log_batch_size_to_tensorboard ................... True
log_bwd_grads ................................... False
log_fwd_activations ............................. False
log_interval .................................... 10
log_learning_rate_to_tensorboard ................ True
log_loss_scale_to_tensorboard ................... True
log_model_inputs ................................ False
log_num_zeros_in_grad ........................... False
log_optimizer_states_to_tensorboard ............. False
log_params_norm ................................. False
log_timers_to_tensorboard ....................... True
log_validation_ppl_to_tensorboard ............... True
loss_scale ...................................... None
loss_scale_window ............................... 1000
lr .............................................. 0.0003
lr_decay_iters .................................. None
lr_decay_samples ................................ None
lr_decay_style .................................. cosine
lr_decay_tokens ................................. None
lr_warmup_fraction .............................. None
lr_warmup_iters ................................. 2000
lr_warmup_samples ............................... 0
lr_warmup_tokens ................................ None
make_vocab_size_divisible_by .................... 128
mask_prob ....................................... 0.15
mask_tensor_adding .............................. False
masked_softmax_fusion ........................... False
max_position_embeddings ......................... None
memory_centric_tiled_linear ..................... False
merge_file ...................................... /data/arxiv/gpt2-merges.txt
micro_batch_size ................................ 1
min_loss_scale .................................. 1.0
min_lr .......................................... 0.0
mlp_type ........................................ standard
mmap_warmup ..................................... False
moe_eval_capacity_factor ........................ 1.0
moe_expert_parallel_size ........................ 1
moe_loss_coeff .................................. 0.1
moe_min_capacity ................................ 4
moe_token_dropping .............................. True
moe_train_capacity_factor ....................... 1.0
mos ............................................. False
no_bias ......................................... True
no_cuda ......................................... False
no_load_lr_state ................................ False
no_load_optim ................................... None
no_load_rng ..................................... None
no_pipeline_parallel ............................ False
no_save_optim ................................... None
no_save_rng ..................................... None
no_scaled_init .................................. False
num_attention_heads ............................. 40
num_attention_heads_teacher ..................... None
num_channels .................................... 3
num_classes ..................................... 1000
num_experts ..................................... [1]
num_experts_teacher ............................. [1]
num_key_value_heads ............................. 40
num_layers ...................................... 40
num_layers_per_virtual_pipeline_stage ........... None
num_layers_teacher .............................. None
num_workers ..................................... 2
onnx_safe ....................................... None
openai_gelu ..................................... False
optimizer ....................................... adamw
override_lr_scheduler ........................... False
params_dtype .................................... torch.bfloat16
partition_activations ........................... False
patch_dim ....................................... 16
pipeline_model_parallel_size .................... 2
position_embedding_type ......................... PositionEmbeddingType.rotary
profile ......................................... None
profile_backward ................................ False
profile_steps ................................... 2,3
query_in_block_prob ............................. 0.1
rampup_batch_size ............................... None
rank ............................................ 0
remote_device ................................... none
reset_attention_mask ............................ False
reset_iteration ................................. False
reset_position_ids .............................. False
retriever_report_topk_accuracies ................ []
retriever_score_scaling ......................... False
retriever_seq_length ............................ 256
sample_rate ..................................... 1.0
save ............................................ /data/output/132node/checkpoints
save_interval ................................... 2000
scatter_gather_tensors_in_pipeline .............. True
scattered_embeddings ............................ False
seed ............................................ 1234
seq_length ...................................... 2048
sequence_parallel ............................... True
sgd_momentum .................................... 0.9
short_seq_prob .................................. 0.1
skip_train ...................................... False
split ........................................... 969, 30, 1
split_transformers .............................. False
synchronize_each_layer .......................... False
tensor_logger_max_iter .......................... 0
tensor_logger_path .............................. None
tensor_model_parallel_size ...................... 2
tensorboard_dir ................................. /data/output/132node/tensorboard
tensorboard_log_interval ........................ 1
tensorboard_queue_size .......................... 1000
test_data_path .................................. None
tile_factor ..................................... 1
titles_data_path ................................ None
tokenizer_eod_id ................................ None
tokenizer_model_file ............................ None
tokenizer_type .................................. GPT2BPETokenizer
topk ............................................ 1
train_data_path ................................. None
train_iters ..................................... 10000
train_samples ................................... None
train_tokens .................................... None
universal_checkpoint ............................ False
use_checkpoint_lr_scheduler ..................... False
use_contiguous_buffers_in_ddp ................... True
use_cpu_initialization .......................... None
use_fused_sdpa .................................. True
use_fused_sdpa_with_recompute ................... False
use_hpu ......................................... True
use_hpu_fp8_transformer_engine .................. False
use_hpu_graphs .................................. False
use_one_sent_docs ............................... False
use_pin_memory .................................. False
use_rotary_v2 ................................... False
use_seq_len_plus_one_tokens ..................... True
use_torch_compile ............................... False
use_tutel ....................................... False
valid_data_path ................................. None
verify_checkpoint ............................... True
verify_checkpoint_model_type .................... LLAMA
verify_tp_workers ............................... False
verify_tp_workers_hash .......................... False
virtual_pipeline_model_parallel_size ............ None
vocab_extra_ids ................................. 0
vocab_file ...................................... /data/arxiv/gpt2-vocab.json
weight_decay .................................... 0.1
world_size ...................................... 8
zero_allgather_bucket_size ...................... 0.0
zero_contigious_gradients ....................... False
zero_reduce_bucket_size ......................... 0.0
zero_reduce_scatter ............................. False
zero_stage ...................................... 0
-------------------- end of arguments ---------------------
setting number of micro-batches to constant 128
setting number of micro-batches to constant 128
> building GPT2BPETokenizer tokenizer ...
fatal: detected dubious ownership in repository at '/Model-References'
To add an exception for this directory, call:
git config --global --add safe.directory /Model-References
**** Git info for Megatron: git_hash=unknown git_branch=unknown ****
_initialize_distributed: Initializing with below params:
args.local_rank: 6
args.world_size: 8
args.rank: 6
args.distributed_backend: hccl
_initialize_distributed: Initializing with below params:
args.local_rank: 1
args.world_size: 8
args.rank: 1
args.distributed_backend: hccl
_initialize_distributed: Initializing with below params:
args.local_rank: 3
args.world_size: 8
args.rank: 3
args.distributed_backend: hccl
_initialize_distributed: Initializing with below params:
args.local_rank: 2
args.world_size: 8
args.rank: 2
args.distributed_backend: hccl
--------------------------------------------------
DeepSpeed C++/CUDA extension op report
--------------------------------------------------
NOTE: Ops not installed will be just-in-time (JIT) compiled at
runtime if needed. Op compatibility means that your system
meet the required dependencies to JIT install the op.
--------------------------------------------------
JIT compiled ops requires ninja
ninja .................. [OKAY]
--------------------------------------------------
op name ................ installed .. compatible
--------------------------------------------------
cpu_adam ............... [NO] ....... [OKAY]
fused_adam ............. [NO] ....... [OKAY]
deepspeed_not_implemented [NO] ....... [OKAY]
transformer_inference .. [NO] ....... [OKAY]
--------------------------------------------------
DeepSpeed general environment info:
torch install path ............... ['/usr/local/lib/python3.10/dist-packages/torch']
torch version .................... 2.1.1a0+gitb51c9f6
deepspeed install path ........... ['/usr/local/lib/python3.10/dist-packages/deepspeed']
deepspeed info ................... 0.12.4+hpu.synapse.v1.14.0, fad45b2, 1.14.0
deepspeed wheel compiled w. ...... torch 2.1
shared memory (/dev/shm) size .... 503.72 GB
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/hpu/__init__.py:158: UserWarning: torch.hpu.setDeterministic is deprecated and will be removed in next release. Please use torch.use_deterministic_algorithms instead.
warnings.warn(
hccl device_count: 8
[2024-04-03 22:03:03,241] [WARNING] [comm.py:163:init_deepspeed_backend] HCCL backend in DeepSpeed not yet implemented
[2024-04-03 22:03:03,241] [INFO] [comm.py:637:init_distributed] cdb=None
fatal: detected dubious ownership in repository at '/Model-References'
To add an exception for this directory, call:
git config --global --add safe.directory /Model-References
**** Git info for Megatron: git_hash=unknown git_branch=unknown ****
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/hpu/__init__.py:158: UserWarning: torch.hpu.setDeterministic is deprecated and will be removed in next release. Please use torch.use_deterministic_algorithms instead.
warnings.warn(
hccl device_count: 8
[2024-04-03 22:03:03,252] [WARNING] [comm.py:163:init_deepspeed_backend] HCCL backend in DeepSpeed not yet implemented
[2024-04-03 22:03:03,252] [INFO] [comm.py:637:init_distributed] cdb=None
_initialize_distributed: Initializing with below params:
args.local_rank: 4
args.world_size: 8
args.rank: 4
args.distributed_backend: hccl
> padded vocab (size: 50257) with 175 dummy tokens (new size: 50432)
_initialize_distributed: Initializing with below params:
args.local_rank: 0
args.world_size: 8
args.rank: 0
args.distributed_backend: hccl
> setting tensorboard ...
_initialize_distributed: Initializing with below params:
args.local_rank: 7
args.world_size: 8
args.rank: 7
args.distributed_backend: hccl
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/hpu/__init__.py:158: UserWarning: torch.hpu.setDeterministic is deprecated and will be removed in next release. Please use torch.use_deterministic_algorithms instead.
warnings.warn(
hccl device_count: 8
[2024-04-03 22:03:03,289] [WARNING] [comm.py:163:init_deepspeed_backend] HCCL backend in DeepSpeed not yet implemented
[2024-04-03 22:03:03,289] [INFO] [comm.py:637:init_distributed] cdb=None
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/hpu/__init__.py:158: UserWarning: torch.hpu.setDeterministic is deprecated and will be removed in next release. Please use torch.use_deterministic_algorithms instead.
warnings.warn(
hccl device_count: 8
[2024-04-03 22:03:03,296] [WARNING] [comm.py:163:init_deepspeed_backend] HCCL backend in DeepSpeed not yet implemented
[2024-04-03 22:03:03,296] [INFO] [comm.py:637:init_distributed] cdb=None
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/hpu/__init__.py:158: UserWarning: torch.hpu.setDeterministic is deprecated and will be removed in next release. Please use torch.use_deterministic_algorithms instead.
warnings.warn(
hccl device_count: 8
[2024-04-03 22:03:03,326] [WARNING] [comm.py:163:init_deepspeed_backend] HCCL backend in DeepSpeed not yet implemented
[2024-04-03 22:03:03,327] [INFO] [comm.py:637:init_distributed] cdb=None
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/hpu/__init__.py:158: UserWarning: torch.hpu.setDeterministic is deprecated and will be removed in next release. Please use torch.use_deterministic_algorithms instead.
warnings.warn(
hccl device_count: 8
> initializing torch distributed ...
[2024-04-03 22:03:03,343] [WARNING] [comm.py:163:init_deepspeed_backend] HCCL backend in DeepSpeed not yet implemented
[2024-04-03 22:03:03,343] [INFO] [comm.py:637:init_distributed] cdb=None
[2024-04-03 22:03:03,343] [INFO] [comm.py:668:init_distributed] Initializing TorchBackend in DeepSpeed with backend hccl
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/hpu/__init__.py:158: UserWarning: torch.hpu.setDeterministic is deprecated and will be removed in next release. Please use torch.use_deterministic_algorithms instead.
warnings.warn(
hccl device_count: 8
[2024-04-03 22:03:03,345] [WARNING] [comm.py:163:init_deepspeed_backend] HCCL backend in DeepSpeed not yet implemented
[2024-04-03 22:03:03,345] [INFO] [comm.py:637:init_distributed] cdb=None
_initialize_distributed: Initializing with below params:
args.local_rank: 5
args.world_size: 8
args.rank: 5
args.distributed_backend: hccl
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/hpu/__init__.py:158: UserWarning: torch.hpu.setDeterministic is deprecated and will be removed in next release. Please use torch.use_deterministic_algorithms instead.
warnings.warn(
hccl device_count: 8
[2024-04-03 22:03:03,441] [WARNING] [comm.py:163:init_deepspeed_backend] HCCL backend in DeepSpeed not yet implemented
[2024-04-03 22:03:03,441] [INFO] [comm.py:637:init_distributed] cdb=None
> initializing tensor model parallel with size 2
> initializing pipeline model parallel with size 2
> setting random seeds to 1234 ...
> initializing model parallel cuda seeds on global rank 0, model parallel rank 0, and data parallel rank 0 with model parallel seed: 3952 and data parallel seed: 1234
============================= HABANA PT BRIDGE CONFIGURATION ===========================
PT_HPU_LAZY_MODE = 1
PT_RECIPE_CACHE_PATH =
PT_CACHE_FOLDER_DELETE = 0
PT_HPU_RECIPE_CACHE_CONFIG =
PT_HPU_MAX_COMPOUND_OP_SIZE = 9223372036854775807
PT_HPU_LAZY_ACC_PAR_MODE = 0
PT_HPU_ENABLE_REFINE_DYNAMIC_SHAPES = 0
---------------------------: System Configuration :---------------------------
Num CPU Cores : 160
CPU RAM : 1056375244 KB
------------------------------------------------------------------------------
> compiling dataset index builder ...
make: Entering directory '/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/data'
make: Nothing to be done for 'default'.
make: Leaving directory '/Model-References/PyTorch/nlp/DeepSpeedExamples/Megatron-DeepSpeed/megatron/data'
>>> done with dataset index builder. Compilation time: 0.072 seconds
WARNING: constraints for invoking optimized fused softmax kernel are not met. We default back to unfused kernel invocations.
> compiling and loading fused kernels ...
>>> done with compiling and loading fused kernels. Compilation time: 0.005 seconds
time to initialize megatron (seconds): 29.272
[after megatron is initialized] datetime: 2024-04-03 22:03:09
building LLaMA model ...
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ********************************* Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ********************************* Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/core/weight_sharing.py:53: UserWarning: "hpu:X" notation is not supported by Gaudi PyTorch intergration bridge. Please change to "hpu" without index (Triggered internally at /npu-stack/pytorch-integration/pytorch_helpers/lazy_to_backend.cpp:53.)
return super().__torch_function__(func, types, new_args, kwargs)
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/core/weight_sharing.py:53: UserWarning: "hpu:X" notation is not supported by Gaudi PyTorch intergration bridge. Please change to "hpu" without index (Triggered internally at /npu-stack/pytorch-integration/pytorch_helpers/lazy_to_backend.cpp:53.)
return super().__torch_function__(func, types, new_args, kwargs)
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/core/weight_sharing.py:53: UserWarning: "hpu:X" notation is not supported by Gaudi PyTorch intergration bridge. Please change to "hpu" without index (Triggered internally at /npu-stack/pytorch-integration/pytorch_helpers/lazy_to_backend.cpp:53.)
return super().__torch_function__(func, types, new_args, kwargs)
*************** Using FusedSDPA ******************
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/core/weight_sharing.py:53: UserWarning: "hpu:X" notation is not supported by Gaudi PyTorch intergration bridge. Please change to "hpu" without index (Triggered internally at /npu-stack/pytorch-integration/pytorch_helpers/lazy_to_backend.cpp:53.)
return super().__torch_function__(func, types, new_args, kwargs)
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/core/weight_sharing.py:53: UserWarning: "hpu:X" notation is not supported by Gaudi PyTorch intergration bridge. Please change to "hpu" without index (Triggered internally at /npu-stack/pytorch-integration/pytorch_helpers/lazy_to_backend.cpp:53.)
return super().__torch_function__(func, types, new_args, kwargs)
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
> number of parameters on (tensor, pipeline) model parallel rank (1, 0): 3301253120
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/core/weight_sharing.py:53: UserWarning: "hpu:X" notation is not supported by Gaudi PyTorch intergration bridge. Please change to "hpu" without index (Triggered internally at /npu-stack/pytorch-integration/pytorch_helpers/lazy_to_backend.cpp:53.)
return super().__torch_function__(func, types, new_args, kwargs)
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/core/weight_sharing.py:53: UserWarning: "hpu:X" notation is not supported by Gaudi PyTorch intergration bridge. Please change to "hpu" without index (Triggered internally at /npu-stack/pytorch-integration/pytorch_helpers/lazy_to_backend.cpp:53.)
return super().__torch_function__(func, types, new_args, kwargs)
> number of parameters on (tensor, pipeline) model parallel rank (0, 1): 3301258240
[2024-04-03 22:03:09,344] [INFO] [utils.py:824:see_memory_usage] Before Building Model
> number of parameters on (tensor, pipeline) model parallel rank (1, 1): 3301258240
[2024-04-03 22:03:09,347] [INFO] [utils.py:825:see_memory_usage] MA 0.01 GB Max_MA 0.01 GB CA 0.0 GB Max_CA 0 GB
[2024-04-03 22:03:09,348] [INFO] [utils.py:832:see_memory_usage] CPU Virtual Memory: used = 345.07 GB, percent = 34.3%
SEED_LAYERS=False BASE_SEED=1234 SEED_FN=None
Using topology: {ProcessCoord(pipe=0, data=0, model=0): 0, ProcessCoord(pipe=0, data=0, model=1): 1, ProcessCoord(pipe=0, data=1, model=0): 2, ProcessCoord(pipe=0, data=1, model=1): 3, ProcessCoord(pipe=1, data=0, model=0): 4, ProcessCoord(pipe=1, data=0, model=1): 5, ProcessCoord(pipe=1, data=1, model=0): 6, ProcessCoord(pipe=1, data=1, model=1): 7}
[2024-04-03 22:03:09,350] [INFO] [module.py:375:_partition_layers] Partitioning pipeline stages with method type:transformer
stage=0 layers=23
0: _to_float16
1: EmbeddingPipe
2: <lambda>
3: ParallelTransformerLayerPipe
4: ParallelTransformerLayerPipe
5: ParallelTransformerLayerPipe
6: ParallelTransformerLayerPipe
7: ParallelTransformerLayerPipe
8: ParallelTransformerLayerPipe
9: ParallelTransformerLayerPipe
10: ParallelTransformerLayerPipe
11: ParallelTransformerLayerPipe
12: ParallelTransformerLayerPipe
13: ParallelTransformerLayerPipe
14: ParallelTransformerLayerPipe
15: ParallelTransformerLayerPipe
16: ParallelTransformerLayerPipe
17: ParallelTransformerLayerPipe
18: ParallelTransformerLayerPipe
19: ParallelTransformerLayerPipe
20: ParallelTransformerLayerPipe
21: ParallelTransformerLayerPipe
22: ParallelTransformerLayerPipe
stage=1 layers=25
23: ParallelTransformerLayerPipe
24: ParallelTransformerLayerPipe
25: ParallelTransformerLayerPipe
26: ParallelTransformerLayerPipe
27: ParallelTransformerLayerPipe
28: ParallelTransformerLayerPipe
29: ParallelTransformerLayerPipe
30: ParallelTransformerLayerPipe
31: ParallelTransformerLayerPipe
32: ParallelTransformerLayerPipe
33: ParallelTransformerLayerPipe
34: ParallelTransformerLayerPipe
35: ParallelTransformerLayerPipe
36: ParallelTransformerLayerPipe
37: ParallelTransformerLayerPipe
38: ParallelTransformerLayerPipe
39: ParallelTransformerLayerPipe
40: ParallelTransformerLayerPipe
41: ParallelTransformerLayerPipe
42: ParallelTransformerLayerPipe
43: <lambda>
44: WrapName
45: WrapName
46: <lambda>
47: float16_to_fp32
loss: CrossEntropy
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
*************** Using FusedSDPA ******************
[2024-04-03 22:03:09,470] [INFO] [utils.py:824:see_memory_usage] After Building Model
[2024-04-03 22:03:09,474] [INFO] [utils.py:825:see_memory_usage] MA 0.01 GB Max_MA 0.01 GB CA 0.0 GB Max_CA 0 GB
[2024-04-03 22:03:09,474] [INFO] [utils.py:832:see_memory_usage] CPU Virtual Memory: used = 345.56 GB, percent = 34.3%
> number of parameters on (tensor, pipeline) model parallel rank (0, 0): 3301253120
> learning rate decay style: cosine
DeepSpeed is enabled.
[2024-04-03 22:03:09,479] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed info: version=0.12.4+hpu.synapse.v1.14.0, git-hash=fad45b2, git-branch=1.14.0
[2024-04-03 22:03:10,368] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Flops Profiler Enabled: False
[2024-04-03 22:03:10,369] [INFO] [logging.py:96:log_dist] [Rank 0] Using client Optimizer as basic optimizer
[2024-04-03 22:03:10,369] [INFO] [logging.py:96:log_dist] [Rank 0] Removing param_group that has no 'params' in the basic Optimizer
[2024-04-03 22:03:10,371] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Basic Optimizer = AdamW
[2024-04-03 22:03:10,371] [INFO] [logging.py:96:log_dist] [Rank 0] Creating BF16 optimizer
[2024-04-03 22:03:10,445] [INFO] [utils.py:824:see_memory_usage] begin bf16_optimizer
[2024-04-03 22:03:10,448] [INFO] [utils.py:825:see_memory_usage] MA 6.16 GB Max_MA 6.18 GB CA 0.0 GB Max_CA 0 GB
[2024-04-03 22:03:10,448] [INFO] [utils.py:832:see_memory_usage] CPU Virtual Memory: used = 348.0 GB, percent = 34.5%
[2024-04-03 22:03:10,513] [INFO] [utils.py:824:see_memory_usage] before initializing group 0
[2024-04-03 22:03:10,516] [INFO] [utils.py:825:see_memory_usage] MA 6.16 GB Max_MA 0.0 GB CA 0.0 GB Max_CA 0 GB
[2024-04-03 22:03:10,516] [INFO] [utils.py:832:see_memory_usage] CPU Virtual Memory: used = 348.08 GB, percent = 34.6%
[2024-04-03 22:03:10,777] [INFO] [engine.py:139:__init__] is_pipe_partitioned= False is_grad_partitioned= False
[2024-04-03 22:03:10,789] [INFO] [engine.py:139:__init__] is_pipe_partitioned= False is_grad_partitioned= False
[2024-04-03 22:03:10,837] [INFO] [engine.py:139:__init__] is_pipe_partitioned= False is_grad_partitioned= False
[2024-04-03 22:03:10,838] [INFO] [engine.py:139:__init__] is_pipe_partitioned= False is_grad_partitioned= False
[2024-04-03 22:03:10,861] [INFO] [engine.py:139:__init__] is_pipe_partitioned= False is_grad_partitioned= False
[2024-04-03 22:03:11,089] [INFO] [utils.py:824:see_memory_usage] after initializing group 0
[2024-04-03 22:03:11,092] [INFO] [utils.py:825:see_memory_usage] MA 6.16 GB Max_MA 12.31 GB CA 0.0 GB Max_CA 0 GB
[2024-04-03 22:03:11,092] [INFO] [utils.py:832:see_memory_usage] CPU Virtual Memory: used = 348.52 GB, percent = 34.6%
[2024-04-03 22:03:11,147] [INFO] [utils.py:824:see_memory_usage] before initializing group 1
[2024-04-03 22:03:11,150] [INFO] [utils.py:825:see_memory_usage] MA 6.16 GB Max_MA 0.0 GB CA 0.0 GB Max_CA 0 GB
[2024-04-03 22:03:11,150] [INFO] [utils.py:832:see_memory_usage] CPU Virtual Memory: used = 348.52 GB, percent = 34.6%
[2024-04-03 22:03:11,231] [INFO] [engine.py:139:__init__] is_pipe_partitioned= False is_grad_partitioned= False
[2024-04-03 22:03:11,236] [INFO] [utils.py:824:see_memory_usage] after initializing group 1
[2024-04-03 22:03:11,239] [INFO] [utils.py:825:see_memory_usage] MA 24.61 GB Max_MA 24.61 GB CA 0.0 GB Max_CA 0 GB
[2024-04-03 22:03:11,239] [INFO] [utils.py:832:see_memory_usage] CPU Virtual Memory: used = 348.52 GB, percent = 34.6%
[2024-04-03 22:03:11,240] [INFO] [engine.py:139:__init__] is_pipe_partitioned= False is_grad_partitioned= False
[2024-04-03 22:03:11,294] [INFO] [utils.py:824:see_memory_usage] before initialize_optimizer
[2024-04-03 22:03:11,297] [INFO] [utils.py:825:see_memory_usage] MA 24.61 GB Max_MA 0.0 GB CA 0.0 GB Max_CA 0 GB
[2024-04-03 22:03:11,297] [INFO] [utils.py:832:see_memory_usage] CPU Virtual Memory: used = 348.55 GB, percent = 34.6%
[2024-04-03 22:03:11,348] [INFO] [utils.py:824:see_memory_usage] end initialize_optimizer
[2024-04-03 22:03:11,352] [INFO] [utils.py:825:see_memory_usage] MA 24.61 GB Max_MA 0.0 GB CA 0.0 GB Max_CA 0 GB
[2024-04-03 22:03:11,352] [INFO] [utils.py:832:see_memory_usage] CPU Virtual Memory: used = 348.52 GB, percent = 34.6%
[2024-04-03 22:03:11,403] [INFO] [utils.py:824:see_memory_usage] end bf16_optimizer
[2024-04-03 22:03:11,406] [INFO] [utils.py:825:see_memory_usage] MA 24.61 GB Max_MA 0.0 GB CA 0.0 GB Max_CA 0 GB
[2024-04-03 22:03:11,406] [INFO] [utils.py:832:see_memory_usage] CPU Virtual Memory: used = 348.52 GB, percent = 34.6%
[2024-04-03 22:03:11,407] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Final Optimizer = BF16_Optimizer
[2024-04-03 22:03:11,407] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed using client LR scheduler
[2024-04-03 22:03:11,407] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed LR Scheduler = <megatron.learning_rates.AnnealingLR object at 0x7fe01c1a9db0>
[2024-04-03 22:03:11,407] [INFO] [logging.py:96:log_dist] [Rank 0] step=0, skipped=0, lr=[0.0, 0.0], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-04-03 22:03:11,408] [INFO] [config.py:992:print] DeepSpeedEngine configuration:
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] activation_checkpointing_config {
"partition_activations": false,
"contiguous_memory_optimization": false,
"cpu_checkpointing": false,
"number_checkpoints": null,
"synchronize_checkpoint_boundary": false,
"profile": false
}
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] aio_config ................... {'block_size': 1048576, 'queue_depth': 8, 'thread_count': 1, 'single_submit': False, 'overlap_events': True}
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] amp_enabled .................. False
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] amp_params ................... False
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] autotuning_config ............ {
"enabled": false,
"start_step": null,
"end_step": null,
"metric_path": null,
"arg_mappings": null,
"metric": "throughput",
"model_info": null,
"results_dir": "autotuning_results",
"exps_dir": "autotuning_exps",
"overwrite": true,
"fast": true,
"start_profile_step": 3,
"end_profile_step": 5,
"tuner_type": "gridsearch",
"tuner_early_stopping": 5,
"tuner_num_trials": 50,
"model_info_path": null,
"mp_size": 1,
"max_train_batch_size": null,
"min_train_batch_size": 1,
"max_train_micro_batch_size_per_gpu": 1.024000e+03,
"min_train_micro_batch_size_per_gpu": 1,
"num_tuning_micro_batch_sizes": 3
}
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] bfloat16_accumulate_grads_via_hooks True
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] bfloat16_enabled ............. True
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] checkpoint_parallel_write_pipeline False
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] checkpoint_tag_validation_enabled True
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] checkpoint_tag_validation_fail False
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] comms_config ................. <deepspeed.comm.config.DeepSpeedCommsConfig object at 0x7fe01c1a9810>
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] communication_data_type ...... None
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] compression_config ........... {'weight_quantization': {'shared_parameters': {'enabled': False, 'quantizer_kernel': False, 'schedule_offset': 0, 'quantize_groups': 1, 'quantize_verbose': False, 'quantization_type': 'symmetric', 'quantize_weight_in_forward': False, 'rounding': 'nearest', 'fp16_mixed_quantize': False, 'quantize_change_ratio': 0.001}, 'different_groups': {}}, 'activation_quantization': {'shared_parameters': {'enabled': False, 'quantization_type': 'symmetric', 'range_calibration': 'dynamic', 'schedule_offset': 1000}, 'different_groups': {}}, 'sparse_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'row_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'head_pruning': {'shared_parameters': {'enabled': False, 'method': 'topk', 'schedule_offset': 1000}, 'different_groups': {}}, 'channel_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'layer_reduction': {'enabled': False}}
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] curriculum_enabled_legacy .... False
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] curriculum_params_legacy ..... False
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] data_efficiency_config ....... {'enabled': False, 'seed': 1234, 'data_sampling': {'enabled': False, 'num_epochs': 1000, 'num_workers': 0, 'curriculum_learning': {'enabled': False}}, 'data_routing': {'enabled': False, 'random_ltd': {'enabled': False, 'layer_token_lr_schedule': {'enabled': False}}}}
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] data_efficiency_enabled ...... False
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] dataloader_drop_last ......... False
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] disable_allgather ............ False
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] dump_state ................... False
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] dynamic_loss_scale_args ...... None
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] eigenvalue_enabled ........... False
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] eigenvalue_gas_boundary_resolution 1
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] eigenvalue_layer_name ........ bert.encoder.layer
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] eigenvalue_layer_num ......... 0
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] eigenvalue_max_iter .......... 100
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] eigenvalue_stability ......... 1e-06
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] eigenvalue_tol ............... 0.01
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] eigenvalue_verbose ........... False
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] elasticity_enabled ........... False
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] flops_profiler_config ........ {
"enabled": false,
"recompute_fwd_factor": 0.0,
"profile_step": 1,
"module_depth": -1,
"top_modules": 1,
"detailed": true,
"output_file": null
}
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] fp16_auto_cast ............... None
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] fp16_enabled ................. False
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] fp16_master_weights_and_gradients False
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] global_rank .................. 0
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] grad_accum_dtype ............. None
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] gradient_accumulation_steps .. 128
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] gradient_clipping ............ 1.0
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] gradient_predivide_factor .... 1.0
[2024-04-03 22:03:11,408] [INFO] [config.py:996:print] hybrid_engine ................ enabled=False max_out_tokens=512 inference_tp_size=1 release_inference_cache=False pin_parameters=True tp_gather_partition_size=8
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] initial_dynamic_scale ........ 1
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] load_universal_checkpoint .... False
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] loss_scale ................... 1.0
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] memory_breakdown ............. False
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] mics_hierarchial_params_gather False
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] mics_shard_size .............. -1
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] monitor_config ............... tensorboard=TensorBoardConfig(enabled=False, output_path='', job_name='DeepSpeedJobName') wandb=WandbConfig(enabled=False, group=None, team=None, project='deepspeed') csv_monitor=CSVConfig(enabled=False, output_path='', job_name='DeepSpeedJobName') enabled=False
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] nebula_config ................ {
"enabled": false,
"persistent_storage_path": null,
"persistent_time_interval": 100,
"num_of_version_in_retention": 2,
"enable_nebula_load": true,
"load_path": null
}
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] optimizer_legacy_fusion ...... False
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] optimizer_name ............... None
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] optimizer_params ............. None
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] pipeline ..................... {'stages': 'auto', 'partition': 'best', 'seed_layers': False, 'activation_checkpoint_interval': 0, 'pipe_partitioned': False, 'grad_partitioned': False}
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] pld_enabled .................. False
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] pld_params ................... False
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] prescale_gradients ........... False
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] scheduler_name ............... None
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] scheduler_params ............. None
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] seq_parallel_communication_data_type torch.float32
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] sparse_attention ............. None
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] sparse_gradients_enabled ..... False
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] steps_per_print .............. 10
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] train_batch_size ............. 256
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] train_micro_batch_size_per_gpu 1
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] use_data_before_expert_parallel_ False
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] use_node_local_storage ....... False
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] wall_clock_breakdown ......... False
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] weight_quantization_config ... None
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] world_size ................... 2
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] zero_allow_comm_data_type_fp32 False
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] zero_allow_untested_optimizer False
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] zero_config .................. stage=0 contiguous_gradients=True reduce_scatter=False reduce_bucket_size=500,000,000 use_multi_rank_bucket_allreduce=True allgather_partitions=True allgather_bucket_size=500,000,000 overlap_comm=False load_from_fp32_weights=True elastic_checkpoint=False offload_param=None offload_optimizer=None sub_group_size=1,000,000,000 cpu_offload_param=None cpu_offload_use_pin_memory=None cpu_offload=None prefetch_bucket_size=50,000,000 param_persistence_threshold=100,000 model_persistence_threshold=sys.maxsize max_live_parameters=1,000,000,000 max_reuse_distance=1,000,000,000 gather_16bit_weights_on_model_save=False stage3_gather_fp16_weights_on_model_save=False use_all_reduce_for_fetch_params=False ignore_unused_parameters=True legacy_stage1=False round_robin_gradients=False zero_hpz_partition_size=1 zero_quantized_weights=False zero_quantized_nontrainable_weights=False zero_quantized_gradients=False mics_shard_size=-1 mics_hierarchical_params_gather=False memory_efficient_linear=True pipeline_loading_checkpoint=False override_module_apply=True
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] zero_enabled ................. False
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] zero_force_ds_cpu_optimizer .. True
[2024-04-03 22:03:11,409] [INFO] [config.py:996:print] zero_optimization_stage ...... 0
[2024-04-03 22:03:11,409] [INFO] [config.py:982:print_user_config] json = {
"train_batch_size": 256,
"train_micro_batch_size_per_gpu": 1,
"steps_per_print": 10,
"gradient_clipping": 1.0,
"zero_optimization": {
"stage": 0
},
"bf16": {
"enabled": true,
"accumulate_grads_via_hooks": true
},
"fp16": {
"enabled": false
},
"wall_clock_breakdown": false,
"pipeline": {
"pipe_partitioned": false,
"grad_partitioned": false
}
}
[2024-04-03 22:03:11,409] [INFO] [engine.py:99:__init__] CONFIG: micro_batches=128 micro_batch_size=1
[2024-04-03 22:03:11,409] [INFO] [engine.py:139:__init__] is_pipe_partitioned= False is_grad_partitioned= False
[2024-04-03 22:03:12,129] [INFO] [engine.py:180:__init__] RANK=4 STAGE=1 LAYERS=25 [23, 48) STAGE_PARAMS=3301258240 (3301.258M) TOTAL_PARAMS=13205022720 (13205.023M) UNIQUE_PARAMS=13205022720 (13205.023M)
[2024-04-03 22:03:12,129] [INFO] [engine.py:180:__init__] RANK=1 STAGE=0 LAYERS=23 [0, 23) STAGE_PARAMS=3301253120 (3301.253M) TOTAL_PARAMS=13205022720 (13205.023M) UNIQUE_PARAMS=13205022720 (13205.023M)
[2024-04-03 22:03:12,129] [INFO] [engine.py:180:__init__] RANK=5 STAGE=1 LAYERS=25 [23, 48) STAGE_PARAMS=3301258240 (3301.258M) TOTAL_PARAMS=13205022720 (13205.023M) UNIQUE_PARAMS=13205022720 (13205.023M)
[2024-04-03 22:03:12,130] [INFO] [engine.py:180:__init__] RANK=0 STAGE=0 LAYERS=23 [0, 23) STAGE_PARAMS=3301253120 (3301.253M) TOTAL_PARAMS=13205022720 (13205.023M) UNIQUE_PARAMS=13205022720 (13205.023M)
[2024-04-03 22:03:12,132] [WARNING] [engine.py:2763:load_checkpoint] Unable to find latest file at /data/output/132node/checkpoints/latest, if trying to load latest checkpoint please ensure this file exists or pass an explicit checkpoint tag when loading a checkpoint.
WARNING: could not find the metadata file /data/output/132node/checkpoints
will not load any checkpoints and will start from random
[2024-04-03 22:03:12,132] [WARNING] [engine.py:2763:load_checkpoint] Unable to find latest file at /data/output/132node/checkpoints/latest, if trying to load latest checkpoint please ensure this file exists or pass an explicit checkpoint tag when loading a checkpoint.
[2024-04-03 22:03:12,133] [WARNING] [engine.py:2763:load_checkpoint] Unable to find latest file at /data/output/132node/checkpoints/latest, if trying to load latest checkpoint please ensure this file exists or pass an explicit checkpoint tag when loading a checkpoint.
[2024-04-03 22:03:12,133] [WARNING] [engine.py:2763:load_checkpoint] Unable to find latest file at /data/output/132node/checkpoints/latest, if trying to load latest checkpoint please ensure this file exists or pass an explicit checkpoint tag when loading a checkpoint.
[2024-04-03 22:03:12,133] [WARNING] [engine.py:2763:load_checkpoint] Unable to find latest file at /data/output/132node/checkpoints/latest, if trying to load latest checkpoint please ensure this file exists or pass an explicit checkpoint tag when loading a checkpoint.
[2024-04-03 22:03:12,133] [WARNING] [engine.py:2763:load_checkpoint] Unable to find latest file at /data/output/132node/checkpoints/latest, if trying to load latest checkpoint please ensure this file exists or pass an explicit checkpoint tag when loading a checkpoint.
[2024-04-03 22:03:12,133] [WARNING] [engine.py:2763:load_checkpoint] Unable to find latest file at /data/output/132node/checkpoints/latest, if trying to load latest checkpoint please ensure this file exists or pass an explicit checkpoint tag when loading a checkpoint.
[2024-04-03 22:03:12,133] [WARNING] [engine.py:2763:load_checkpoint] Unable to find latest file at /data/output/132node/checkpoints/latest, if trying to load latest checkpoint please ensure this file exists or pass an explicit checkpoint tag when loading a checkpoint.
time (ms) | load-checkpoint: 2.42
[after model, optimizer, and learning rate scheduler are built] datetime: 2024-04-03 22:03:12
> building train, validation, and test datasets ...
> datasets target sizes (minimum size):
train: 2560000
validation: 258560
test: 2560
> building train, validation, and test datasets for GPT ...
Single data path provided for train, valid & test
> building dataset index ...
reading sizes...
reading pointers...
reading document index...
creating numpy buffer of mmap...
creating memory view of numpy buffer...
> finished creating indexed dataset in 0.001090 seconds
number of documents: 1558306
> dataset split:
train:
document indices in [0, 1509999) total of 1509999 documents
validation:
document indices in [1509999, 1556748) total of 46749 documents
test:
document indices in [1556748, 1558306) total of 1558 documents
Loading dataset index file from /data/arxiv/tokenized_text_document_train_indexmap_2560000ns_2048sl_1234s_doc_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_train_indexmap_2560000ns_2048sl_1234s_doc_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_train_indexmap_2560000ns_2048sl_1234s_doc_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_train_indexmap_2560000ns_2048sl_1234s_doc_idx.npy
> loaded doc-idx mapping from /data/arxiv/tokenized_text_document_train_indexmap_2560000ns_2048sl_1234s_doc_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_train_indexmap_2560000ns_2048sl_1234s_sample_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_train_indexmap_2560000ns_2048sl_1234s_sample_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_train_indexmap_2560000ns_2048sl_1234s_sample_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_train_indexmap_2560000ns_2048sl_1234s_sample_idx.npy
> loaded sample-idx mapping from /data/arxiv/tokenized_text_document_train_indexmap_2560000ns_2048sl_1234s_sample_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_train_indexmap_2560000ns_2048sl_1234s_shuffle_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_train_indexmap_2560000ns_2048sl_1234s_shuffle_idx.npyLoading dataset index file from /data/arxiv/tokenized_text_document_train_indexmap_2560000ns_2048sl_1234s_shuffle_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_train_indexmap_2560000ns_2048sl_1234s_shuffle_idx.npy
> loaded shuffle-idx mapping from /data/arxiv/tokenized_text_document_train_indexmap_2560000ns_2048sl_1234s_shuffle_idx.npy
loaded indexed file in 0.002 seconds
total number of samples: 15244235
total number of epochs: 1
Loading dataset index file from /data/arxiv/tokenized_text_document_valid_indexmap_258560ns_2048sl_1234s_doc_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_valid_indexmap_258560ns_2048sl_1234s_doc_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_valid_indexmap_258560ns_2048sl_1234s_doc_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_valid_indexmap_258560ns_2048sl_1234s_doc_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_valid_indexmap_258560ns_2048sl_1234s_sample_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_valid_indexmap_258560ns_2048sl_1234s_sample_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_valid_indexmap_258560ns_2048sl_1234s_sample_idx.npy
> loaded doc-idx mapping from /data/arxiv/tokenized_text_document_valid_indexmap_258560ns_2048sl_1234s_doc_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_valid_indexmap_258560ns_2048sl_1234s_sample_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_valid_indexmap_258560ns_2048sl_1234s_shuffle_idx.npy > loaded sample-idx mapping from /data/arxiv/tokenized_text_document_valid_indexmap_258560ns_2048sl_1234s_sample_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_valid_indexmap_258560ns_2048sl_1234s_shuffle_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_valid_indexmap_258560ns_2048sl_1234s_shuffle_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_valid_indexmap_258560ns_2048sl_1234s_shuffle_idx.npy
> loaded shuffle-idx mapping from /data/arxiv/tokenized_text_document_valid_indexmap_258560ns_2048sl_1234s_shuffle_idx.npy
loaded indexed file in 0.002 seconds
total number of samples: 481162
total number of epochs: 1
Loading dataset index file from /data/arxiv/tokenized_text_document_test_indexmap_2560ns_2048sl_1234s_doc_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_test_indexmap_2560ns_2048sl_1234s_doc_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_test_indexmap_2560ns_2048sl_1234s_doc_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_test_indexmap_2560ns_2048sl_1234s_doc_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_test_indexmap_2560ns_2048sl_1234s_sample_idx.npyLoading dataset index file from /data/arxiv/tokenized_text_document_test_indexmap_2560ns_2048sl_1234s_sample_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_test_indexmap_2560ns_2048sl_1234s_sample_idx.npy
> loaded doc-idx mapping from /data/arxiv/tokenized_text_document_test_indexmap_2560ns_2048sl_1234s_doc_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_test_indexmap_2560ns_2048sl_1234s_sample_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_test_indexmap_2560ns_2048sl_1234s_shuffle_idx.npy
> loaded sample-idx mapping from /data/arxiv/tokenized_text_document_test_indexmap_2560ns_2048sl_1234s_sample_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_test_indexmap_2560ns_2048sl_1234s_shuffle_idx.npy
Loading dataset index file from /data/arxiv/tokenized_text_document_test_indexmap_2560ns_2048sl_1234s_shuffle_idx.npyLoading dataset index file from /data/arxiv/tokenized_text_document_test_indexmap_2560ns_2048sl_1234s_shuffle_idx.npy
> loaded shuffle-idx mapping from /data/arxiv/tokenized_text_document_test_indexmap_2560ns_2048sl_1234s_shuffle_idx.npy
loaded indexed file in 0.001 seconds
total number of samples: 16581
total number of epochs: 1
> finished creating GPT datasets ...
time (ms) | model-and-optimizer-setup: 2860.75 | train/valid/test-data-iterators-setup: 1113.55
[after dataloaders are built] datetime: 2024-04-03 22:03:13
done with setup ...
training ...
[before the start of training step] datetime: 2024-04-03 22:03:13
[2024-04-03 22:08:15,101] [INFO] [logging.py:96:log_dist] [Rank 0] step=10, skipped=0, lr=[1.4999999999999998e-06, 1.4999999999999998e-06], mom=[(0.9, 0.95), (0.9, 0.95)]
steps: 10 loss: 11.4461 iter time (s): 30.238 samples/sec: 8.466
[Rank 0] (after 10 iterations) memory (MB) | allocated: 0.0 | max allocated: 0.0 | reserved: 0.0 | max reserved: 0.0
[Rank 1] (after 10 iterations) memory (MB) | allocated: 0.0 | max allocated: 0.0 | reserved: 0.0 | max reserved: 0.0
[Rank 4] (after 10 iterations) memory (MB) | allocated: 0.0 | max allocated: 0.0 | reserved: 0.0 | max reserved: 0.0
[Rank 5] (after 10 iterations) memory (MB) | allocated: 0.0 | max allocated: 0.0 | reserved: 0.0 | max reserved: 0.0
iteration 10/ 10000 | consumed samples: 2560 | consumed tokens: 5242880 | elapsed time per iteration (ms): 30185.1 | learning rate: 1.500E-06 | global batch size: 256 | lm loss: 1.177418E+01 | loss scale: 0.0 | grad norm: 13.481 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 | samples per second: 8.481 | TFLOPs: 177.37 |