File size: 7,455 Bytes
d1396f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#!/bin/bash
#SBATCH --job-name=meg_ds_zero_gpt2_perf_n16
#SBATCH --constraint=v100-32g
#SBATCH --nodes=16
#SBATCH --ntasks-per-node=1          # crucial - only 1 task per dist per node!
#SBATCH --cpus-per-task=40           # number of cores per tasks
#SBATCH --hint=nomultithread         # we get physical cores not logical
#SBATCH --gres=gpu:4                 # number of gpus
#SBATCH --time 00:10:00              # maximum execution time (HH:MM:SS)
#SBATCH --output=%x-%j.out           # output file name
#SBATCH --error=%x-%j.out            # error file name (same to watch just one file)
#SBATCH --account=six@gpu

set -x -e

source $six_ALL_CCFRWORK/start-prod

nvidia-smi


cd $six_ALL_CCFRWORK/code/DeepSpeedExamples/Megatron-LM-v1.1.5-ZeRO3

CHECKPOINT_PATH=$six_ALL_CCFRWORK/models-custom/megatron-gpt2/megatron_lm_345m_v0.0/release
VOCAB_FILE=$CHECKPOINT_PATH/gpt2-vocab.json
MERGE_FILE=$CHECKPOINT_PATH/gpt2-merges.txt
DATA_PATH=$six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/meg-gpt2_text_document
SAVE_CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/gpt2-meg-ds

MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
MASTER_PORT=6000

# adjust depending on the number of the nodes

NNODES=16
PP_SIZE=16 # NLAYERS must be a multiple of PP_SIZE here
MICRO_BATCH_SIZE=48 # works at 48, OOMs at 64

# succeeded:
#MSIZE=30 # @ mbs 16 # gpu ~17gb, cpu 5gb res per gpu, 20TFlops
MSIZE=52 # @ mbs 48 gpu ~30gb, cpu 5gb res per gpu, 43TFlops

# to try:


if   [[ ${MSIZE} == 7 ]];    then NHIDDEN=4096;  NLAYERS=36
elif [[ ${MSIZE} == 14 ]];   then NHIDDEN=6144;  NLAYERS=32
elif [[ ${MSIZE} == 18 ]];   then NHIDDEN=6144;  NLAYERS=40
elif [[ ${MSIZE} == 25 ]];   then NHIDDEN=7168;  NLAYERS=40
elif [[ ${MSIZE} == 30 ]];   then NHIDDEN=7168;  NLAYERS=48
elif [[ ${MSIZE} == 39 ]];   then NHIDDEN=8192;  NLAYERS=48
elif [[ ${MSIZE} == 52 ]];   then NHIDDEN=8192;  NLAYERS=64
elif [[ ${MSIZE} == 65 ]];   then NHIDDEN=9216;  NLAYERS=64
elif [[ ${MSIZE} == 81 ]];   then NHIDDEN=10240; NLAYERS=64
elif [[ ${MSIZE} == 97 ]];   then NHIDDEN=11264; NLAYERS=64
elif [[ ${MSIZE} == 116 ]];  then NHIDDEN=12288; NLAYERS=64
elif [[ ${MSIZE} == 136 ]];  then NHIDDEN=13312; NLAYERS=64
elif [[ ${MSIZE} == 158 ]];  then NHIDDEN=14336; NLAYERS=64
elif [[ ${MSIZE} == 181 ]];  then NHIDDEN=15360; NLAYERS=64
elif [[ ${MSIZE} == 206 ]];  then NHIDDEN=16384; NLAYERS=64
else echo "invalid MSIZE: $MSIZE"
fi


GPUS_PER_NODE=4
NHEADS=32
SEQ_LEN=1024
VOCAB_SIZE=50257

TP_SIZE=4 # always fixed to the size of a single node

# Here TP takes over each nodes so DP sees only 16 "gpus"
# So total batch size is MICRO_BATCH_SIZE*NNODES

GPT_ARGS=" \
    --num-layers $NLAYERS \
    --hidden-size $NHIDDEN \
    --num-attention-heads $NHEADS \
    --seq-length $SEQ_LEN \
    --max-position-embeddings $SEQ_LEN \
    --batch-size $MICRO_BATCH_SIZE \
    --train-iters 1000 \
    --lr-decay-iters 800 \
    --vocab-file $VOCAB_FILE \
    --merge-file $MERGE_FILE \
    --lr 1.5e-4 \
    --lr-decay-style cosine \
    --min-lr 1.0e-5 \
    --weight-decay 1e-2 \
    --clip-grad 1.0 \
    --warmup 0.01 \
    --fp16 \
    "

OUTPUT_ARGS=" \
    --log-interval 1 \
    --save-interval 500 \
    --eval-interval 100 \
    --eval-iters 10 \
    "

#ZeRO Configs
gradient_accumulation_steps=1
reduce_bucket_size=$(($NHIDDEN*$NHIDDEN))
stage3_prefetch_bucket_size=$(($NHIDDEN*$NHIDDEN*9/10))
stage3_param_persistence_threshold=$((10*$NHIDDEN))

# Here it is different from the other setup
# not using this anymore
#train_batch_size=$(($WORLD_SIZE*$MICRO_BATCH_SIZE*$gradient_accumulation_steps))

config_json="./ds_zero_stage_3_config.json"

#  "": $train_batch_size,

cat <<EOT > $config_json
{
  "train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE,
  "gradient_accumulation_steps": $gradient_accumulation_steps,
  "steps_per_print": 10,
  "zero_optimization": {
    "stage": 3,
    "stage3_max_live_parameters": 1e9,
    "stage3_max_reuse_distance": 1e9,
    "stage3_prefetch_bucket_size": $stage3_prefetch_bucket_size,
    "stage3_param_persitence_threshold": $stage3_param_persistence_threshold,
    "reduce_bucket_size": $reduce_bucket_size,
    "contiguous_gradients": true
  },
  "gradient_clipping": 1.0,
  "fp16": {
    "enabled": true,
    "loss_scale": 0,
    "initial_scale_power": 10,
    "loss_scale_window": 1000,
    "hysteresis": 2,
    "min_loss_scale": 1
  },
  "wall_clock_breakdown": false,
  "zero_allow_untested_optimizer": false
}
EOT

MP_SIZE=$TP_SIZE

stage=3
reduce_scatter=true
contigious_gradients=true
rbs=50000000
agbs=5000000000

#Activation Checkpointing and Contigious Memory
chkp_layers=1
PA=true
PA_CPU=true
CC=true
SYNCHRONIZE=true
PROFILE=false

# TiledLinear splits, "true" to enable
TILED_LINEAR="false"
TILE_DIM=1


DEEPSPEED_ARGS=" \
    --deepspeed \
    --deepspeed_config ${config_json} \
    --zero-stage ${stage} \
    --zero-reduce-bucket-size ${rbs} \
    --zero-allgather-bucket-size ${agbs} \
    "

if [ "${contigious_gradients}" = "true" ]; then
DEEPSPEED_ARGS="${DEEPSPEED_ARGS} \
    --zero-contigious-gradients"
fi

if [ "${reduce_scatter}" = "true" ]; then
DEEPSPEED_ARGS="${DEEPSPEED_ARGS} \
    --zero-reduce-scatter"
fi

CHKP_ARGS=" \
--checkpoint-activations \
--deepspeed-activation-checkpointing \
--checkpoint-num-layers ${chkp_layers}"

if [ "${PA}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} --partition-activations"
fi

if [ "${PA_CPU}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} \
        --checkpoint-in-cpu"
fi

if [ "${SYNCHRONIZE}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} \
        --synchronize-each-layer"
fi

if [ "${CC}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} \
        --contigious-checkpointing"
fi

if [ "${PROFILE}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} \
        --profile-backward"
fi

if [ "${TILED_LINEAR}" = "true" ]; then
tile_opt="${tile_opt} \
        --memory-centric-tiled-linear \
        --tile-factor=${TILE_DIM}"
fi

export LAUNCHER="python -u -m torch.distributed.launch \
    --nproc_per_node $GPUS_PER_NODE \
    --nnodes $NNODES \
    --master_addr $MASTER_ADDR \
    --master_port $MASTER_PORT \
    "

#    --tensor-model-parallel-size $TP_SIZE \
#    --pipeline-model-parallel-size $PP_SIZE \
export CMD=" \
    `pwd`/pretrain_gpt2.py \
    --model-parallel-size $TP_SIZE \
    $GPT_ARGS \
    $OUTPUT_ARGS \
    --save $SAVE_CHECKPOINT_PATH \
    --load $SAVE_CHECKPOINT_PATH \
    --data-path $DATA_PATH \
    --data-impl mmap \
    --split 949,50,1 \
    --distributed-backend nccl \
     $DEEPSPEED_ARGS \
     $CHKP_ARGS \
    "


# clear old checkpoint as it'd mismatch while we sort things out
rm -rf $six_ALL_CCFRWORK/checkpoints/gpt2-meg-ds

# model size
python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l * (12*h**2 + 13*h) + (v * h) + (s * h) ) / 10**9 :.0f}B')"

echo $CMD

# to debug - add echo (it exits and prints what it would have launched)
clear; srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee meg_ds_zero_gpt2_perf_n16.out


#  iteration        2/    1000 | elapsed time per iteration (ms): 122204.8 | learning rate: 3.750E-05 | lm loss: 1.251770E+01 | loss scale: 1024.0 | number of skipped iterations:   0 | number of nan iterations:   0 |
# time (ms) | forward: 34007.93 | backward: 87798.87 | backward-backward: 87798.82 | backward-allreduce: 0.00 | optimizer: 393.85 | batch generator: 3.51
# Effective Tera Flops per GPU: 41.83 and total parameters 52.005 B