File size: 6,221 Bytes
d1396f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
#!/bin/bash
#SBATCH --job-name=meg_ds_3d_gpt2_perf_n16
#SBATCH --constraint=v100-32g
#SBATCH --nodes=16
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
#SBATCH --cpus-per-task=40 # number of cores per tasks
#SBATCH --hint=nomultithread # we get physical cores not logical
#SBATCH --gres=gpu:4 # number of gpus
#SBATCH --time 00:10:00 # maximum execution time (HH:MM:SS)
#SBATCH --output=%x-%j.out # output file name
#SBATCH --error=%x-%j.out # error file name (same to watch just one file)
#SBATCH --account=six@gpu
set -x -e
source $six_ALL_CCFRWORK/start-prod
nvidia-smi
cd $six_ALL_CCFRWORK/code/DeepSpeedExamples/Megatron-LM-v1.1.5-3D_parallelism
CHECKPOINT_PATH=$six_ALL_CCFRWORK/models-custom/megatron-gpt2/megatron_lm_345m_v0.0/release
VOCAB_FILE=$CHECKPOINT_PATH/gpt2-vocab.json
MERGE_FILE=$CHECKPOINT_PATH/gpt2-merges.txt
DATA_PATH=$six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/meg-gpt2_text_document
SAVE_CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/gpt2-meg-ds
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
MASTER_PORT=6000
# adjust depending on the number of the nodes
NNODES=16
PP_SIZE=16 # NLAYERS must be a multiple of PP_SIZE here
MICRO_BATCH_SIZE=4 # works at 4, OOMs at
PP_CHUNKS=256 # GAS
MSIZE=52
if [[ ${MSIZE} == 7 ]]; then NHIDDEN=4096; NLAYERS=36
elif [[ ${MSIZE} == 14 ]]; then NHIDDEN=6144; NLAYERS=32
elif [[ ${MSIZE} == 18 ]]; then NHIDDEN=6144; NLAYERS=40
elif [[ ${MSIZE} == 25 ]]; then NHIDDEN=7168; NLAYERS=40
elif [[ ${MSIZE} == 30 ]]; then NHIDDEN=7168; NLAYERS=48
elif [[ ${MSIZE} == 39 ]]; then NHIDDEN=8192; NLAYERS=48
elif [[ ${MSIZE} == 52 ]]; then NHIDDEN=8192; NLAYERS=64
elif [[ ${MSIZE} == 65 ]]; then NHIDDEN=9216; NLAYERS=64
elif [[ ${MSIZE} == 81 ]]; then NHIDDEN=10240; NLAYERS=64
elif [[ ${MSIZE} == 97 ]]; then NHIDDEN=11264; NLAYERS=64
elif [[ ${MSIZE} == 116 ]]; then NHIDDEN=12288; NLAYERS=64
elif [[ ${MSIZE} == 136 ]]; then NHIDDEN=13312; NLAYERS=64
elif [[ ${MSIZE} == 158 ]]; then NHIDDEN=14336; NLAYERS=64
elif [[ ${MSIZE} == 181 ]]; then NHIDDEN=15360; NLAYERS=64
elif [[ ${MSIZE} == 206 ]]; then NHIDDEN=16384; NLAYERS=64
else echo "invalid MSIZE: $MSIZE"
fi
GPUS_PER_NODE=4
NHEADS=32
SEQ_LEN=1024
VOCAB_SIZE=50257
DP_SIZE=1
TP_SIZE=4 # always fixed to the size of a single node
# --gas added by Deepspeed only for PP (this option is not in MegLM master) - same as PP_CHUNKS
# --micro-batch-size $MICRO_BATCH_SIZE \
# --lr-warmup-fraction .01 \
# --global-batch-size $GLOBAL_BATCH_SIZE
GPT_ARGS=" \
--num-layers $NLAYERS \
--hidden-size $NHIDDEN \
--num-attention-heads $NHEADS \
--seq-length $SEQ_LEN \
--max-position-embeddings $SEQ_LEN \
--batch-size $MICRO_BATCH_SIZE \
--gas $PP_CHUNKS \
--lr 1.5e-4 \
--lr-decay-style cosine \
--min-lr 1.0e-5 \
--train-iters 1000 \
--lr-decay-iters 800 \
--weight-decay 1e-2 \
--clip-grad 1.0 \
--vocab-file $VOCAB_FILE \
--merge-file $MERGE_FILE \
--warmup 0.01 \
--fp16 \
"
OUTPUT_ARGS=" \
--log-interval 1 \
--save-interval 500 \
--eval-interval 100 \
--eval-iters 10 \
"
#ZeRO Configs
#train_batch_size=$(($DP_SIZE*$MICRO_BATCH_SIZE*$gradient_accumulation_steps))
# "train_batch_size": $train_batch_size,
config_json="./ds_config.json"
cat <<EOT > $config_json
{
"train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE,
"gradient_accumulation_steps": $PP_CHUNKS,
"steps_per_print": 1,
"gradient_clipping": 1.0,
"fp16": {
"enabled": true,
"loss_scale": 0,
"initial_scale_power": 10,
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1
},
"wall_clock_breakdown": false,
"zero_allow_untested_optimizer": false
}
EOT
MP_SIZE=$TP_SIZE
stage=0
reduce_scatter=true
contigious_gradients=true
rbs=50000000
agbs=5000000000
#Activation Checkpointing and Contigious Memory
chkp_layers=1
PA=true
PA_CPU=false
CC=true
SYNCHRONIZE=true
PROFILE=false
DEEPSPEED_ARGS=" \
--deepspeed \
--deepspeed_config ${config_json} \
--zero-stage ${stage} \
--zero-reduce-bucket-size ${rbs} \
--zero-allgather-bucket-size ${agbs} \
"
if [ "${contigious_gradients}" = "true" ]; then
DEEPSPEED_ARGS="${DEEPSPEED_ARGS} \
--zero-contigious-gradients"
fi
if [ "${reduce_scatter}" = "true" ]; then
DEEPSPEED_ARGS="${DEEPSPEED_ARGS} \
--zero-reduce-scatter"
fi
CHKP_ARGS=" \
--checkpoint-activations \
--checkpoint-num-layers ${chkp_layers}"
if [ "${PA}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} \
--partition-activations"
fi
if [ "${PA_CPU}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} \
--checkpoint-in-cpu"
fi
if [ "${SYNCHRONIZE}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} \
--synchronize-each-layer"
fi
if [ "${CC}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} \
--contigious-checkpointing"
fi
if [ "${PROFILE}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} \
--profile-backward"
fi
export LAUNCHER="python -u -m torch.distributed.launch \
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
"
# new names:
# --tensor-model-parallel-size $TP_SIZE \
# --pipeline-model-parallel-size $PP_SIZE \
export CMD=" \
`pwd`/pretrain_gpt2.py \
--model-parallel-size $TP_SIZE \
--pipe-parallel-size $PP_SIZE \
$GPT_ARGS \
$OUTPUT_ARGS \
--save $SAVE_CHECKPOINT_PATH \
--load $SAVE_CHECKPOINT_PATH \
--data-path $DATA_PATH \
--data-impl mmap \
--split 949,50,1 \
--distributed-backend nccl \
$DEEPSPEED_ARGS \
$CHKP_ARGS \
"
# clear old checkpoint as it'd mismatch while we sort things out
rm -rf $six_ALL_CCFRWORK/checkpoints/gpt2-meg-ds
# model size
python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l * (12*h**2 + 13*h) + (v * h) + (s * h) ) / 10**9 :.0f}B')"
echo $CMD
# to debug - add echo (it exits and prints what it would have launched)
clear; srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee meg_ds_3d_gpt2_perf_n16.out
|