File size: 7,455 Bytes
d1396f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
#!/bin/bash
#SBATCH --job-name=meg_ds_zero_gpt2_perf_n16
#SBATCH --constraint=v100-32g
#SBATCH --nodes=16
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
#SBATCH --cpus-per-task=40 # number of cores per tasks
#SBATCH --hint=nomultithread # we get physical cores not logical
#SBATCH --gres=gpu:4 # number of gpus
#SBATCH --time 00:10:00 # maximum execution time (HH:MM:SS)
#SBATCH --output=%x-%j.out # output file name
#SBATCH --error=%x-%j.out # error file name (same to watch just one file)
#SBATCH --account=six@gpu
set -x -e
source $six_ALL_CCFRWORK/start-prod
nvidia-smi
cd $six_ALL_CCFRWORK/code/DeepSpeedExamples/Megatron-LM-v1.1.5-ZeRO3
CHECKPOINT_PATH=$six_ALL_CCFRWORK/models-custom/megatron-gpt2/megatron_lm_345m_v0.0/release
VOCAB_FILE=$CHECKPOINT_PATH/gpt2-vocab.json
MERGE_FILE=$CHECKPOINT_PATH/gpt2-merges.txt
DATA_PATH=$six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/meg-gpt2_text_document
SAVE_CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/gpt2-meg-ds
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
MASTER_PORT=6000
# adjust depending on the number of the nodes
NNODES=16
PP_SIZE=16 # NLAYERS must be a multiple of PP_SIZE here
MICRO_BATCH_SIZE=48 # works at 48, OOMs at 64
# succeeded:
#MSIZE=30 # @ mbs 16 # gpu ~17gb, cpu 5gb res per gpu, 20TFlops
MSIZE=52 # @ mbs 48 gpu ~30gb, cpu 5gb res per gpu, 43TFlops
# to try:
if [[ ${MSIZE} == 7 ]]; then NHIDDEN=4096; NLAYERS=36
elif [[ ${MSIZE} == 14 ]]; then NHIDDEN=6144; NLAYERS=32
elif [[ ${MSIZE} == 18 ]]; then NHIDDEN=6144; NLAYERS=40
elif [[ ${MSIZE} == 25 ]]; then NHIDDEN=7168; NLAYERS=40
elif [[ ${MSIZE} == 30 ]]; then NHIDDEN=7168; NLAYERS=48
elif [[ ${MSIZE} == 39 ]]; then NHIDDEN=8192; NLAYERS=48
elif [[ ${MSIZE} == 52 ]]; then NHIDDEN=8192; NLAYERS=64
elif [[ ${MSIZE} == 65 ]]; then NHIDDEN=9216; NLAYERS=64
elif [[ ${MSIZE} == 81 ]]; then NHIDDEN=10240; NLAYERS=64
elif [[ ${MSIZE} == 97 ]]; then NHIDDEN=11264; NLAYERS=64
elif [[ ${MSIZE} == 116 ]]; then NHIDDEN=12288; NLAYERS=64
elif [[ ${MSIZE} == 136 ]]; then NHIDDEN=13312; NLAYERS=64
elif [[ ${MSIZE} == 158 ]]; then NHIDDEN=14336; NLAYERS=64
elif [[ ${MSIZE} == 181 ]]; then NHIDDEN=15360; NLAYERS=64
elif [[ ${MSIZE} == 206 ]]; then NHIDDEN=16384; NLAYERS=64
else echo "invalid MSIZE: $MSIZE"
fi
GPUS_PER_NODE=4
NHEADS=32
SEQ_LEN=1024
VOCAB_SIZE=50257
TP_SIZE=4 # always fixed to the size of a single node
# Here TP takes over each nodes so DP sees only 16 "gpus"
# So total batch size is MICRO_BATCH_SIZE*NNODES
GPT_ARGS=" \
--num-layers $NLAYERS \
--hidden-size $NHIDDEN \
--num-attention-heads $NHEADS \
--seq-length $SEQ_LEN \
--max-position-embeddings $SEQ_LEN \
--batch-size $MICRO_BATCH_SIZE \
--train-iters 1000 \
--lr-decay-iters 800 \
--vocab-file $VOCAB_FILE \
--merge-file $MERGE_FILE \
--lr 1.5e-4 \
--lr-decay-style cosine \
--min-lr 1.0e-5 \
--weight-decay 1e-2 \
--clip-grad 1.0 \
--warmup 0.01 \
--fp16 \
"
OUTPUT_ARGS=" \
--log-interval 1 \
--save-interval 500 \
--eval-interval 100 \
--eval-iters 10 \
"
#ZeRO Configs
gradient_accumulation_steps=1
reduce_bucket_size=$(($NHIDDEN*$NHIDDEN))
stage3_prefetch_bucket_size=$(($NHIDDEN*$NHIDDEN*9/10))
stage3_param_persistence_threshold=$((10*$NHIDDEN))
# Here it is different from the other setup
# not using this anymore
#train_batch_size=$(($WORLD_SIZE*$MICRO_BATCH_SIZE*$gradient_accumulation_steps))
config_json="./ds_zero_stage_3_config.json"
# "": $train_batch_size,
cat <<EOT > $config_json
{
"train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE,
"gradient_accumulation_steps": $gradient_accumulation_steps,
"steps_per_print": 10,
"zero_optimization": {
"stage": 3,
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_prefetch_bucket_size": $stage3_prefetch_bucket_size,
"stage3_param_persitence_threshold": $stage3_param_persistence_threshold,
"reduce_bucket_size": $reduce_bucket_size,
"contiguous_gradients": true
},
"gradient_clipping": 1.0,
"fp16": {
"enabled": true,
"loss_scale": 0,
"initial_scale_power": 10,
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1
},
"wall_clock_breakdown": false,
"zero_allow_untested_optimizer": false
}
EOT
MP_SIZE=$TP_SIZE
stage=3
reduce_scatter=true
contigious_gradients=true
rbs=50000000
agbs=5000000000
#Activation Checkpointing and Contigious Memory
chkp_layers=1
PA=true
PA_CPU=true
CC=true
SYNCHRONIZE=true
PROFILE=false
# TiledLinear splits, "true" to enable
TILED_LINEAR="false"
TILE_DIM=1
DEEPSPEED_ARGS=" \
--deepspeed \
--deepspeed_config ${config_json} \
--zero-stage ${stage} \
--zero-reduce-bucket-size ${rbs} \
--zero-allgather-bucket-size ${agbs} \
"
if [ "${contigious_gradients}" = "true" ]; then
DEEPSPEED_ARGS="${DEEPSPEED_ARGS} \
--zero-contigious-gradients"
fi
if [ "${reduce_scatter}" = "true" ]; then
DEEPSPEED_ARGS="${DEEPSPEED_ARGS} \
--zero-reduce-scatter"
fi
CHKP_ARGS=" \
--checkpoint-activations \
--deepspeed-activation-checkpointing \
--checkpoint-num-layers ${chkp_layers}"
if [ "${PA}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} --partition-activations"
fi
if [ "${PA_CPU}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} \
--checkpoint-in-cpu"
fi
if [ "${SYNCHRONIZE}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} \
--synchronize-each-layer"
fi
if [ "${CC}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} \
--contigious-checkpointing"
fi
if [ "${PROFILE}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} \
--profile-backward"
fi
if [ "${TILED_LINEAR}" = "true" ]; then
tile_opt="${tile_opt} \
--memory-centric-tiled-linear \
--tile-factor=${TILE_DIM}"
fi
export LAUNCHER="python -u -m torch.distributed.launch \
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
"
# --tensor-model-parallel-size $TP_SIZE \
# --pipeline-model-parallel-size $PP_SIZE \
export CMD=" \
`pwd`/pretrain_gpt2.py \
--model-parallel-size $TP_SIZE \
$GPT_ARGS \
$OUTPUT_ARGS \
--save $SAVE_CHECKPOINT_PATH \
--load $SAVE_CHECKPOINT_PATH \
--data-path $DATA_PATH \
--data-impl mmap \
--split 949,50,1 \
--distributed-backend nccl \
$DEEPSPEED_ARGS \
$CHKP_ARGS \
"
# clear old checkpoint as it'd mismatch while we sort things out
rm -rf $six_ALL_CCFRWORK/checkpoints/gpt2-meg-ds
# model size
python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l * (12*h**2 + 13*h) + (v * h) + (s * h) ) / 10**9 :.0f}B')"
echo $CMD
# to debug - add echo (it exits and prints what it would have launched)
clear; srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee meg_ds_zero_gpt2_perf_n16.out
# iteration 2/ 1000 | elapsed time per iteration (ms): 122204.8 | learning rate: 3.750E-05 | lm loss: 1.251770E+01 | loss scale: 1024.0 | number of skipped iterations: 0 | number of nan iterations: 0 |
# time (ms) | forward: 34007.93 | backward: 87798.87 | backward-backward: 87798.82 | backward-allreduce: 0.00 | optimizer: 393.85 | batch generator: 3.51
# Effective Tera Flops per GPU: 41.83 and total parameters 52.005 B
|