File size: 5,471 Bytes
9605203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from multiprocessing import Pool, cpu_count
import datasets
from promptsource.utils import load_dataset

all_datasets = [
    ('glue','mrpc'),
    ('glue','qqp'),
    ('paws','labeled_final'),
    ('ai2_arc','ARC-Challenge'),
    ('ai2_arc','ARC-Easy'),
    ('kilt_tasks','hotpotqa'),
    ('trivia_qa','unfiltered'),
    ('web_questions',None),
    ('wiki_qa',None),
    ('adversarial_qa','dbidaf'),
    ('adversarial_qa','dbert'),
    ('adversarial_qa','droberta'),
    ('duorc','SelfRC'),
    ('duorc','ParaphraseRC'),
    ('ropes',None),
    ('squad_v2',None),
    ('super_glue','record'),
    ('quoref',None),
    ('cos_e','v1.11'),
    ('cosmos_qa',None),
    ('dream',None),
    ('openbookqa','main'),
    ('qasc',None),
    ('quail',None),
    ('quarel',None),
    ('quartz',None),
    ('race','high'),
    ('race','middle'),
    ('sciq',None),
    ('social_i_qa',None),
    ('super_glue','boolq'),
    ('super_glue','multirc'),
    ('wiki_hop','original'),
    ('wiqa',None),
    ('piqa',None),
    ('amazon_polarity',None),
    ('app_reviews',None),
    ('imdb',None),
    ('rotten_tomatoes',None),
    ('yelp_review_full',None),
    ('common_gen',None),
    ('wiki_bio',None),
    ('cnn_dailymail','3.0.0'),
    ('gigaword',None),
    ('multi_news',None),
    ('samsum',None),
    ('xsum',None),
    ('ag_news',None),
    ('dbpedia_14',None),
    ('trec',None),
    # Multilingual
    ('GEM/wiki_lingua', 'ar'),
    ('GEM/wiki_lingua', 'en'),
    ('GEM/wiki_lingua', 'es'),
    ('GEM/wiki_lingua', 'fr'),
    ('GEM/wiki_lingua', 'hi'),
    ('GEM/wiki_lingua', 'id'),
    ('GEM/wiki_lingua', 'pt'),
    ('GEM/wiki_lingua', 'vi'),
    ('GEM/wiki_lingua', 'zh'),
    ('Helsinki-NLP/tatoeba_mt', 'ara-eng'),
    ('Helsinki-NLP/tatoeba_mt', 'ara-fra'),
    ('Helsinki-NLP/tatoeba_mt', 'ara-spa'),
    ('Helsinki-NLP/tatoeba_mt', 'ben-eng'),
    ('Helsinki-NLP/tatoeba_mt', 'cat-eng'),
    ('Helsinki-NLP/tatoeba_mt', 'cat-fra'),
    ('Helsinki-NLP/tatoeba_mt', 'cat-por'),
    ('Helsinki-NLP/tatoeba_mt', 'cat-spa'),
    ('Helsinki-NLP/tatoeba_mt', 'eng-cmn_Hans'),
    ('Helsinki-NLP/tatoeba_mt', 'eng-cmn_Hant'),
    ('Helsinki-NLP/tatoeba_mt', 'eng-eus'),
    ('Helsinki-NLP/tatoeba_mt', 'eng-fra'),
    ('Helsinki-NLP/tatoeba_mt', 'eng-hin'),
    ('Helsinki-NLP/tatoeba_mt', 'eng-ind'),
    ('Helsinki-NLP/tatoeba_mt', 'eng-mal'),
    ('Helsinki-NLP/tatoeba_mt', 'eng-mar'),
    ('Helsinki-NLP/tatoeba_mt', 'eng-por'),
    ('Helsinki-NLP/tatoeba_mt', 'eng-run'),
    ('Helsinki-NLP/tatoeba_mt', 'eng-spa'),
    ('Helsinki-NLP/tatoeba_mt', 'eng-swa'),
    ('Helsinki-NLP/tatoeba_mt', 'eng-tam'),
    ('Helsinki-NLP/tatoeba_mt', 'eng-tel'),
    ('Helsinki-NLP/tatoeba_mt', 'eng-urd'),
    ('Helsinki-NLP/tatoeba_mt', 'eng-vie'),
    ('Helsinki-NLP/tatoeba_mt', 'eng-zho'),
    ('Helsinki-NLP/tatoeba_mt', 'eus-spa'),
    ('Helsinki-NLP/tatoeba_mt', 'fra-cmn_Hans'),
    ('Helsinki-NLP/tatoeba_mt', 'fra-cmn_Hant'),
    ('Helsinki-NLP/tatoeba_mt', 'fra-ind'),
    ('Helsinki-NLP/tatoeba_mt', 'fra-por'),
    ('Helsinki-NLP/tatoeba_mt', 'fra-run'),
    ('Helsinki-NLP/tatoeba_mt', 'fra-spa'),
    ('Helsinki-NLP/tatoeba_mt', 'fra-vie'),
    ('Helsinki-NLP/tatoeba_mt', 'fra-zho'),
    ('Helsinki-NLP/tatoeba_mt', 'hin-urd'),
    ('Helsinki-NLP/tatoeba_mt', 'hin-zho'),
    ('Helsinki-NLP/tatoeba_mt', 'por-cmn_Hans'),
    ('Helsinki-NLP/tatoeba_mt', 'por-cmn_Hant'),
    ('Helsinki-NLP/tatoeba_mt', 'por-spa'),
    ('Helsinki-NLP/tatoeba_mt', 'por-zho'),
    ('Helsinki-NLP/tatoeba_mt', 'run-spa'),
    ('Helsinki-NLP/tatoeba_mt', 'spa-cmn_Hans'),
    ('Helsinki-NLP/tatoeba_mt', 'spa-cmn_Hant'),
    ('Helsinki-NLP/tatoeba_mt', 'spa-vie'),
    ('Helsinki-NLP/tatoeba_mt', 'spa-zho'),
    ('Helsinki-NLP/tatoeba_mt', 'vie-cmn_Hans'),
    ('Helsinki-NLP/tatoeba_mt', 'vie-zho'),
    ('xquad', 'xquad.ar'),
    ('xquad', 'xquad.zh'),
    ('xquad', 'xquad.vi'),
    ('xquad', 'xquad.en'),
    ('xquad', 'xquad.es'),
    ('xquad', 'xquad.hi'),
    ('paws-x', 'en'),
    ('paws-x', 'es'),
    ('paws-x', 'fr'),
    ('paws-x', 'zh'),
    ('khalidalt/tydiqa-primary', 'arabic'),
    ('khalidalt/tydiqa-primary', 'bengali'),
    ('khalidalt/tydiqa-primary', 'english'),
    ('khalidalt/tydiqa-primary', 'indonesian'),
    ('khalidalt/tydiqa-primary', 'swahili'),
    ('khalidalt/tydiqa-primary', 'telugu'),
    ('khalidalt/tydiqa-goldp', 'arabic'),
    ('khalidalt/tydiqa-goldp', 'bengali'),
    ('khalidalt/tydiqa-goldp', 'english'),
    ('khalidalt/tydiqa-goldp', 'indonesian'),
    ('khalidalt/tydiqa-goldp', 'swahili'),
    ('khalidalt/tydiqa-goldp', 'telugu'),
    ('Muennighoff/mbpp', 'sanitized'),
    ("openai_humaneval", None),
    ("great_code", None),
    ("neural_code_search", "evaluation_dataset"),
    # flores200
]

print(all_datasets)

def download(names):
    d_name, conf_name = names
    try:
        if d_name == "Helsinki-NLP/tatoeba_mt":
            # Fixes a bug when loading a ds where only test split exists
            ds = datasets.load_dataset(d_name, conf_name, download_config=datasets.DownloadConfig(num_proc=1), ignore_verifications=True, revision="842eb26634a9775f504bb2f3f43cd4cc5f9314d8")
        else:
            ds = load_dataset(d_name, conf_name, download_config=datasets.DownloadConfig(num_proc=1))
    except Exception as e:
        print(f"--- ERROR Dataset {d_name} {conf_name}\n")
        print(e)
        return

with Pool(cpu_count()) as pool:
    _ = pool.map(
        download,
        all_datasets,
    )
print("ALL DONE")