File size: 89,865 Bytes
d1396f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
*****************************************
using world size: 64, data-parallel-size: 1, tensor-model-parallel size: 4, pipeline-model-parallel size: 16 
using torch.float16 for parameters ...
------------------------ arguments ------------------------
  accumulate_allreduce_grads_in_fp32 .............. False
  adam_beta1 ...................................... 0.9
  adam_beta2 ...................................... 0.999
  adam_eps ........................................ 1e-08
  adlr_autoresume ................................. False
  adlr_autoresume_interval ........................ 1000
  apply_query_key_layer_scaling ................... True
  apply_residual_connection_post_layernorm ........ False
  attention_dropout ............................... 0.1
  attention_softmax_in_fp32 ....................... False
  bert_binary_head ................................ True
  bert_load ....................................... None
  bf16 ............................................ False
  bias_dropout_fusion ............................. True
  bias_gelu_fusion ................................ True
  biencoder_projection_dim ........................ 0
  biencoder_shared_query_context_model ............ False
  block_data_path ................................. None
  checkpoint_activations .......................... True
  checkpoint_in_cpu ............................... False
  checkpoint_num_layers ........................... 1
  clip_grad ....................................... 1.0
  consumed_train_samples .......................... 0
  consumed_valid_samples .......................... 0
  contigious_checkpointing ........................ False
  cpu_optimizer ................................... False
  data_impl ....................................... mmap
  data_parallel_size .............................. 1
  data_path ....................................... ['/gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document']
  dataloader_type ................................. single
  DDP_impl ........................................ local
  decoder_seq_length .............................. None
  deepscale ....................................... False
  deepscale_config ................................ None
  deepspeed ....................................... True
  deepspeed_activation_checkpointing .............. True
  deepspeed_config ................................ ./ds_config.json
  deepspeed_mpi ................................... False
  distribute_checkpointed_activations ............. False
  distributed_backend ............................. nccl
  embedding_path .................................. None
  encoder_seq_length .............................. 1024
  eod_mask_loss ................................... False
  eval_interval ................................... 100
  eval_iters ...................................... 10
  evidence_data_path .............................. None
  exit_duration_in_mins ........................... None
  exit_interval ................................... None
  ffn_hidden_size ................................. 32768
  finetune ........................................ False
  fp16 ............................................ True
  fp16_lm_cross_entropy ........................... False
  fp32_residual_connection ........................ False
  global_batch_size ............................... 1024
  hidden_dropout .................................. 0.1
  hidden_size ..................................... 8192
  hysteresis ...................................... 2
  ict_head_size ................................... None
  ict_load ........................................ None
  img_dim ......................................... 224
  indexer_batch_size .............................. 128
  indexer_log_interval ............................ 1000
  init_method_std ................................. 0.02
  init_method_xavier_uniform ...................... False
  initial_loss_scale .............................. 4294967296
  kv_channels ..................................... 256
  layernorm_epsilon ............................... 1e-05
  lazy_mpu_init ................................... None
  load ............................................ /gpfsscratch/rech/six/ura81os/checkpoints/gpt2-meg-ds
  local_rank ...................................... 0
  log_batch_size_to_tensorboard ................... False
  log_interval .................................... 1
  log_learning_rate_to_tensorboard ................ True
  log_loss_scale_to_tensorboard ................... True
  log_num_zeros_in_grad ........................... False
  log_params_norm ................................. False
  log_timers_to_tensorboard ....................... False
  log_validation_ppl_to_tensorboard ............... False
  loss_scale ...................................... 12.0
  loss_scale_window ............................... 1000
  lr .............................................. 0.00015
  lr_decay_iters .................................. 800
  lr_decay_samples ................................ None
  lr_decay_style .................................. cosine
  lr_warmup_fraction .............................. 0.01
  lr_warmup_iters ................................. 0
  lr_warmup_samples ............................... 0
  make_vocab_size_divisible_by .................... 128
  mask_prob ....................................... 0.15
  masked_softmax_fusion ........................... True
  max_position_embeddings ......................... 1024
  merge_file ...................................... /gpfswork/rech/six/commun/models-custom/megatron-gpt2/megatron_lm_345m_v0.0/release/gpt2-merges.txt
  micro_batch_size ................................ 4
  min_loss_scale .................................. 1.0
  min_lr .......................................... 1e-05
  mmap_warmup ..................................... False
  no_load_optim ................................... None
  no_load_rng ..................................... None
  no_save_optim ................................... None
  no_save_rng ..................................... None
  num_attention_heads ............................. 32
  num_channels .................................... 3
  num_classes ..................................... 1000
  num_layers ...................................... 64
  num_layers_per_virtual_pipeline_stage ........... None
  num_workers ..................................... 2
  onnx_safe ....................................... None
  openai_gelu ..................................... False
  optimizer ....................................... adam
  override_lr_scheduler ........................... False
  params_dtype .................................... torch.float16
  partition_activations ........................... False
  patch_dim ....................................... 16
  pipeline_model_parallel_size .................... 16
  profile_backward ................................ False
  query_in_block_prob ............................. 0.1
  rampup_batch_size ............................... None
  rank ............................................ 0
  remote_device ................................... none
  reset_attention_mask ............................ False
  reset_position_ids .............................. False
  retriever_report_topk_accuracies ................ []
  retriever_score_scaling ......................... False
  retriever_seq_length ............................ 256
  sample_rate ..................................... 1.0
  save ............................................ /gpfsscratch/rech/six/ura81os/checkpoints/gpt2-meg-ds
  save_interval ................................... 500
  scatter_gather_tensors_in_pipeline .............. True
  seed ............................................ 1234
  seq_length ...................................... 1024
  sgd_momentum .................................... 0.9
  short_seq_prob .................................. 0.1
  split ........................................... 949,50,1
  synchronize_each_layer .......................... False
  tensor_model_parallel_size ...................... 4
  tensorboard_dir ................................. None
  tensorboard_log_interval ........................ 1
  tensorboard_queue_size .......................... 1000
  titles_data_path ................................ None
  tokenizer_type .................................. GPT2BPETokenizer
  train_iters ..................................... 1000
  train_samples ................................... None
  use_checkpoint_lr_scheduler ..................... False
  use_contiguous_buffers_in_ddp ................... False
  use_cpu_initialization .......................... None
  use_one_sent_docs ............................... False
  virtual_pipeline_model_parallel_size ............ None
  vocab_extra_ids ................................. 0
  vocab_file ...................................... /gpfswork/rech/six/commun/models-custom/megatron-gpt2/megatron_lm_345m_v0.0/release/gpt2-vocab.json
  weight_decay .................................... 0.01
  world_size ...................................... 64
  zero_stage ...................................... 0
-------------------- end of arguments ---------------------
setting number of micro-batches to constant 256
> building GPT2BPETokenizer tokenizer ...
 > padded vocab (size: 50257) with 431 dummy tokens (new size: 50688)
> initializing torch distributed ...
> initializing tensor model parallel with size 4
> initializing pipeline model parallel with size 16
> setting random seeds to 1234 ...
[2021-06-10 20:47:37,205] [INFO] [checkpointing.py:226:model_parallel_cuda_manual_seed] > initializing model parallel cuda seeds on global rank 0, model parallel rank 0, and data parallel rank 0 with model parallel seed: 3952 and data parallel seed: 1234
> compiling dataset index builder ...
make: Entering directory '/gpfsdswork/projects/rech/six/ura81os/stas/code/megatron-jeffra/megatron/data'
make: Nothing to be done for 'default'.
make: Leaving directory '/gpfsdswork/projects/rech/six/ura81os/stas/code/megatron-jeffra/megatron/data'
>>> done with dataset index builder. Compilation time: 0.106 seconds
> compiling and loading fused kernels ...
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning: 

                               !! WARNING !!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.

See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                              !! WARNING !!

  warnings.warn(WRONG_COMPILER_WARNING.format(
Detected CUDA files, patching ldflags
Emitting ninja build file /gpfsdswork/projects/rech/six/ura81os/stas/code/megatron-jeffra/megatron/fused_kernels/build/build.ninja...
Building extension module scaled_upper_triang_masked_softmax_cuda...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
ninja: no work to do.
Loading extension module scaled_upper_triang_masked_softmax_cuda...
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning: 

                               !! WARNING !!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.

See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                              !! WARNING !!

  warnings.warn(WRONG_COMPILER_WARNING.format(
Detected CUDA files, patching ldflags
Emitting ninja build file /gpfsdswork/projects/rech/six/ura81os/stas/code/megatron-jeffra/megatron/fused_kernels/build/build.ninja...
Building extension module scaled_masked_softmax_cuda...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
ninja: no work to do.
Loading extension module scaled_masked_softmax_cuda...
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning: 

                               !! WARNING !!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.

See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                              !! WARNING !!

  warnings.warn(WRONG_COMPILER_WARNING.format(
Detected CUDA files, patching ldflags
Emitting ninja build file /gpfsdswork/projects/rech/six/ura81os/stas/code/megatron-jeffra/megatron/fused_kernels/build/build.ninja...
Building extension module fused_mix_prec_layer_norm_cuda...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
ninja: no work to do.
Loading extension module fused_mix_prec_layer_norm_cuda...
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning: 

                               !! WARNING !!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.

See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                              !! WARNING !!

  warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning: 

                               !! WARNING !!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.

See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                              !! WARNING !!

  warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning: 

                               !! WARNING !!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.

See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                              !! WARNING !!

  warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning: 

                               !! WARNING !!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.

See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                              !! WARNING !!

  warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning: 

                               !! WARNING !!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.

See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                              !! WARNING !!

  warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning: 

                               !! WARNING !!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.

See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                              !! WARNING !!

  warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning: 

                               !! WARNING !!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.

See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                              !! WARNING !!

  warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning: 

                               !! WARNING !!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.

See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                              !! WARNING !!

  warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning: 

                               !! WARNING !!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.

See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                              !! WARNING !!

  warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning: 

                               !! WARNING !!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.

See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                              !! WARNING !!

  warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning: 

                               !! WARNING !!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.

See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                              !! WARNING !!

  warnings.warn(WRONG_COMPILER_WARNING.format(
>>> done with compiling and loading fused kernels. Compilation time: 12.900 seconds
time to initialize megatron (seconds): -41.720
[after megatron is initialized] datetime: 2021-06-10 20:47:50 
building GPT model ...
[2021-06-10 20:47:50,326] [INFO] [utils.py:627:see_memory_usage] Before Building Model
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/cuda/memory.py:373: FutureWarning: torch.cuda.memory_cached has been renamed to torch.cuda.memory_reserved
  warnings.warn(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/cuda/memory.py:381: FutureWarning: torch.cuda.max_memory_cached has been renamed to torch.cuda.max_memory_reserved
  warnings.warn(
[2021-06-10 20:47:50,329] [INFO] [utils.py:628:see_memory_usage] MA 0.0 GB         Max_MA 0.0 GB         CA 0.0 GB         Max_CA 0 GB 
[2021-06-10 20:47:50,329] [INFO] [utils.py:636:see_memory_usage] CPU Virtual Memory:  used = 38.96 GB, percent = 20.8%
SEED_LAYERS=False BASE_SEED=1234 SEED_FN=None
Using topology: {ProcessCoord(pipe=0, data=0, model=0): 0, ProcessCoord(pipe=0, data=0, model=1): 1, ProcessCoord(pipe=0, data=0, model=2): 2, ProcessCoord(pipe=0, data=0, model=3): 3, ProcessCoord(pipe=1, data=0, model=0): 4, ProcessCoord(pipe=1, data=0, model=1): 5, ProcessCoord(pipe=1, data=0, model=2): 6, ProcessCoord(pipe=1, data=0, model=3): 7, ProcessCoord(pipe=2, data=0, model=0): 8, ProcessCoord(pipe=2, data=0, model=1): 9, ProcessCoord(pipe=2, data=0, model=2): 10, ProcessCoord(pipe=2, data=0, model=3): 11, ProcessCoord(pipe=3, data=0, model=0): 12, ProcessCoord(pipe=3, data=0, model=1): 13, ProcessCoord(pipe=3, data=0, model=2): 14, ProcessCoord(pipe=3, data=0, model=3): 15, ProcessCoord(pipe=4, data=0, model=0): 16, ProcessCoord(pipe=4, data=0, model=1): 17, ProcessCoord(pipe=4, data=0, model=2): 18, ProcessCoord(pipe=4, data=0, model=3): 19, ProcessCoord(pipe=5, data=0, model=0): 20, ProcessCoord(pipe=5, data=0, model=1): 21, ProcessCoord(pipe=5, data=0, model=2): 22, ProcessCoord(pipe=5, data=0, model=3): 23, ProcessCoord(pipe=6, data=0, model=0): 24, ProcessCoord(pipe=6, data=0, model=1): 25, ProcessCoord(pipe=6, data=0, model=2): 26, ProcessCoord(pipe=6, data=0, model=3): 27, ProcessCoord(pipe=7, data=0, model=0): 28, ProcessCoord(pipe=7, data=0, model=1): 29, ProcessCoord(pipe=7, data=0, model=2): 30, ProcessCoord(pipe=7, data=0, model=3): 31, ProcessCoord(pipe=8, data=0, model=0): 32, ProcessCoord(pipe=8, data=0, model=1): 33, ProcessCoord(pipe=8, data=0, model=2): 34, ProcessCoord(pipe=8, data=0, model=3): 35, ProcessCoord(pipe=9, data=0, model=0): 36, ProcessCoord(pipe=9, data=0, model=1): 37, ProcessCoord(pipe=9, data=0, model=2): 38, ProcessCoord(pipe=9, data=0, model=3): 39, ProcessCoord(pipe=10, data=0, model=0): 40, ProcessCoord(pipe=10, data=0, model=1): 41, ProcessCoord(pipe=10, data=0, model=2): 42, ProcessCoord(pipe=10, data=0, model=3): 43, ProcessCoord(pipe=11, data=0, model=0): 44, ProcessCoord(pipe=11, data=0, model=1): 45, ProcessCoord(pipe=11, data=0, model=2): 46, ProcessCoord(pipe=11, data=0, model=3): 47, ProcessCoord(pipe=12, data=0, model=0): 48, ProcessCoord(pipe=12, data=0, model=1): 49, ProcessCoord(pipe=12, data=0, model=2): 50, ProcessCoord(pipe=12, data=0, model=3): 51, ProcessCoord(pipe=13, data=0, model=0): 52, ProcessCoord(pipe=13, data=0, model=1): 53, ProcessCoord(pipe=13, data=0, model=2): 54, ProcessCoord(pipe=13, data=0, model=3): 55, ProcessCoord(pipe=14, data=0, model=0): 56, ProcessCoord(pipe=14, data=0, model=1): 57, ProcessCoord(pipe=14, data=0, model=2): 58, ProcessCoord(pipe=14, data=0, model=3): 59, ProcessCoord(pipe=15, data=0, model=0): 60, ProcessCoord(pipe=15, data=0, model=1): 61, ProcessCoord(pipe=15, data=0, model=2): 62, ProcessCoord(pipe=15, data=0, model=3): 63}
[2021-06-10 20:47:51,179] [INFO] [module.py:360:_partition_layers] Partitioning pipeline stages with method type:transformer
stage=0 layers=7
     0: _to_float16
     1: EmbeddingPipe
     2: <lambda>
     3: ParallelTransformerLayerPipe
     4: ParallelTransformerLayerPipe
     5: ParallelTransformerLayerPipe
     6: ParallelTransformerLayerPipe
stage=1 layers=4
     7: ParallelTransformerLayerPipe
     8: ParallelTransformerLayerPipe
     9: ParallelTransformerLayerPipe
    10: ParallelTransformerLayerPipe
stage=2 layers=4
    11: ParallelTransformerLayerPipe
    12: ParallelTransformerLayerPipe
    13: ParallelTransformerLayerPipe
    14: ParallelTransformerLayerPipe
stage=3 layers=4
    15: ParallelTransformerLayerPipe
    16: ParallelTransformerLayerPipe
    17: ParallelTransformerLayerPipe
    18: ParallelTransformerLayerPipe
stage=4 layers=4
    19: ParallelTransformerLayerPipe
    20: ParallelTransformerLayerPipe
    21: ParallelTransformerLayerPipe
    22: ParallelTransformerLayerPipe
stage=5 layers=4
    23: ParallelTransformerLayerPipe
    24: ParallelTransformerLayerPipe
    25: ParallelTransformerLayerPipe
    26: ParallelTransformerLayerPipe
stage=6 layers=4
    27: ParallelTransformerLayerPipe
    28: ParallelTransformerLayerPipe
    29: ParallelTransformerLayerPipe
    30: ParallelTransformerLayerPipe
stage=7 layers=4
    31: ParallelTransformerLayerPipe
    32: ParallelTransformerLayerPipe
    33: ParallelTransformerLayerPipe
    34: ParallelTransformerLayerPipe
stage=8 layers=4
    35: ParallelTransformerLayerPipe
    36: ParallelTransformerLayerPipe
    37: ParallelTransformerLayerPipe
    38: ParallelTransformerLayerPipe
stage=9 layers=4
    39: ParallelTransformerLayerPipe
    40: ParallelTransformerLayerPipe
    41: ParallelTransformerLayerPipe
    42: ParallelTransformerLayerPipe
stage=10 layers=4
    43: ParallelTransformerLayerPipe
    44: ParallelTransformerLayerPipe
    45: ParallelTransformerLayerPipe
    46: ParallelTransformerLayerPipe
stage=11 layers=4
    47: ParallelTransformerLayerPipe
    48: ParallelTransformerLayerPipe
    49: ParallelTransformerLayerPipe
    50: ParallelTransformerLayerPipe
stage=12 layers=4
    51: ParallelTransformerLayerPipe
    52: ParallelTransformerLayerPipe
    53: ParallelTransformerLayerPipe
    54: ParallelTransformerLayerPipe
stage=13 layers=4
    55: ParallelTransformerLayerPipe
    56: ParallelTransformerLayerPipe
    57: ParallelTransformerLayerPipe
    58: ParallelTransformerLayerPipe
stage=14 layers=4
    59: ParallelTransformerLayerPipe
    60: ParallelTransformerLayerPipe
    61: ParallelTransformerLayerPipe
    62: ParallelTransformerLayerPipe
stage=15 layers=8
    63: ParallelTransformerLayerPipe
    64: ParallelTransformerLayerPipe
    65: ParallelTransformerLayerPipe
    66: ParallelTransformerLayerPipe
    67: <lambda>
    68: MixedFusedLayerNorm
    69: EmbeddingPipe
    70: float16_to_fp32
  loss: CrossEntropy
 > number of parameters on (tensor, pipeline) model parallel rank (2, 12): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (0, 7): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (0, 8): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (2, 8): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (1, 8): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (3, 12): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (0, 12): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (1, 12): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (3, 8): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (2, 7): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (3, 7): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (1, 7): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (3, 9): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (1, 9): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (2, 9): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (1, 1): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (0, 4): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (3, 4): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (2, 4): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (2, 11): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (3, 11): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (1, 11): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (0, 11): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (1, 3): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (0, 3): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (3, 3): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (2, 3): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (0, 9): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (2, 14): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (0, 1): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (2, 1): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (3, 1): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (1, 4): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (1, 6): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (2, 6): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (0, 6): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (0, 14): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (1, 14): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (3, 14): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (3, 6): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (0, 5): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (2, 5): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (1, 5): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (3, 5): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (3, 13): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (2, 13): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (1, 13): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (0, 13): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (1, 2): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (3, 2): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (0, 2): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (2, 2): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (0, 10): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (3, 10): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (1, 10): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (2, 10): 805560320
 > number of parameters on (tensor, pipeline) model parallel rank (2, 15): 917774336
 > number of parameters on (tensor, pipeline) model parallel rank (0, 15): 917774336
 > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 917757952
 > number of parameters on (tensor, pipeline) model parallel rank (3, 15): 917774336 > number of parameters on (tensor, pipeline) model parallel rank (1, 15): 917774336

 > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 917757952
 > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 917757952
[2021-06-10 20:47:51,720] [INFO] [utils.py:627:see_memory_usage] After Building Model
[2021-06-10 20:47:51,721] [INFO] [utils.py:628:see_memory_usage] MA 1.73 GB         Max_MA 1.73 GB         CA 1.75 GB         Max_CA 2 GB 
[2021-06-10 20:47:51,721] [INFO] [utils.py:636:see_memory_usage] CPU Virtual Memory:  used = 39.14 GB, percent = 20.9%
 > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 917757952
> learning rate decay style: cosine
DeepSpeed is enabled.
[2021-06-10 20:47:51,724] [INFO] [logging.py:60:log_dist] [Rank 0] DeepSpeed info: version=0.4.0+407ff0f, git-hash=407ff0f, git-branch=megatron2.4-3d
[2021-06-10 20:47:51,764] [INFO] [engine.py:172:__init__] DeepSpeed Flops Profiler Enabled: False
[2021-06-10 20:47:51,764] [INFO] [engine.py:682:_configure_optimizer] Removing param_group that has no 'params' in the client Optimizer
[2021-06-10 20:47:51,765] [INFO] [engine.py:687:_configure_optimizer] Using client Optimizer as basic optimizer
[2021-06-10 20:47:51,765] [INFO] [engine.py:696:_configure_optimizer] DeepSpeed Basic Optimizer = FusedAdam
[2021-06-10 20:47:51,765] [INFO] [logging.py:60:log_dist] [Rank 0] Creating fp16 unfused optimizer with dynamic loss scale
[2021-06-10 20:47:51,765] [INFO] [unfused_optimizer.py:37:__init__] Fused Lamb Legacy : False 
[2021-06-10 20:47:51,885] [INFO] [logging.py:60:log_dist] [Rank 0] DeepSpeed Final Optimizer = FusedAdam
[2021-06-10 20:47:51,885] [INFO] [engine.py:509:_configure_lr_scheduler] DeepSpeed using client LR scheduler
[2021-06-10 20:47:51,885] [INFO] [logging.py:60:log_dist] [Rank 0] DeepSpeed LR Scheduler = <megatron.learning_rates.AnnealingLR object at 0x1533710dffd0>
[2021-06-10 20:47:51,885] [INFO] [logging.py:60:log_dist] [Rank 0] step=0, skipped=0, lr=[0.0, 0.0], mom=[(0.9, 0.999), (0.9, 0.999)]
[2021-06-10 20:47:51,885] [INFO] [config.py:900:print] DeepSpeedEngine configuration:
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print]   activation_checkpointing_config  {
    "partition_activations": false, 
    "contiguous_memory_optimization": false, 
    "cpu_checkpointing": false, 
    "number_checkpoints": null, 
    "synchronize_checkpoint_boundary": false, 
    "profile": false
}
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print]   aio_config ................... {'block_size': 1048576, 'queue_depth': 8, 'thread_count': 1, 'single_submit': False, 'overlap_events': True}
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print]   allreduce_always_fp32 ........ False
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print]   amp_enabled .................. False
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print]   amp_params ................... False
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print]   checkpoint_tag_validation_enabled  True
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print]   checkpoint_tag_validation_fail  False
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print]   disable_allgather ............ False
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print]   dump_state ................... False
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print]   dynamic_loss_scale_args ...... {'init_scale': 4096, 'scale_window': 500, 'delayed_shift': 2, 'min_scale': 1}
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print]   eigenvalue_enabled ........... False
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print]   eigenvalue_gas_boundary_resolution  1
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print]   eigenvalue_layer_name ........ bert.encoder.layer
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print]   eigenvalue_layer_num ......... 0
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print]   eigenvalue_max_iter .......... 100
10 20:47:51,886] [INFO] [config.py:904:print]   optimizer_params ............. None
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print]   pipeline ..................... {'stages': 'auto', 'partition': 'best', 'seed_layers': False, 'activation_checkpoint_interval': 0}
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print]   pld_enabled .................. False
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print]   pld_params ................... False
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print]   prescale_gradients ........... True
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print]   quantize_change_rate ......... 0.001
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print]   quantize_groups .............. 1
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print]   quantize_offset .............. 1000
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print]   quantize_period .............. 1000
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print]   quantize_rounding ............ 0
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print]   quantize_start_bits .......... 16
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print]   quantize_target_bits ......... 8
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print]   quantize_training_enabled .... False
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print]   quantize_type ................ 0
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print]   quantize_verbose ............. False
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print]   scheduler_name ............... None
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print]   scheduler_params ............. None
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print]   sparse_attention ............. None
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print]   sparse_gradients_enabled ..... False
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print]   steps_per_print .............. 2000
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print]   tensorboard_enabled .......... False
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print]   tensorboard_job_name ......... DeepSpeedJobName
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print]   tensorboard_output_path ...... 
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print]   train_batch_size ............. 1024
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print]   train_micro_batch_size_per_gpu  4
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print]   use_quantizer_kernel ......... False
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print]   wall_clock_breakdown ......... False
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print]   world_size ................... 1
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print]   zero_allow_untested_optimizer  False
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print]   zero_config .................. {
    "stage": 0, 
    "contiguous_gradients": false, 
    "reduce_scatter": true, 
    "reduce_bucket_size": 5.000000e+08, 
    "allgather_partitions": true, 
    "allgather_bucket_size": 5.000000e+08, 
    "overlap_comm": false, 
    "load_from_fp32_weights": true, 
    "elastic_checkpoint": true, 
    "offload_param": null, 
    "offload_optimizer": null, 
    "sub_group_size": 1.000000e+12, 
    "prefetch_bucket_size": 5.000000e+07, 
    "param_persistence_threshold": 1.000000e+05, 
    "max_live_parameters": 1.000000e+09, 
    "max_reuse_distance": 1.000000e+09, 
    "gather_fp16_weights_on_model_save": false, 
    "ignore_unused_parameters": true, 
    "legacy_stage1": false
}
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print]   zero_enabled ................. False
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print]   zero_optimization_stage ...... 0
[2021-06-10 20:47:51,887] [INFO] [config.py:906:print]   json = {
    "train_micro_batch_size_per_gpu": 4, 
    "gradient_accumulation_steps": 256, 
    "gradient_clipping": 1.0, 
    "prescale_gradients": true, 
    "zero_optimization": {
        "stage": 0
    }, 
    "fp16": {
        "enabled": true, 
        "loss_scale": 0, 
        "loss_scale_window": 500, 
        "hysteresis": 2, 
        "min_loss_scale": 1, 
        "initial_scale_power": 12
    }, 
    "steps_per_print": 2.000000e+03, 
    "wall_clock_breakdown": false
}
[2021-06-10 20:47:51,888] [INFO] [engine.py:76:__init__] CONFIG: micro_batches=256 micro_batch_size=4
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=0 STAGE=0 LAYERS=7 [0, 7) STAGE_PARAMS=917757952 (917.758M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=1 STAGE=0 LAYERS=7 [0, 7) STAGE_PARAMS=917757952 (917.758M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=2 STAGE=0 LAYERS=7 [0, 7) STAGE_PARAMS=917757952 (917.758M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=3 STAGE=0 LAYERS=7 [0, 7) STAGE_PARAMS=917757952 (917.758M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=32 STAGE=8 LAYERS=4 [35, 39) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=34 STAGE=8 LAYERS=4 [35, 39) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=33 STAGE=8 LAYERS=4 [35, 39) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=35 STAGE=8 LAYERS=4 [35, 39) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=17 STAGE=4 LAYERS=4 [19, 23) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=49 STAGE=12 LAYERS=4 [51, 55) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=51 STAGE=12 LAYERS=4 [51, 55) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=48 STAGE=12 LAYERS=4 [51, 55) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=50 STAGE=12 LAYERS=4 [51, 55) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=16 STAGE=4 LAYERS=4 [19, 23) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=19 STAGE=4 LAYERS=4 [19, 23) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=18 STAGE=4 LAYERS=4 [19, 23) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=26 STAGE=6 LAYERS=4 [27, 31) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=24 STAGE=6 LAYERS=4 [27, 31) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=25 STAGE=6 LAYERS=4 [27, 31) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=27 STAGE=6 LAYERS=4 [27, 31) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=43 STAGE=10 LAYERS=4 [43, 47) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=40 STAGE=10 LAYERS=4 [43, 47) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=41 STAGE=10 LAYERS=4 [43, 47) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=42 STAGE=10 LAYERS=4 [43, 47) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=10 STAGE=2 LAYERS=4 [11, 15) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=8 STAGE=2 LAYERS=4 [11, 15) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=11 STAGE=2 LAYERS=4 [11, 15) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=4 STAGE=1 LAYERS=4 [7, 11) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=6 STAGE=1 LAYERS=4 [7, 11) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=7 STAGE=1 LAYERS=4 [7, 11) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=5 STAGE=1 LAYERS=4 [7, 11) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=58 STAGE=14 LAYERS=4 [59, 63) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=57 STAGE=14 LAYERS=4 [59, 63) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=56 STAGE=14 LAYERS=4 [59, 63) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=59 STAGE=14 LAYERS=4 [59, 63) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=61 STAGE=15 LAYERS=8 [63, 71) STAGE_PARAMS=917774336 (917.774M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=60 STAGE=15 LAYERS=8 [63, 71) STAGE_PARAMS=917774336 (917.774M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=63 STAGE=15 LAYERS=8 [63, 71) STAGE_PARAMS=917774336 (917.774M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=37 STAGE=9 LAYERS=4 [39, 43) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=36 STAGE=9 LAYERS=4 [39, 43) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=39 STAGE=9 LAYERS=4 [39, 43) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=38 STAGE=9 LAYERS=4 [39, 43) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=44 STAGE=11 LAYERS=4 [47, 51) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=47 STAGE=11 LAYERS=4 [47, 51) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=46 STAGE=11 LAYERS=4 [47, 51) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=45 STAGE=11 LAYERS=4 [47, 51) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=28 STAGE=7 LAYERS=4 [31, 35) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=30 STAGE=7 LAYERS=4 [31, 35) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=31 STAGE=7 LAYERS=4 [31, 35) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=29 STAGE=7 LAYERS=4 [31, 35) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=54 STAGE=13 LAYERS=4 [55, 59) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=55 STAGE=13 LAYERS=4 [55, 59) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=52 STAGE=13 LAYERS=4 [55, 59) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=12 STAGE=3 LAYERS=4 [15, 19) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=13 STAGE=3 LAYERS=4 [15, 19) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=14 STAGE=3 LAYERS=4 [15, 19) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=9 STAGE=2 LAYERS=4 [11, 15) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=53 STAGE=13 LAYERS=4 [55, 59) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=15 STAGE=3 LAYERS=4 [15, 19) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=62 STAGE=15 LAYERS=8 [63, 71) STAGE_PARAMS=917774336 (917.774M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=20 STAGE=5 LAYERS=4 [23, 27) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=23 STAGE=5 LAYERS=4 [23, 27) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=22 STAGE=5 LAYERS=4 [23, 27) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=21 STAGE=5 LAYERS=4 [23, 27) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
WARNING: could not find the metadata file /gpfsscratch/rech/six/ura81os/checkpoints/gpt2-meg-ds/latest_checkpointed_iteration.txt 
    will not load any checkpoints and will start from random
time (ms) | load-checkpoint: 11.96
[after model, optimizer, and learning rate scheduler are built] datetime: 2021-06-10 20:47:53 
> building train, validation, and test datasets ...
 > datasets target sizes (minimum size):
    train:      1024000
    validation: 112640
    test:       10240
> building train, validation, and test datasets for GPT ...
 > building dataset index ...
    reading sizes...
    reading pointers...
    reading document index...
    creating numpy buffer of mmap...
    creating memory view of numpy buffer...
 > finished creating indexed dataset in 0.032667 seconds
    number of documents: 10000
 > dataset split:
    train:
     document indices in [0, 9490) total of 9490 documents
    validation:
     document indices in [9490, 9990) total of 500 documents
    test:
     document indices in [9990, 10000) total of 10 documents
 > loading doc-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_train_indexmap_1024000ns_1024sl_1234s_doc_idx.npy
 > loading sample-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_train_indexmap_1024000ns_1024sl_1234s_sample_idx.npy
 > loading shuffle-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_train_indexmap_1024000ns_1024sl_1234s_shuffle_idx.npy
    loaded indexed file in 0.115 seconds
    total number of samples: 1024856
    total number of epochs: 99
 > loading doc-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_valid_indexmap_112640ns_1024sl_1234s_doc_idx.npy
 > loading sample-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_valid_indexmap_112640ns_1024sl_1234s_sample_idx.npy
 > loading shuffle-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_valid_indexmap_112640ns_1024sl_1234s_shuffle_idx.npy
    loaded indexed file in 0.050 seconds
    total number of samples: 113200
    total number of epochs: 182
 > loading doc-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_test_indexmap_10240ns_1024sl_1234s_doc_idx.npy
 > loading sample-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_test_indexmap_10240ns_1024sl_1234s_sample_idx.npy
 > loading shuffle-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_test_indexmap_10240ns_1024sl_1234s_shuffle_idx.npy
    loaded indexed file in 0.023 seconds
    total number of samples: 10255
    total number of epochs: 672
> finished creating GPT datasets ...
[after dataloaders are built] datetime: 2021-06-10 20:47:54 
time (ms) | model-and-optimizer-setup: 2744.35 | train/valid/test-data-iterators-setup: 815.33
done with setup ...
training ...
[before the start of training step] datetime: 2021-06-10 20:47:54 
[2021-06-10 20:47:54,339] [INFO] [checkpointing.py:408:forward] Activation Checkpointing Information
[2021-06-10 20:47:54,339] [INFO] [checkpointing.py:409:forward] ----Partition Activations False, CPU CHECKPOINTING False
[2021-06-10 20:47:54,339] [INFO] [checkpointing.py:412:forward] ----contiguous Memory Checkpointing False with 64 total layers
[2021-06-10 20:47:54,339] [INFO] [checkpointing.py:415:forward] ----Synchronization False
[2021-06-10 20:47:54,339] [INFO] [checkpointing.py:416:forward] ----Profiling time in checkpointing False
[Rank 1] (after 1 iterations) memory (MB) | allocated: 12337.45654296875 | max allocated: 19961.072265625 | reserved: 23288.0 | max reserved: 23288.0
[Rank 61] (after 1 iterations) memory (MB) | allocated: 12923.83251953125 | max allocated: 18175.37841796875 | reserved: 19286.0 | max reserved: 19286.0
[Rank 5] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17461.94775390625 | reserved: 20002.0 | max reserved: 20002.0
[Rank 9] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17189.947265625 | reserved: 19824.0 | max reserved: 19824.0
[Rank 17] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16645.9462890625 | reserved: 19216.0 | max reserved: 19216.0
[Rank 13] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16917.94677734375 | reserved: 19456.0 | max reserved: 19456.0
[Rank 25] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16101.9453125 | reserved: 18640.0 | max reserved: 18640.0
[Rank 29] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15829.94482421875 | reserved: 18384.0 | max reserved: 18384.0
[Rank 21] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16373.94580078125 | reserved: 18882.0 | max reserved: 18882.0
[Rank 33] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15557.9443359375 | reserved: 18654.0 | max reserved: 18654.0
[Rank 62] (after 1 iterations) memory (MB) | allocated: 12923.83251953125 | max allocated: 18175.37841796875 | reserved: 19286.0 | max reserved: 19286.0
[Rank 6] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17461.94775390625 | reserved: 20002.0 | max reserved: 20002.0
[Rank 2] (after 1 iterations) memory (MB) | allocated: 12337.45654296875 | max allocated: 19961.072265625 | reserved: 23204.0 | max reserved: 23204.0
[Rank 10] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17189.947265625 | reserved: 19760.0 | max reserved: 19760.0
[Rank 18] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16645.9462890625 | reserved: 19218.0 | max reserved: 19218.0
[Rank 14] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16917.94677734375 | reserved: 19424.0 | max reserved: 19424.0
[Rank 0] (after 1 iterations) memory (MB) | allocated: 12337.45654296875 | max allocated: 19961.072265625 | reserved: 22892.0 | max reserved: 22892.0
 iteration        1/    1000 | consumed samples:         1024 | elapsed time per iteration (ms): 159778.9 | learning rate: 1.875E-05 | global batch size:  1024 | lm-loss: 1.244238E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
[Rank 22] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16373.94580078125 | reserved: 18882.0 | max reserved: 18882.0
[Rank 26] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16101.9453125 | reserved: 19024.0 | max reserved: 19024.0
[Rank 41] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18064.0 | max reserved: 18064.0
[Rank 4] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17461.94775390625 | reserved: 20018.0 | max reserved: 20018.0
[Rank 8] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17189.947265625 | reserved: 19794.0 | max reserved: 19794.0
[Rank 45] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18302.0 | max reserved: 18302.0
[Rank 30] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15829.94482421875 | reserved: 18384.0 | max reserved: 18384.0
[Rank 16] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16645.9462890625 | reserved: 19200.0 | max reserved: 19200.0
[Rank 34] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15557.9443359375 | reserved: 18622.0 | max reserved: 18622.0
[Rank 12] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16917.94677734375 | reserved: 19504.0 | max reserved: 19504.0
[Rank 53] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17182.0 | max reserved: 17182.0
[Rank 49] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17710.0 | max reserved: 17710.0
[Rank 60] (after 1 iterations) memory (MB) | allocated: 12923.83251953125 | max allocated: 18175.37841796875 | reserved: 19286.0 | max reserved: 19286.0
[Rank 24] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16101.9453125 | reserved: 19040.0 | max reserved: 19040.0
[Rank 37] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18304.0 | max reserved: 18304.0
[Rank 57] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 16926.0 | max reserved: 16926.0
[Rank 28] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15829.94482421875 | reserved: 18368.0 | max reserved: 18368.0
[Rank 32] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15557.9443359375 | reserved: 18606.0 | max reserved: 18606.0
[Rank 3] (after 1 iterations) memory (MB) | allocated: 12337.45654296875 | max allocated: 19961.072265625 | reserved: 23270.0 | max reserved: 23270.0
[Rank 7] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17461.94775390625 | reserved: 20002.0 | max reserved: 20002.0
[Rank 11] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17189.947265625 | reserved: 19744.0 | max reserved: 19744.0
[Rank 63] (after 1 iterations) memory (MB) | allocated: 12923.83251953125 | max allocated: 18175.37841796875 | reserved: 19286.0 | max reserved: 19286.0
[Rank 20] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16373.94580078125 | reserved: 18962.0 | max reserved: 18962.0
[Rank 15] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16917.94677734375 | reserved: 19536.0 | max reserved: 19536.0
[Rank 40] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18480.0 | max reserved: 18480.0
[Rank 44] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17934.0 | max reserved: 17934.0
[Rank 19] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16645.9462890625 | reserved: 19200.0 | max reserved: 19200.0
[Rank 23] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16373.94580078125 | reserved: 18912.0 | max reserved: 18912.0
time (ms)
[Rank 48] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17710.0 | max reserved: 17710.0
[Rank 31] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15829.94482421875 | reserved: 18384.0 | max reserved: 18384.0
[Rank 27] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16101.9453125 | reserved: 18640.0 | max reserved: 18640.0
[Rank 42] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18304.0 | max reserved: 18304.0
[Rank 35] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15557.9443359375 | reserved: 18654.0 | max reserved: 18654.0
[Rank 56] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17182.0 | max reserved: 17182.0
[Rank 52] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17182.0 | max reserved: 17182.0
[Rank 36] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18494.0 | max reserved: 18494.0
[Rank 39] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18304.0 | max reserved: 18304.0[Rank 38] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18304.0 | max reserved: 18304.0

[Rank 54] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17182.0 | max reserved: 17182.0
[Rank 46] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18222.0 | max reserved: 18222.0
[Rank 43] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18224.0 | max reserved: 18224.0
[Rank 50] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17710.0 | max reserved: 17710.0
[Rank 47] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18302.0 | max reserved: 18302.0
[Rank 58] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17182.0 | max reserved: 17182.0
[Rank 55] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17182.0 | max reserved: 17182.0
[Rank 51] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17710.0 | max reserved: 17710.0
[Rank 59] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17182.0 | max reserved: 17182.0
 iteration        2/    1000 | consumed samples:         2048 | elapsed time per iteration (ms): 141096.8 | learning rate: 3.750E-05 | global batch size:  1024 | lm-loss: 1.244502E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration        3/    1000 | consumed samples:         3072 | elapsed time per iteration (ms): 137138.4 | learning rate: 5.625E-05 | global batch size:  1024 | lm-loss: 4.103157E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration        4/    1000 | consumed samples:         4096 | elapsed time per iteration (ms): 138928.9 | learning rate: 7.500E-05 | global batch size:  1024 | lm-loss: 4.305696E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration        5/    1000 | consumed samples:         5120 | elapsed time per iteration (ms): 137805.9 | learning rate: 9.375E-05 | global batch size:  1024 | lm-loss: 3.814122E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration        6/    1000 | consumed samples:         6144 | elapsed time per iteration (ms): 139183.6 | learning rate: 1.125E-04 | global batch size:  1024 | lm-loss: 3.368778E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration        7/    1000 | consumed samples:         7168 | elapsed time per iteration (ms): 138604.6 | learning rate: 1.312E-04 | global batch size:  1024 | lm-loss: 3.123441E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration        8/    1000 | consumed samples:         8192 | elapsed time per iteration (ms): 137448.5 | learning rate: 1.500E-04 | global batch size:  1024 | lm-loss: 2.563856E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration        9/    1000 | consumed samples:         9216 | elapsed time per iteration (ms): 134118.7 | learning rate: 1.500E-04 | global batch size:  1024 | lm-loss: 2.213366E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       10/    1000 | consumed samples:        10240 | elapsed time per iteration (ms): 136533.1 | learning rate: 1.500E-04 | global batch size:  1024 | lm-loss: 1.981217E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       11/    1000 | consumed samples:        11264 | elapsed time per iteration (ms): 139544.9 | learning rate: 1.500E-04 | global batch size:  1024 | lm-loss: 1.872394E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       12/    1000 | consumed samples:        12288 | elapsed time per iteration (ms): 138324.6 | learning rate: 1.500E-04 | global batch size:  1024 | lm-loss: 1.740661E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       13/    1000 | consumed samples:        13312 | elapsed time per iteration (ms): 134446.2 | learning rate: 1.500E-04 | global batch size:  1024 | lm-loss: 1.575262E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       14/    1000 | consumed samples:        14336 | elapsed time per iteration (ms): 137764.0 | learning rate: 1.500E-04 | global batch size:  1024 | lm-loss: 1.397998E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       15/    1000 | consumed samples:        15360 | elapsed time per iteration (ms): 137041.8 | learning rate: 1.500E-04 | global batch size:  1024 | lm-loss: 1.245603E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       16/    1000 | consumed samples:        16384 | elapsed time per iteration (ms): 139143.0 | learning rate: 1.500E-04 | global batch size:  1024 | lm-loss: 1.082751E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       17/    1000 | consumed samples:        17408 | elapsed time per iteration (ms): 139118.9 | learning rate: 1.500E-04 | global batch size:  1024 | lm-loss: 1.204085E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       18/    1000 | consumed samples:        18432 | elapsed time per iteration (ms): 138928.4 | learning rate: 1.499E-04 | global batch size:  1024 | lm-loss: 1.150506E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       19/    1000 | consumed samples:        19456 | elapsed time per iteration (ms): 139037.8 | learning rate: 1.499E-04 | global batch size:  1024 | lm-loss: 1.115988E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       20/    1000 | consumed samples:        20480 | elapsed time per iteration (ms): 138096.1 | learning rate: 1.499E-04 | global batch size:  1024 | lm-loss: 9.714051E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       21/    1000 | consumed samples:        21504 | elapsed time per iteration (ms): 139033.1 | learning rate: 1.499E-04 | global batch size:  1024 | lm-loss: 9.586049E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       22/    1000 | consumed samples:        22528 | elapsed time per iteration (ms): 136872.8 | learning rate: 1.499E-04 | global batch size:  1024 | lm-loss: 9.537881E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       23/    1000 | consumed samples:        23552 | elapsed time per iteration (ms): 137788.2 | learning rate: 1.499E-04 | global batch size:  1024 | lm-loss: 9.239707E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       24/    1000 | consumed samples:        24576 | elapsed time per iteration (ms): 137068.7 | learning rate: 1.499E-04 | global batch size:  1024 | lm-loss: 8.807950E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       25/    1000 | consumed samples:        25600 | elapsed time per iteration (ms): 139326.6 | learning rate: 1.498E-04 | global batch size:  1024 | lm-loss: 9.411034E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       26/    1000 | consumed samples:        26624 | elapsed time per iteration (ms): 138753.7 | learning rate: 1.498E-04 | global batch size:  1024 | lm-loss: 1.019738E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       27/    1000 | consumed samples:        27648 | elapsed time per iteration (ms): 135832.6 | learning rate: 1.498E-04 | global batch size:  1024 | lm-loss: 8.967265E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       28/    1000 | consumed samples:        28672 | elapsed time per iteration (ms): 137159.8 | learning rate: 1.498E-04 | global batch size:  1024 | lm-loss: 8.756670E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       29/    1000 | consumed samples:        29696 | elapsed time per iteration (ms): 135068.0 | learning rate: 1.498E-04 | global batch size:  1024 | lm-loss: 8.835566E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       30/    1000 | consumed samples:        30720 | elapsed time per iteration (ms): 135619.2 | learning rate: 1.497E-04 | global batch size:  1024 | lm-loss: 8.811040E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       31/    1000 | consumed samples:        31744 | elapsed time per iteration (ms): 137837.0 | learning rate: 1.497E-04 | global batch size:  1024 | lm-loss: 8.659844E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       32/    1000 | consumed samples:        32768 | elapsed time per iteration (ms): 135370.3 | learning rate: 1.497E-04 | global batch size:  1024 | lm-loss: 8.494865E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       33/    1000 | consumed samples:        33792 | elapsed time per iteration (ms): 132840.5 | learning rate: 1.497E-04 | global batch size:  1024 | lm-loss: 8.415603E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       34/    1000 | consumed samples:        34816 | elapsed time per iteration (ms): 135995.0 | learning rate: 1.496E-04 | global batch size:  1024 | lm-loss: 8.276673E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       35/    1000 | consumed samples:        35840 | elapsed time per iteration (ms): 130121.0 | learning rate: 1.496E-04 | global batch size:  1024 | lm-loss: 8.076686E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       36/    1000 | consumed samples:        36864 | elapsed time per iteration (ms): 134088.0 | learning rate: 1.496E-04 | global batch size:  1024 | lm-loss: 7.927558E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       37/    1000 | consumed samples:        37888 | elapsed time per iteration (ms): 132751.8 | learning rate: 1.495E-04 | global batch size:  1024 | lm-loss: 8.049387E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       38/    1000 | consumed samples:        38912 | elapsed time per iteration (ms): 137618.8 | learning rate: 1.495E-04 | global batch size:  1024 | lm-loss: 8.101182E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       39/    1000 | consumed samples:        39936 | elapsed time per iteration (ms): 136129.3 | learning rate: 1.495E-04 | global batch size:  1024 | lm-loss: 8.031030E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       40/    1000 | consumed samples:        40960 | elapsed time per iteration (ms): 125643.3 | learning rate: 1.494E-04 | global batch size:  1024 | lm-loss: 8.032815E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       41/    1000 | consumed samples:        41984 | elapsed time per iteration (ms): 137845.6 | learning rate: 1.494E-04 | global batch size:  1024 | lm-loss: 8.030648E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       42/    1000 | consumed samples:        43008 | elapsed time per iteration (ms): 136653.4 | learning rate: 1.494E-04 | global batch size:  1024 | lm-loss: 7.932028E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       43/    1000 | consumed samples:        44032 | elapsed time per iteration (ms): 133720.0 | learning rate: 1.493E-04 | global batch size:  1024 | lm-loss: 7.879141E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       44/    1000 | consumed samples:        45056 | elapsed time per iteration (ms): 134441.1 | learning rate: 1.493E-04 | global batch size:  1024 | lm-loss: 7.791877E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       45/    1000 | consumed samples:        46080 | elapsed time per iteration (ms): 137502.0 | learning rate: 1.492E-04 | global batch size:  1024 | lm-loss: 7.738390E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       46/    1000 | consumed samples:        47104 | elapsed time per iteration (ms): 131717.1 | learning rate: 1.492E-04 | global batch size:  1024 | lm-loss: 7.792564E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       47/    1000 | consumed samples:        48128 | elapsed time per iteration (ms): 134668.9 | learning rate: 1.492E-04 | global batch size:  1024 | lm-loss: 7.803430E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       48/    1000 | consumed samples:        49152 | elapsed time per iteration (ms): 134516.4 | learning rate: 1.491E-04 | global batch size:  1024 | lm-loss: 7.790527E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)
 iteration       49/    1000 | consumed samples:        50176 | elapsed time per iteration (ms): 136328.8 | learning rate: 1.491E-04 | global batch size:  1024 | lm-loss: 7.747273E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
time (ms)