File size: 89,865 Bytes
d1396f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 |
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
using world size: 64, data-parallel-size: 1, tensor-model-parallel size: 4, pipeline-model-parallel size: 16
using torch.float16 for parameters ...
------------------------ arguments ------------------------
accumulate_allreduce_grads_in_fp32 .............. False
adam_beta1 ...................................... 0.9
adam_beta2 ...................................... 0.999
adam_eps ........................................ 1e-08
adlr_autoresume ................................. False
adlr_autoresume_interval ........................ 1000
apply_query_key_layer_scaling ................... True
apply_residual_connection_post_layernorm ........ False
attention_dropout ............................... 0.1
attention_softmax_in_fp32 ....................... False
bert_binary_head ................................ True
bert_load ....................................... None
bf16 ............................................ False
bias_dropout_fusion ............................. True
bias_gelu_fusion ................................ True
biencoder_projection_dim ........................ 0
biencoder_shared_query_context_model ............ False
block_data_path ................................. None
checkpoint_activations .......................... True
checkpoint_in_cpu ............................... False
checkpoint_num_layers ........................... 1
clip_grad ....................................... 1.0
consumed_train_samples .......................... 0
consumed_valid_samples .......................... 0
contigious_checkpointing ........................ False
cpu_optimizer ................................... False
data_impl ....................................... mmap
data_parallel_size .............................. 1
data_path ....................................... ['/gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document']
dataloader_type ................................. single
DDP_impl ........................................ local
decoder_seq_length .............................. None
deepscale ....................................... False
deepscale_config ................................ None
deepspeed ....................................... True
deepspeed_activation_checkpointing .............. True
deepspeed_config ................................ ./ds_config.json
deepspeed_mpi ................................... False
distribute_checkpointed_activations ............. False
distributed_backend ............................. nccl
embedding_path .................................. None
encoder_seq_length .............................. 1024
eod_mask_loss ................................... False
eval_interval ................................... 100
eval_iters ...................................... 10
evidence_data_path .............................. None
exit_duration_in_mins ........................... None
exit_interval ................................... None
ffn_hidden_size ................................. 32768
finetune ........................................ False
fp16 ............................................ True
fp16_lm_cross_entropy ........................... False
fp32_residual_connection ........................ False
global_batch_size ............................... 1024
hidden_dropout .................................. 0.1
hidden_size ..................................... 8192
hysteresis ...................................... 2
ict_head_size ................................... None
ict_load ........................................ None
img_dim ......................................... 224
indexer_batch_size .............................. 128
indexer_log_interval ............................ 1000
init_method_std ................................. 0.02
init_method_xavier_uniform ...................... False
initial_loss_scale .............................. 4294967296
kv_channels ..................................... 256
layernorm_epsilon ............................... 1e-05
lazy_mpu_init ................................... None
load ............................................ /gpfsscratch/rech/six/ura81os/checkpoints/gpt2-meg-ds
local_rank ...................................... 0
log_batch_size_to_tensorboard ................... False
log_interval .................................... 1
log_learning_rate_to_tensorboard ................ True
log_loss_scale_to_tensorboard ................... True
log_num_zeros_in_grad ........................... False
log_params_norm ................................. False
log_timers_to_tensorboard ....................... False
log_validation_ppl_to_tensorboard ............... False
loss_scale ...................................... 12.0
loss_scale_window ............................... 1000
lr .............................................. 0.00015
lr_decay_iters .................................. 800
lr_decay_samples ................................ None
lr_decay_style .................................. cosine
lr_warmup_fraction .............................. 0.01
lr_warmup_iters ................................. 0
lr_warmup_samples ............................... 0
make_vocab_size_divisible_by .................... 128
mask_prob ....................................... 0.15
masked_softmax_fusion ........................... True
max_position_embeddings ......................... 1024
merge_file ...................................... /gpfswork/rech/six/commun/models-custom/megatron-gpt2/megatron_lm_345m_v0.0/release/gpt2-merges.txt
micro_batch_size ................................ 4
min_loss_scale .................................. 1.0
min_lr .......................................... 1e-05
mmap_warmup ..................................... False
no_load_optim ................................... None
no_load_rng ..................................... None
no_save_optim ................................... None
no_save_rng ..................................... None
num_attention_heads ............................. 32
num_channels .................................... 3
num_classes ..................................... 1000
num_layers ...................................... 64
num_layers_per_virtual_pipeline_stage ........... None
num_workers ..................................... 2
onnx_safe ....................................... None
openai_gelu ..................................... False
optimizer ....................................... adam
override_lr_scheduler ........................... False
params_dtype .................................... torch.float16
partition_activations ........................... False
patch_dim ....................................... 16
pipeline_model_parallel_size .................... 16
profile_backward ................................ False
query_in_block_prob ............................. 0.1
rampup_batch_size ............................... None
rank ............................................ 0
remote_device ................................... none
reset_attention_mask ............................ False
reset_position_ids .............................. False
retriever_report_topk_accuracies ................ []
retriever_score_scaling ......................... False
retriever_seq_length ............................ 256
sample_rate ..................................... 1.0
save ............................................ /gpfsscratch/rech/six/ura81os/checkpoints/gpt2-meg-ds
save_interval ................................... 500
scatter_gather_tensors_in_pipeline .............. True
seed ............................................ 1234
seq_length ...................................... 1024
sgd_momentum .................................... 0.9
short_seq_prob .................................. 0.1
split ........................................... 949,50,1
synchronize_each_layer .......................... False
tensor_model_parallel_size ...................... 4
tensorboard_dir ................................. None
tensorboard_log_interval ........................ 1
tensorboard_queue_size .......................... 1000
titles_data_path ................................ None
tokenizer_type .................................. GPT2BPETokenizer
train_iters ..................................... 1000
train_samples ................................... None
use_checkpoint_lr_scheduler ..................... False
use_contiguous_buffers_in_ddp ................... False
use_cpu_initialization .......................... None
use_one_sent_docs ............................... False
virtual_pipeline_model_parallel_size ............ None
vocab_extra_ids ................................. 0
vocab_file ...................................... /gpfswork/rech/six/commun/models-custom/megatron-gpt2/megatron_lm_345m_v0.0/release/gpt2-vocab.json
weight_decay .................................... 0.01
world_size ...................................... 64
zero_stage ...................................... 0
-------------------- end of arguments ---------------------
setting number of micro-batches to constant 256
> building GPT2BPETokenizer tokenizer ...
> padded vocab (size: 50257) with 431 dummy tokens (new size: 50688)
> initializing torch distributed ...
> initializing tensor model parallel with size 4
> initializing pipeline model parallel with size 16
> setting random seeds to 1234 ...
[2021-06-10 20:47:37,205] [INFO] [checkpointing.py:226:model_parallel_cuda_manual_seed] > initializing model parallel cuda seeds on global rank 0, model parallel rank 0, and data parallel rank 0 with model parallel seed: 3952 and data parallel seed: 1234
> compiling dataset index builder ...
make: Entering directory '/gpfsdswork/projects/rech/six/ura81os/stas/code/megatron-jeffra/megatron/data'
make: Nothing to be done for 'default'.
make: Leaving directory '/gpfsdswork/projects/rech/six/ura81os/stas/code/megatron-jeffra/megatron/data'
>>> done with dataset index builder. Compilation time: 0.106 seconds
> compiling and loading fused kernels ...
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
Detected CUDA files, patching ldflags
Emitting ninja build file /gpfsdswork/projects/rech/six/ura81os/stas/code/megatron-jeffra/megatron/fused_kernels/build/build.ninja...
Building extension module scaled_upper_triang_masked_softmax_cuda...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
ninja: no work to do.
Loading extension module scaled_upper_triang_masked_softmax_cuda...
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
Detected CUDA files, patching ldflags
Emitting ninja build file /gpfsdswork/projects/rech/six/ura81os/stas/code/megatron-jeffra/megatron/fused_kernels/build/build.ninja...
Building extension module scaled_masked_softmax_cuda...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
ninja: no work to do.
Loading extension module scaled_masked_softmax_cuda...
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
Detected CUDA files, patching ldflags
Emitting ninja build file /gpfsdswork/projects/rech/six/ura81os/stas/code/megatron-jeffra/megatron/fused_kernels/build/build.ninja...
Building extension module fused_mix_prec_layer_norm_cuda...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
ninja: no work to do.
Loading extension module fused_mix_prec_layer_norm_cuda...
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/utils/cpp_extension.py:283: UserWarning:
!! WARNING !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Your compiler (c++) is not compatible with the compiler Pytorch was
built with for this platform, which is g++ on linux. Please
use g++ to to compile your extension. Alternatively, you may
compile PyTorch from source using c++, and then you can also use
c++ to compile your extension.
See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help
with compiling PyTorch from source.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! WARNING !!
warnings.warn(WRONG_COMPILER_WARNING.format(
>>> done with compiling and loading fused kernels. Compilation time: 12.900 seconds
time to initialize megatron (seconds): -41.720
[after megatron is initialized] datetime: 2021-06-10 20:47:50
building GPT model ...
[2021-06-10 20:47:50,326] [INFO] [utils.py:627:see_memory_usage] Before Building Model
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/cuda/memory.py:373: FutureWarning: torch.cuda.memory_cached has been renamed to torch.cuda.memory_reserved
warnings.warn(
/gpfswork/rech/six/commun/conda/stas/lib/python3.8/site-packages/torch/cuda/memory.py:381: FutureWarning: torch.cuda.max_memory_cached has been renamed to torch.cuda.max_memory_reserved
warnings.warn(
[2021-06-10 20:47:50,329] [INFO] [utils.py:628:see_memory_usage] MA 0.0 GB Max_MA 0.0 GB CA 0.0 GB Max_CA 0 GB
[2021-06-10 20:47:50,329] [INFO] [utils.py:636:see_memory_usage] CPU Virtual Memory: used = 38.96 GB, percent = 20.8%
SEED_LAYERS=False BASE_SEED=1234 SEED_FN=None
Using topology: {ProcessCoord(pipe=0, data=0, model=0): 0, ProcessCoord(pipe=0, data=0, model=1): 1, ProcessCoord(pipe=0, data=0, model=2): 2, ProcessCoord(pipe=0, data=0, model=3): 3, ProcessCoord(pipe=1, data=0, model=0): 4, ProcessCoord(pipe=1, data=0, model=1): 5, ProcessCoord(pipe=1, data=0, model=2): 6, ProcessCoord(pipe=1, data=0, model=3): 7, ProcessCoord(pipe=2, data=0, model=0): 8, ProcessCoord(pipe=2, data=0, model=1): 9, ProcessCoord(pipe=2, data=0, model=2): 10, ProcessCoord(pipe=2, data=0, model=3): 11, ProcessCoord(pipe=3, data=0, model=0): 12, ProcessCoord(pipe=3, data=0, model=1): 13, ProcessCoord(pipe=3, data=0, model=2): 14, ProcessCoord(pipe=3, data=0, model=3): 15, ProcessCoord(pipe=4, data=0, model=0): 16, ProcessCoord(pipe=4, data=0, model=1): 17, ProcessCoord(pipe=4, data=0, model=2): 18, ProcessCoord(pipe=4, data=0, model=3): 19, ProcessCoord(pipe=5, data=0, model=0): 20, ProcessCoord(pipe=5, data=0, model=1): 21, ProcessCoord(pipe=5, data=0, model=2): 22, ProcessCoord(pipe=5, data=0, model=3): 23, ProcessCoord(pipe=6, data=0, model=0): 24, ProcessCoord(pipe=6, data=0, model=1): 25, ProcessCoord(pipe=6, data=0, model=2): 26, ProcessCoord(pipe=6, data=0, model=3): 27, ProcessCoord(pipe=7, data=0, model=0): 28, ProcessCoord(pipe=7, data=0, model=1): 29, ProcessCoord(pipe=7, data=0, model=2): 30, ProcessCoord(pipe=7, data=0, model=3): 31, ProcessCoord(pipe=8, data=0, model=0): 32, ProcessCoord(pipe=8, data=0, model=1): 33, ProcessCoord(pipe=8, data=0, model=2): 34, ProcessCoord(pipe=8, data=0, model=3): 35, ProcessCoord(pipe=9, data=0, model=0): 36, ProcessCoord(pipe=9, data=0, model=1): 37, ProcessCoord(pipe=9, data=0, model=2): 38, ProcessCoord(pipe=9, data=0, model=3): 39, ProcessCoord(pipe=10, data=0, model=0): 40, ProcessCoord(pipe=10, data=0, model=1): 41, ProcessCoord(pipe=10, data=0, model=2): 42, ProcessCoord(pipe=10, data=0, model=3): 43, ProcessCoord(pipe=11, data=0, model=0): 44, ProcessCoord(pipe=11, data=0, model=1): 45, ProcessCoord(pipe=11, data=0, model=2): 46, ProcessCoord(pipe=11, data=0, model=3): 47, ProcessCoord(pipe=12, data=0, model=0): 48, ProcessCoord(pipe=12, data=0, model=1): 49, ProcessCoord(pipe=12, data=0, model=2): 50, ProcessCoord(pipe=12, data=0, model=3): 51, ProcessCoord(pipe=13, data=0, model=0): 52, ProcessCoord(pipe=13, data=0, model=1): 53, ProcessCoord(pipe=13, data=0, model=2): 54, ProcessCoord(pipe=13, data=0, model=3): 55, ProcessCoord(pipe=14, data=0, model=0): 56, ProcessCoord(pipe=14, data=0, model=1): 57, ProcessCoord(pipe=14, data=0, model=2): 58, ProcessCoord(pipe=14, data=0, model=3): 59, ProcessCoord(pipe=15, data=0, model=0): 60, ProcessCoord(pipe=15, data=0, model=1): 61, ProcessCoord(pipe=15, data=0, model=2): 62, ProcessCoord(pipe=15, data=0, model=3): 63}
[2021-06-10 20:47:51,179] [INFO] [module.py:360:_partition_layers] Partitioning pipeline stages with method type:transformer
stage=0 layers=7
0: _to_float16
1: EmbeddingPipe
2: <lambda>
3: ParallelTransformerLayerPipe
4: ParallelTransformerLayerPipe
5: ParallelTransformerLayerPipe
6: ParallelTransformerLayerPipe
stage=1 layers=4
7: ParallelTransformerLayerPipe
8: ParallelTransformerLayerPipe
9: ParallelTransformerLayerPipe
10: ParallelTransformerLayerPipe
stage=2 layers=4
11: ParallelTransformerLayerPipe
12: ParallelTransformerLayerPipe
13: ParallelTransformerLayerPipe
14: ParallelTransformerLayerPipe
stage=3 layers=4
15: ParallelTransformerLayerPipe
16: ParallelTransformerLayerPipe
17: ParallelTransformerLayerPipe
18: ParallelTransformerLayerPipe
stage=4 layers=4
19: ParallelTransformerLayerPipe
20: ParallelTransformerLayerPipe
21: ParallelTransformerLayerPipe
22: ParallelTransformerLayerPipe
stage=5 layers=4
23: ParallelTransformerLayerPipe
24: ParallelTransformerLayerPipe
25: ParallelTransformerLayerPipe
26: ParallelTransformerLayerPipe
stage=6 layers=4
27: ParallelTransformerLayerPipe
28: ParallelTransformerLayerPipe
29: ParallelTransformerLayerPipe
30: ParallelTransformerLayerPipe
stage=7 layers=4
31: ParallelTransformerLayerPipe
32: ParallelTransformerLayerPipe
33: ParallelTransformerLayerPipe
34: ParallelTransformerLayerPipe
stage=8 layers=4
35: ParallelTransformerLayerPipe
36: ParallelTransformerLayerPipe
37: ParallelTransformerLayerPipe
38: ParallelTransformerLayerPipe
stage=9 layers=4
39: ParallelTransformerLayerPipe
40: ParallelTransformerLayerPipe
41: ParallelTransformerLayerPipe
42: ParallelTransformerLayerPipe
stage=10 layers=4
43: ParallelTransformerLayerPipe
44: ParallelTransformerLayerPipe
45: ParallelTransformerLayerPipe
46: ParallelTransformerLayerPipe
stage=11 layers=4
47: ParallelTransformerLayerPipe
48: ParallelTransformerLayerPipe
49: ParallelTransformerLayerPipe
50: ParallelTransformerLayerPipe
stage=12 layers=4
51: ParallelTransformerLayerPipe
52: ParallelTransformerLayerPipe
53: ParallelTransformerLayerPipe
54: ParallelTransformerLayerPipe
stage=13 layers=4
55: ParallelTransformerLayerPipe
56: ParallelTransformerLayerPipe
57: ParallelTransformerLayerPipe
58: ParallelTransformerLayerPipe
stage=14 layers=4
59: ParallelTransformerLayerPipe
60: ParallelTransformerLayerPipe
61: ParallelTransformerLayerPipe
62: ParallelTransformerLayerPipe
stage=15 layers=8
63: ParallelTransformerLayerPipe
64: ParallelTransformerLayerPipe
65: ParallelTransformerLayerPipe
66: ParallelTransformerLayerPipe
67: <lambda>
68: MixedFusedLayerNorm
69: EmbeddingPipe
70: float16_to_fp32
loss: CrossEntropy
> number of parameters on (tensor, pipeline) model parallel rank (2, 12): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 7): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 8): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 8): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 8): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 12): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 12): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 12): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 8): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 7): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 7): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 7): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 9): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 9): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 9): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 1): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 4): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 4): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 4): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 11): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 11): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 11): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 11): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 3): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 3): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 3): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 3): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 9): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 14): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 1): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 1): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 1): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 4): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 6): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 6): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 6): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 14): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 14): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 14): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 6): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 5): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 5): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 5): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 5): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 13): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 13): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 13): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 13): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 2): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 2): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 2): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 2): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (0, 10): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (3, 10): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (1, 10): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 10): 805560320
> number of parameters on (tensor, pipeline) model parallel rank (2, 15): 917774336
> number of parameters on (tensor, pipeline) model parallel rank (0, 15): 917774336
> number of parameters on (tensor, pipeline) model parallel rank (2, 0): 917757952
> number of parameters on (tensor, pipeline) model parallel rank (3, 15): 917774336 > number of parameters on (tensor, pipeline) model parallel rank (1, 15): 917774336
> number of parameters on (tensor, pipeline) model parallel rank (3, 0): 917757952
> number of parameters on (tensor, pipeline) model parallel rank (1, 0): 917757952
[2021-06-10 20:47:51,720] [INFO] [utils.py:627:see_memory_usage] After Building Model
[2021-06-10 20:47:51,721] [INFO] [utils.py:628:see_memory_usage] MA 1.73 GB Max_MA 1.73 GB CA 1.75 GB Max_CA 2 GB
[2021-06-10 20:47:51,721] [INFO] [utils.py:636:see_memory_usage] CPU Virtual Memory: used = 39.14 GB, percent = 20.9%
> number of parameters on (tensor, pipeline) model parallel rank (0, 0): 917757952
> learning rate decay style: cosine
DeepSpeed is enabled.
[2021-06-10 20:47:51,724] [INFO] [logging.py:60:log_dist] [Rank 0] DeepSpeed info: version=0.4.0+407ff0f, git-hash=407ff0f, git-branch=megatron2.4-3d
[2021-06-10 20:47:51,764] [INFO] [engine.py:172:__init__] DeepSpeed Flops Profiler Enabled: False
[2021-06-10 20:47:51,764] [INFO] [engine.py:682:_configure_optimizer] Removing param_group that has no 'params' in the client Optimizer
[2021-06-10 20:47:51,765] [INFO] [engine.py:687:_configure_optimizer] Using client Optimizer as basic optimizer
[2021-06-10 20:47:51,765] [INFO] [engine.py:696:_configure_optimizer] DeepSpeed Basic Optimizer = FusedAdam
[2021-06-10 20:47:51,765] [INFO] [logging.py:60:log_dist] [Rank 0] Creating fp16 unfused optimizer with dynamic loss scale
[2021-06-10 20:47:51,765] [INFO] [unfused_optimizer.py:37:__init__] Fused Lamb Legacy : False
[2021-06-10 20:47:51,885] [INFO] [logging.py:60:log_dist] [Rank 0] DeepSpeed Final Optimizer = FusedAdam
[2021-06-10 20:47:51,885] [INFO] [engine.py:509:_configure_lr_scheduler] DeepSpeed using client LR scheduler
[2021-06-10 20:47:51,885] [INFO] [logging.py:60:log_dist] [Rank 0] DeepSpeed LR Scheduler = <megatron.learning_rates.AnnealingLR object at 0x1533710dffd0>
[2021-06-10 20:47:51,885] [INFO] [logging.py:60:log_dist] [Rank 0] step=0, skipped=0, lr=[0.0, 0.0], mom=[(0.9, 0.999), (0.9, 0.999)]
[2021-06-10 20:47:51,885] [INFO] [config.py:900:print] DeepSpeedEngine configuration:
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] activation_checkpointing_config {
"partition_activations": false,
"contiguous_memory_optimization": false,
"cpu_checkpointing": false,
"number_checkpoints": null,
"synchronize_checkpoint_boundary": false,
"profile": false
}
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] aio_config ................... {'block_size': 1048576, 'queue_depth': 8, 'thread_count': 1, 'single_submit': False, 'overlap_events': True}
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] allreduce_always_fp32 ........ False
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] amp_enabled .................. False
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] amp_params ................... False
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] checkpoint_tag_validation_enabled True
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] checkpoint_tag_validation_fail False
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] disable_allgather ............ False
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] dump_state ................... False
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] dynamic_loss_scale_args ...... {'init_scale': 4096, 'scale_window': 500, 'delayed_shift': 2, 'min_scale': 1}
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] eigenvalue_enabled ........... False
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] eigenvalue_gas_boundary_resolution 1
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] eigenvalue_layer_name ........ bert.encoder.layer
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] eigenvalue_layer_num ......... 0
[2021-06-10 20:47:51,885] [INFO] [config.py:904:print] eigenvalue_max_iter .......... 100
10 20:47:51,886] [INFO] [config.py:904:print] optimizer_params ............. None
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] pipeline ..................... {'stages': 'auto', 'partition': 'best', 'seed_layers': False, 'activation_checkpoint_interval': 0}
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] pld_enabled .................. False
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] pld_params ................... False
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] prescale_gradients ........... True
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] quantize_change_rate ......... 0.001
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] quantize_groups .............. 1
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] quantize_offset .............. 1000
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] quantize_period .............. 1000
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] quantize_rounding ............ 0
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] quantize_start_bits .......... 16
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] quantize_target_bits ......... 8
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] quantize_training_enabled .... False
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] quantize_type ................ 0
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] quantize_verbose ............. False
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] scheduler_name ............... None
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] scheduler_params ............. None
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] sparse_attention ............. None
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] sparse_gradients_enabled ..... False
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] steps_per_print .............. 2000
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] tensorboard_enabled .......... False
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] tensorboard_job_name ......... DeepSpeedJobName
[2021-06-10 20:47:51,886] [INFO] [config.py:904:print] tensorboard_output_path ......
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print] train_batch_size ............. 1024
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print] train_micro_batch_size_per_gpu 4
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print] use_quantizer_kernel ......... False
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print] wall_clock_breakdown ......... False
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print] world_size ................... 1
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print] zero_allow_untested_optimizer False
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print] zero_config .................. {
"stage": 0,
"contiguous_gradients": false,
"reduce_scatter": true,
"reduce_bucket_size": 5.000000e+08,
"allgather_partitions": true,
"allgather_bucket_size": 5.000000e+08,
"overlap_comm": false,
"load_from_fp32_weights": true,
"elastic_checkpoint": true,
"offload_param": null,
"offload_optimizer": null,
"sub_group_size": 1.000000e+12,
"prefetch_bucket_size": 5.000000e+07,
"param_persistence_threshold": 1.000000e+05,
"max_live_parameters": 1.000000e+09,
"max_reuse_distance": 1.000000e+09,
"gather_fp16_weights_on_model_save": false,
"ignore_unused_parameters": true,
"legacy_stage1": false
}
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print] zero_enabled ................. False
[2021-06-10 20:47:51,887] [INFO] [config.py:904:print] zero_optimization_stage ...... 0
[2021-06-10 20:47:51,887] [INFO] [config.py:906:print] json = {
"train_micro_batch_size_per_gpu": 4,
"gradient_accumulation_steps": 256,
"gradient_clipping": 1.0,
"prescale_gradients": true,
"zero_optimization": {
"stage": 0
},
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 500,
"hysteresis": 2,
"min_loss_scale": 1,
"initial_scale_power": 12
},
"steps_per_print": 2.000000e+03,
"wall_clock_breakdown": false
}
[2021-06-10 20:47:51,888] [INFO] [engine.py:76:__init__] CONFIG: micro_batches=256 micro_batch_size=4
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=0 STAGE=0 LAYERS=7 [0, 7) STAGE_PARAMS=917757952 (917.758M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=1 STAGE=0 LAYERS=7 [0, 7) STAGE_PARAMS=917757952 (917.758M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=2 STAGE=0 LAYERS=7 [0, 7) STAGE_PARAMS=917757952 (917.758M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=3 STAGE=0 LAYERS=7 [0, 7) STAGE_PARAMS=917757952 (917.758M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=32 STAGE=8 LAYERS=4 [35, 39) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=34 STAGE=8 LAYERS=4 [35, 39) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=33 STAGE=8 LAYERS=4 [35, 39) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=35 STAGE=8 LAYERS=4 [35, 39) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=17 STAGE=4 LAYERS=4 [19, 23) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=49 STAGE=12 LAYERS=4 [51, 55) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=51 STAGE=12 LAYERS=4 [51, 55) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=48 STAGE=12 LAYERS=4 [51, 55) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=50 STAGE=12 LAYERS=4 [51, 55) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=16 STAGE=4 LAYERS=4 [19, 23) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=19 STAGE=4 LAYERS=4 [19, 23) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=18 STAGE=4 LAYERS=4 [19, 23) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=26 STAGE=6 LAYERS=4 [27, 31) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=24 STAGE=6 LAYERS=4 [27, 31) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=25 STAGE=6 LAYERS=4 [27, 31) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=27 STAGE=6 LAYERS=4 [27, 31) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=43 STAGE=10 LAYERS=4 [43, 47) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=40 STAGE=10 LAYERS=4 [43, 47) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=41 STAGE=10 LAYERS=4 [43, 47) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=42 STAGE=10 LAYERS=4 [43, 47) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=10 STAGE=2 LAYERS=4 [11, 15) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=8 STAGE=2 LAYERS=4 [11, 15) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=11 STAGE=2 LAYERS=4 [11, 15) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=4 STAGE=1 LAYERS=4 [7, 11) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=6 STAGE=1 LAYERS=4 [7, 11) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=7 STAGE=1 LAYERS=4 [7, 11) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=5 STAGE=1 LAYERS=4 [7, 11) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=58 STAGE=14 LAYERS=4 [59, 63) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=57 STAGE=14 LAYERS=4 [59, 63) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=56 STAGE=14 LAYERS=4 [59, 63) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=59 STAGE=14 LAYERS=4 [59, 63) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=61 STAGE=15 LAYERS=8 [63, 71) STAGE_PARAMS=917774336 (917.774M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=60 STAGE=15 LAYERS=8 [63, 71) STAGE_PARAMS=917774336 (917.774M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=63 STAGE=15 LAYERS=8 [63, 71) STAGE_PARAMS=917774336 (917.774M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=37 STAGE=9 LAYERS=4 [39, 43) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=36 STAGE=9 LAYERS=4 [39, 43) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=39 STAGE=9 LAYERS=4 [39, 43) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=38 STAGE=9 LAYERS=4 [39, 43) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=44 STAGE=11 LAYERS=4 [47, 51) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=47 STAGE=11 LAYERS=4 [47, 51) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=46 STAGE=11 LAYERS=4 [47, 51) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=45 STAGE=11 LAYERS=4 [47, 51) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=28 STAGE=7 LAYERS=4 [31, 35) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=30 STAGE=7 LAYERS=4 [31, 35) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=31 STAGE=7 LAYERS=4 [31, 35) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=29 STAGE=7 LAYERS=4 [31, 35) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=54 STAGE=13 LAYERS=4 [55, 59) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=55 STAGE=13 LAYERS=4 [55, 59) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=52 STAGE=13 LAYERS=4 [55, 59) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=12 STAGE=3 LAYERS=4 [15, 19) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=13 STAGE=3 LAYERS=4 [15, 19) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=14 STAGE=3 LAYERS=4 [15, 19) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=9 STAGE=2 LAYERS=4 [11, 15) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=53 STAGE=13 LAYERS=4 [55, 59) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=15 STAGE=3 LAYERS=4 [15, 19) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=62 STAGE=15 LAYERS=8 [63, 71) STAGE_PARAMS=917774336 (917.774M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=20 STAGE=5 LAYERS=4 [23, 27) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=23 STAGE=5 LAYERS=4 [23, 27) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=22 STAGE=5 LAYERS=4 [23, 27) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
[2021-06-10 20:47:52,226] [INFO] [engine.py:134:__init__] RANK=21 STAGE=5 LAYERS=4 [23, 27) STAGE_PARAMS=805560320 (805.560M) TOTAL_PARAMS=52453507072 (52453.507M) UNIQUE_PARAMS=52004716544 (52004.717M)
WARNING: could not find the metadata file /gpfsscratch/rech/six/ura81os/checkpoints/gpt2-meg-ds/latest_checkpointed_iteration.txt
will not load any checkpoints and will start from random
time (ms) | load-checkpoint: 11.96
[after model, optimizer, and learning rate scheduler are built] datetime: 2021-06-10 20:47:53
> building train, validation, and test datasets ...
> datasets target sizes (minimum size):
train: 1024000
validation: 112640
test: 10240
> building train, validation, and test datasets for GPT ...
> building dataset index ...
reading sizes...
reading pointers...
reading document index...
creating numpy buffer of mmap...
creating memory view of numpy buffer...
> finished creating indexed dataset in 0.032667 seconds
number of documents: 10000
> dataset split:
train:
document indices in [0, 9490) total of 9490 documents
validation:
document indices in [9490, 9990) total of 500 documents
test:
document indices in [9990, 10000) total of 10 documents
> loading doc-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_train_indexmap_1024000ns_1024sl_1234s_doc_idx.npy
> loading sample-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_train_indexmap_1024000ns_1024sl_1234s_sample_idx.npy
> loading shuffle-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_train_indexmap_1024000ns_1024sl_1234s_shuffle_idx.npy
loaded indexed file in 0.115 seconds
total number of samples: 1024856
total number of epochs: 99
> loading doc-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_valid_indexmap_112640ns_1024sl_1234s_doc_idx.npy
> loading sample-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_valid_indexmap_112640ns_1024sl_1234s_sample_idx.npy
> loading shuffle-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_valid_indexmap_112640ns_1024sl_1234s_shuffle_idx.npy
loaded indexed file in 0.050 seconds
total number of samples: 113200
total number of epochs: 182
> loading doc-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_test_indexmap_10240ns_1024sl_1234s_doc_idx.npy
> loading sample-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_test_indexmap_10240ns_1024sl_1234s_sample_idx.npy
> loading shuffle-idx mapping from /gpfswork/rech/six/commun/datasets-custom/openwebtext-10k/meg-gpt2_text_document_test_indexmap_10240ns_1024sl_1234s_shuffle_idx.npy
loaded indexed file in 0.023 seconds
total number of samples: 10255
total number of epochs: 672
> finished creating GPT datasets ...
[after dataloaders are built] datetime: 2021-06-10 20:47:54
time (ms) | model-and-optimizer-setup: 2744.35 | train/valid/test-data-iterators-setup: 815.33
done with setup ...
training ...
[before the start of training step] datetime: 2021-06-10 20:47:54
[2021-06-10 20:47:54,339] [INFO] [checkpointing.py:408:forward] Activation Checkpointing Information
[2021-06-10 20:47:54,339] [INFO] [checkpointing.py:409:forward] ----Partition Activations False, CPU CHECKPOINTING False
[2021-06-10 20:47:54,339] [INFO] [checkpointing.py:412:forward] ----contiguous Memory Checkpointing False with 64 total layers
[2021-06-10 20:47:54,339] [INFO] [checkpointing.py:415:forward] ----Synchronization False
[2021-06-10 20:47:54,339] [INFO] [checkpointing.py:416:forward] ----Profiling time in checkpointing False
[Rank 1] (after 1 iterations) memory (MB) | allocated: 12337.45654296875 | max allocated: 19961.072265625 | reserved: 23288.0 | max reserved: 23288.0
[Rank 61] (after 1 iterations) memory (MB) | allocated: 12923.83251953125 | max allocated: 18175.37841796875 | reserved: 19286.0 | max reserved: 19286.0
[Rank 5] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17461.94775390625 | reserved: 20002.0 | max reserved: 20002.0
[Rank 9] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17189.947265625 | reserved: 19824.0 | max reserved: 19824.0
[Rank 17] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16645.9462890625 | reserved: 19216.0 | max reserved: 19216.0
[Rank 13] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16917.94677734375 | reserved: 19456.0 | max reserved: 19456.0
[Rank 25] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16101.9453125 | reserved: 18640.0 | max reserved: 18640.0
[Rank 29] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15829.94482421875 | reserved: 18384.0 | max reserved: 18384.0
[Rank 21] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16373.94580078125 | reserved: 18882.0 | max reserved: 18882.0
[Rank 33] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15557.9443359375 | reserved: 18654.0 | max reserved: 18654.0
[Rank 62] (after 1 iterations) memory (MB) | allocated: 12923.83251953125 | max allocated: 18175.37841796875 | reserved: 19286.0 | max reserved: 19286.0
[Rank 6] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17461.94775390625 | reserved: 20002.0 | max reserved: 20002.0
[Rank 2] (after 1 iterations) memory (MB) | allocated: 12337.45654296875 | max allocated: 19961.072265625 | reserved: 23204.0 | max reserved: 23204.0
[Rank 10] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17189.947265625 | reserved: 19760.0 | max reserved: 19760.0
[Rank 18] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16645.9462890625 | reserved: 19218.0 | max reserved: 19218.0
[Rank 14] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16917.94677734375 | reserved: 19424.0 | max reserved: 19424.0
[Rank 0] (after 1 iterations) memory (MB) | allocated: 12337.45654296875 | max allocated: 19961.072265625 | reserved: 22892.0 | max reserved: 22892.0
iteration 1/ 1000 | consumed samples: 1024 | elapsed time per iteration (ms): 159778.9 | learning rate: 1.875E-05 | global batch size: 1024 | lm-loss: 1.244238E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
[Rank 22] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16373.94580078125 | reserved: 18882.0 | max reserved: 18882.0
[Rank 26] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16101.9453125 | reserved: 19024.0 | max reserved: 19024.0
[Rank 41] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18064.0 | max reserved: 18064.0
[Rank 4] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17461.94775390625 | reserved: 20018.0 | max reserved: 20018.0
[Rank 8] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17189.947265625 | reserved: 19794.0 | max reserved: 19794.0
[Rank 45] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18302.0 | max reserved: 18302.0
[Rank 30] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15829.94482421875 | reserved: 18384.0 | max reserved: 18384.0
[Rank 16] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16645.9462890625 | reserved: 19200.0 | max reserved: 19200.0
[Rank 34] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15557.9443359375 | reserved: 18622.0 | max reserved: 18622.0
[Rank 12] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16917.94677734375 | reserved: 19504.0 | max reserved: 19504.0
[Rank 53] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17182.0 | max reserved: 17182.0
[Rank 49] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17710.0 | max reserved: 17710.0
[Rank 60] (after 1 iterations) memory (MB) | allocated: 12923.83251953125 | max allocated: 18175.37841796875 | reserved: 19286.0 | max reserved: 19286.0
[Rank 24] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16101.9453125 | reserved: 19040.0 | max reserved: 19040.0
[Rank 37] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18304.0 | max reserved: 18304.0
[Rank 57] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 16926.0 | max reserved: 16926.0
[Rank 28] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15829.94482421875 | reserved: 18368.0 | max reserved: 18368.0
[Rank 32] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15557.9443359375 | reserved: 18606.0 | max reserved: 18606.0
[Rank 3] (after 1 iterations) memory (MB) | allocated: 12337.45654296875 | max allocated: 19961.072265625 | reserved: 23270.0 | max reserved: 23270.0
[Rank 7] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17461.94775390625 | reserved: 20002.0 | max reserved: 20002.0
[Rank 11] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 17189.947265625 | reserved: 19744.0 | max reserved: 19744.0
[Rank 63] (after 1 iterations) memory (MB) | allocated: 12923.83251953125 | max allocated: 18175.37841796875 | reserved: 19286.0 | max reserved: 19286.0
[Rank 20] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16373.94580078125 | reserved: 18962.0 | max reserved: 18962.0
[Rank 15] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16917.94677734375 | reserved: 19536.0 | max reserved: 19536.0
[Rank 40] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18480.0 | max reserved: 18480.0
[Rank 44] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17934.0 | max reserved: 17934.0
[Rank 19] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16645.9462890625 | reserved: 19200.0 | max reserved: 19200.0
[Rank 23] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16373.94580078125 | reserved: 18912.0 | max reserved: 18912.0
time (ms)
[Rank 48] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17710.0 | max reserved: 17710.0
[Rank 31] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15829.94482421875 | reserved: 18384.0 | max reserved: 18384.0
[Rank 27] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 16101.9453125 | reserved: 18640.0 | max reserved: 18640.0
[Rank 42] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18304.0 | max reserved: 18304.0
[Rank 35] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15557.9443359375 | reserved: 18654.0 | max reserved: 18654.0
[Rank 56] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17182.0 | max reserved: 17182.0
[Rank 52] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17182.0 | max reserved: 17182.0
[Rank 36] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18494.0 | max reserved: 18494.0
[Rank 39] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18304.0 | max reserved: 18304.0[Rank 38] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18304.0 | max reserved: 18304.0
[Rank 54] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17182.0 | max reserved: 17182.0
[Rank 46] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18222.0 | max reserved: 18222.0
[Rank 43] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18224.0 | max reserved: 18224.0
[Rank 50] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17710.0 | max reserved: 17710.0
[Rank 47] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 18302.0 | max reserved: 18302.0
[Rank 58] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17182.0 | max reserved: 17182.0
[Rank 55] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17182.0 | max reserved: 17182.0
[Rank 51] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17710.0 | max reserved: 17710.0
[Rank 59] (after 1 iterations) memory (MB) | allocated: 10837.39501953125 | max allocated: 15446.84716796875 | reserved: 17182.0 | max reserved: 17182.0
iteration 2/ 1000 | consumed samples: 2048 | elapsed time per iteration (ms): 141096.8 | learning rate: 3.750E-05 | global batch size: 1024 | lm-loss: 1.244502E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 3/ 1000 | consumed samples: 3072 | elapsed time per iteration (ms): 137138.4 | learning rate: 5.625E-05 | global batch size: 1024 | lm-loss: 4.103157E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 4/ 1000 | consumed samples: 4096 | elapsed time per iteration (ms): 138928.9 | learning rate: 7.500E-05 | global batch size: 1024 | lm-loss: 4.305696E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 5/ 1000 | consumed samples: 5120 | elapsed time per iteration (ms): 137805.9 | learning rate: 9.375E-05 | global batch size: 1024 | lm-loss: 3.814122E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 6/ 1000 | consumed samples: 6144 | elapsed time per iteration (ms): 139183.6 | learning rate: 1.125E-04 | global batch size: 1024 | lm-loss: 3.368778E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 7/ 1000 | consumed samples: 7168 | elapsed time per iteration (ms): 138604.6 | learning rate: 1.312E-04 | global batch size: 1024 | lm-loss: 3.123441E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 8/ 1000 | consumed samples: 8192 | elapsed time per iteration (ms): 137448.5 | learning rate: 1.500E-04 | global batch size: 1024 | lm-loss: 2.563856E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 9/ 1000 | consumed samples: 9216 | elapsed time per iteration (ms): 134118.7 | learning rate: 1.500E-04 | global batch size: 1024 | lm-loss: 2.213366E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 10/ 1000 | consumed samples: 10240 | elapsed time per iteration (ms): 136533.1 | learning rate: 1.500E-04 | global batch size: 1024 | lm-loss: 1.981217E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 11/ 1000 | consumed samples: 11264 | elapsed time per iteration (ms): 139544.9 | learning rate: 1.500E-04 | global batch size: 1024 | lm-loss: 1.872394E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 12/ 1000 | consumed samples: 12288 | elapsed time per iteration (ms): 138324.6 | learning rate: 1.500E-04 | global batch size: 1024 | lm-loss: 1.740661E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 13/ 1000 | consumed samples: 13312 | elapsed time per iteration (ms): 134446.2 | learning rate: 1.500E-04 | global batch size: 1024 | lm-loss: 1.575262E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 14/ 1000 | consumed samples: 14336 | elapsed time per iteration (ms): 137764.0 | learning rate: 1.500E-04 | global batch size: 1024 | lm-loss: 1.397998E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 15/ 1000 | consumed samples: 15360 | elapsed time per iteration (ms): 137041.8 | learning rate: 1.500E-04 | global batch size: 1024 | lm-loss: 1.245603E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 16/ 1000 | consumed samples: 16384 | elapsed time per iteration (ms): 139143.0 | learning rate: 1.500E-04 | global batch size: 1024 | lm-loss: 1.082751E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 17/ 1000 | consumed samples: 17408 | elapsed time per iteration (ms): 139118.9 | learning rate: 1.500E-04 | global batch size: 1024 | lm-loss: 1.204085E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 18/ 1000 | consumed samples: 18432 | elapsed time per iteration (ms): 138928.4 | learning rate: 1.499E-04 | global batch size: 1024 | lm-loss: 1.150506E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 19/ 1000 | consumed samples: 19456 | elapsed time per iteration (ms): 139037.8 | learning rate: 1.499E-04 | global batch size: 1024 | lm-loss: 1.115988E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 20/ 1000 | consumed samples: 20480 | elapsed time per iteration (ms): 138096.1 | learning rate: 1.499E-04 | global batch size: 1024 | lm-loss: 9.714051E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 21/ 1000 | consumed samples: 21504 | elapsed time per iteration (ms): 139033.1 | learning rate: 1.499E-04 | global batch size: 1024 | lm-loss: 9.586049E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 22/ 1000 | consumed samples: 22528 | elapsed time per iteration (ms): 136872.8 | learning rate: 1.499E-04 | global batch size: 1024 | lm-loss: 9.537881E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 23/ 1000 | consumed samples: 23552 | elapsed time per iteration (ms): 137788.2 | learning rate: 1.499E-04 | global batch size: 1024 | lm-loss: 9.239707E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 24/ 1000 | consumed samples: 24576 | elapsed time per iteration (ms): 137068.7 | learning rate: 1.499E-04 | global batch size: 1024 | lm-loss: 8.807950E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 25/ 1000 | consumed samples: 25600 | elapsed time per iteration (ms): 139326.6 | learning rate: 1.498E-04 | global batch size: 1024 | lm-loss: 9.411034E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 26/ 1000 | consumed samples: 26624 | elapsed time per iteration (ms): 138753.7 | learning rate: 1.498E-04 | global batch size: 1024 | lm-loss: 1.019738E+01 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 27/ 1000 | consumed samples: 27648 | elapsed time per iteration (ms): 135832.6 | learning rate: 1.498E-04 | global batch size: 1024 | lm-loss: 8.967265E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 28/ 1000 | consumed samples: 28672 | elapsed time per iteration (ms): 137159.8 | learning rate: 1.498E-04 | global batch size: 1024 | lm-loss: 8.756670E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 29/ 1000 | consumed samples: 29696 | elapsed time per iteration (ms): 135068.0 | learning rate: 1.498E-04 | global batch size: 1024 | lm-loss: 8.835566E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 30/ 1000 | consumed samples: 30720 | elapsed time per iteration (ms): 135619.2 | learning rate: 1.497E-04 | global batch size: 1024 | lm-loss: 8.811040E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 31/ 1000 | consumed samples: 31744 | elapsed time per iteration (ms): 137837.0 | learning rate: 1.497E-04 | global batch size: 1024 | lm-loss: 8.659844E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 32/ 1000 | consumed samples: 32768 | elapsed time per iteration (ms): 135370.3 | learning rate: 1.497E-04 | global batch size: 1024 | lm-loss: 8.494865E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 33/ 1000 | consumed samples: 33792 | elapsed time per iteration (ms): 132840.5 | learning rate: 1.497E-04 | global batch size: 1024 | lm-loss: 8.415603E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 34/ 1000 | consumed samples: 34816 | elapsed time per iteration (ms): 135995.0 | learning rate: 1.496E-04 | global batch size: 1024 | lm-loss: 8.276673E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 35/ 1000 | consumed samples: 35840 | elapsed time per iteration (ms): 130121.0 | learning rate: 1.496E-04 | global batch size: 1024 | lm-loss: 8.076686E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 36/ 1000 | consumed samples: 36864 | elapsed time per iteration (ms): 134088.0 | learning rate: 1.496E-04 | global batch size: 1024 | lm-loss: 7.927558E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 37/ 1000 | consumed samples: 37888 | elapsed time per iteration (ms): 132751.8 | learning rate: 1.495E-04 | global batch size: 1024 | lm-loss: 8.049387E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 38/ 1000 | consumed samples: 38912 | elapsed time per iteration (ms): 137618.8 | learning rate: 1.495E-04 | global batch size: 1024 | lm-loss: 8.101182E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 39/ 1000 | consumed samples: 39936 | elapsed time per iteration (ms): 136129.3 | learning rate: 1.495E-04 | global batch size: 1024 | lm-loss: 8.031030E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 40/ 1000 | consumed samples: 40960 | elapsed time per iteration (ms): 125643.3 | learning rate: 1.494E-04 | global batch size: 1024 | lm-loss: 8.032815E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 41/ 1000 | consumed samples: 41984 | elapsed time per iteration (ms): 137845.6 | learning rate: 1.494E-04 | global batch size: 1024 | lm-loss: 8.030648E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 42/ 1000 | consumed samples: 43008 | elapsed time per iteration (ms): 136653.4 | learning rate: 1.494E-04 | global batch size: 1024 | lm-loss: 7.932028E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 43/ 1000 | consumed samples: 44032 | elapsed time per iteration (ms): 133720.0 | learning rate: 1.493E-04 | global batch size: 1024 | lm-loss: 7.879141E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 44/ 1000 | consumed samples: 45056 | elapsed time per iteration (ms): 134441.1 | learning rate: 1.493E-04 | global batch size: 1024 | lm-loss: 7.791877E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 45/ 1000 | consumed samples: 46080 | elapsed time per iteration (ms): 137502.0 | learning rate: 1.492E-04 | global batch size: 1024 | lm-loss: 7.738390E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 46/ 1000 | consumed samples: 47104 | elapsed time per iteration (ms): 131717.1 | learning rate: 1.492E-04 | global batch size: 1024 | lm-loss: 7.792564E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 47/ 1000 | consumed samples: 48128 | elapsed time per iteration (ms): 134668.9 | learning rate: 1.492E-04 | global batch size: 1024 | lm-loss: 7.803430E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 48/ 1000 | consumed samples: 49152 | elapsed time per iteration (ms): 134516.4 | learning rate: 1.491E-04 | global batch size: 1024 | lm-loss: 7.790527E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
iteration 49/ 1000 | consumed samples: 50176 | elapsed time per iteration (ms): 136328.8 | learning rate: 1.491E-04 | global batch size: 1024 | lm-loss: 7.747273E+00 | loss scale: -1.0 | grad norm: 0.000 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
time (ms)
|