File size: 10,824 Bytes
370453e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
# GPT2 Comparisons on EnWiki
This is a back up copy of the work in progress notes when it was started using Enwiki.
It's currently not being kept up-to-date
For now we moved to openwebtext so the main README.md doc is now using that.
## SLURM
1 nodes / 4 gpus:
```
srun --pty --nodes=1 --ntasks=4 --cpus-per-task=10 --gres=gpu:4 --hint=nomultithread --time=60 bash
```
## Data
### Enwiki
data prep https://github.com/NVIDIA/Megatron-LM#collecting-wikipedia-training-data
Megatron-LM's training is based on enwiki
huge dataset - but it's not needed for sample run, see short sample below
```
wget https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
pip install git+https://github.com/attardi/wikiextractor
wikiextractor --json enwiki-latest-pages-articles.xml.bz2
```
short sample
```
cd data
wget https://dumps.wikimedia.org/enwiki/20210501/enwiki-20210501-pages-articles-multistream1.xml-p1p41242.bz2
wikiextractor --json enwiki-20210501-pages-articles-multistream1.xml-p1p41242.bz2
mv text text-short
cd -
python tools/preprocess_data.py \
--input data/text-short/AD/wiki_29 \
--output-prefix my-gpt2 \
--vocab data/gpt2-vocab.json \
--dataset-impl mmap \
--tokenizer-type GPT2BPETokenizer \
--merge-file data/gpt2-merges.txt \
--append-eod
```
### OpenWebText
Using OpenWebText https://huggingface.co/datasets/openwebtext
```
from datasets import load_dataset
dataset = load_dataset("openwebtext", split='train')
dataset = load_dataset("stas/openwebtext-10k", split='train')
```
Ready datasets:
1. HF datasets use:
* `openwebtext` - 8M records `--dataset_name "openwebtext"`
* `stas/openwebtext-10k` - 10K records `--dataset_name "stas/openwebtext-10k"`
2. Jsonlines (derived):
* `$six_ALL_CCFRWORK/datasets-custom/openwebtext/openwebtext.jsonl`
* `$six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/openwebtext-10k.jsonl`
3. Megatron-preprocessed datasets (derived):
* `$six_ALL_CCFRWORK/datasets-custom/openwebtext/meg-gpt2_*` (still churning)
* `$six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/meg-gpt2_*`
#### How the above was done
To convert to jsonlines for Megatron
run on a beefy cpu instance (but firewalled), e.g.:
```
srun --pty --nodes=1 --ntasks=4 --cpus-per-task=10 --gres=gpu:0 --hint=nomultithread --time=60 bash
```
small
```
mkdir -p $six_ALL_CCFRWORK/datasets-custom/openwebtext-10k
cd $six_ALL_CCFRWORK/datasets-custom/openwebtext-10k
$six_ALL_CCFRWORK/code/bigscience/data/megatron/openwebtext-to-jsonl.py -10k
```
full (needs lots or RAM)
```
mkdir -p $six_ALL_CCFRWORK/datasets-custom/openwebtext
cd $six_ALL_CCFRWORK/datasets-custom/openwebtext
HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 $six_ALL_CCFRWORK/code/bigscience/data/megatron/openwebtext-to-jsonl.py
```
To prep for megatron 10k-sample
```
cd $six_ALL_CCFRWORK/code/megatron-lm
python tools/preprocess_data.py \
--input $six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/openwebtext-10k.jsonl \
--output-prefix $six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/meg-gpt2 \
--vocab data/gpt2-vocab.json \
--dataset-impl mmap \
--tokenizer-type GPT2BPETokenizer \
--merge-file data/gpt2-merges.txt \
--append-eod
```
To prep for megatron full dataset
```
cd $six_ALL_CCFRWORK/code/megatron-lm
python tools/preprocess_data.py \
--input $six_ALL_CCFRWORK/datasets-custom/openwebtext/openwebtext.jsonl \
--output-prefix $six_ALL_CCFRWORK/datasets-custom/openwebtext/meg-gpt2 \
--vocab data/gpt2-vocab.json \
--dataset-impl mmap \
--tokenizer-type GPT2BPETokenizer \
--merge-file data/gpt2-merges.txt \
--append-eod
```
as it should take about 11h to convert use `gpt2/jsonl-to-meg.slurm` job to complete it
## Model
### HF transformers model prep
prep HF model - it's not avaliable on the hub
1. Download nvidia checkpoint:
```
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_lm_345m/versions/v0.0/zip -O megatron_lm_345m_v0.0.zip
```
2. Convert:
```
python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py megatron_lm_345m_v0.0.zip
```
3. Fetch missing files
```
git clone https://huggingface.co/nvidia/megatron-gpt2-345m/
```
4. Move the converted files into the cloned model dir
```
mv config.json pytorch_model.bin megatron-gpt2-345m/
```
5. megatron-gpt2-345m dir should now have all the files which can be passed as `--model_name_or_path megatron-gpt2-345m`
XXX: may be will use some small samples for testing - need .txt and .json for megatron-lm
```
#--train_file {data_dir}/sample_text.txt \
#--validation_file {data_dir}/sample_text.txt \
```
## Training
### Megatron-LM
running native https://github.com/NVIDIA/Megatron-LM
### finetuning on a single GPU
adding --finetune to work with existing checkpoint
```
CHECKPOINT_PATH=checkpoints/megatron_lm_345m_v0.0/release
SAVE_CHECKPOINT_PATH=data/checkpoints
VOCAB_FILE=data/gpt2-vocab.json
MERGE_FILE=data/gpt2-merges.txt
DATA_PATH=my-gpt2_text_document
# --train-samples 200 \
# --lr-decay-samples 150 \
# --train-iters 100000 \
# --lr-decay-iters 320000 \
GPT_ARGS="--num-layers 24 \
--hidden-size 1024 \
--num-attention-heads 16 \
--seq-length 1024 \
--max-position-embeddings 1024 \
--micro-batch-size 4 \
--global-batch-size 8 \
--lr 0.00015 \
--lr-decay-style cosine \
--vocab-file $VOCAB_FILE \
--merge-file $MERGE_FILE \
--lr-warmup-fraction .01 \
--finetune \
--train-iters 1000 \
--lr-decay-iters 800 \
--fp16"
OUTPUT_ARGS="--log-interval 10 \
--save-interval 500 \
--eval-interval 100 \
--eval-iters 10 \
--checkpoint-activations"
python pretrain_gpt.py \
$GPT_ARGS \
$OUTPUT_ARGS \
--save $SAVE_CHECKPOINT_PATH \
--load $CHECKPOINT_PATH \
--data-path $DATA_PATH
```
### finetune distributed with MP
```
OUTPUT_ARGS="--log-interval 10 \
--save-interval 500 \
--eval-interval 100 \
--eval-iters 10 \
--checkpoint-activations"
VOCAB_FILE=data/gpt2-vocab.json
MERGE_FILE=data/gpt2-merges.txt
DATA_PATH=my-gpt2_text_document
CHECKPOINT_PATH=checkpoints/megatron_lm_345m_v0.0/release
SAVE_CHECKPOINT_PATH=data/checkpoints
GPUS_PER_NODE=4
NNODES=1
#Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT"
# --train-iters 100000 \
# --lr-decay-iters 320000 \
python -m torch.distributed.launch \
$DISTRIBUTED_ARGS \
pretrain_gpt.py \
--tensor-model-parallel-size 2 \
--pipeline-model-parallel-size 2 \
--num-layers 24 \
--hidden-size 1024 \
--num-attention-heads 16 \
--micro-batch-size 4 \
--global-batch-size 16 \
--seq-length 1024 \
--max-position-embeddings 1024 \
--save $SAVE_CHECKPOINT_PATH \
--load $CHECKPOINT_PATH \
--data-path $DATA_PATH \
--vocab-file $VOCAB_FILE \
--merge-file $MERGE_FILE \
--data-impl mmap \
--split 949,50,1 \
--distributed-backend nccl \
--lr 0.00015 \
--lr-decay-style cosine \
--min-lr 1.0e-5 \
--weight-decay 1e-2 \
--clip-grad 1.0 \
--lr-warmup-fraction .01 \
$OUTPUT_ARGS \
--train-samples 5000 \
--lr-decay-samples 4000 \
--finetune \
--fp16
```
### stats ###
```
16gb v100:
nodes=1, gpus=4 => 560 ms / iteration
nodes=1, gpus=1 => 628 ms / iteration
```
### Megatron-LM+Deepspeed: w/ deepspeed Pipeline
This is the version with Deepspeed's pipeline
https://github.com/microsoft/DeepSpeedExamples/blob/master/Megatron-LM-v1.1.5-3D_parallelism/examples/ds_pretrain_gpt2_pipe.sh
### Megatron-LM+Deepspeed: w/ deepspeed zero3/inf
This is the version with Deepspeed's Zero3/inf
https://github.com/microsoft/DeepSpeedExamples/blob/master/Megatron-LM-v1.1.5-ZeRO3/examples/ds_pretrain_gpt2-zero3.sh
### HF transformers distributed
Have to run once on a non-gpu instance which has network to retrieve the model and data files and get those cached.
```
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
```
```
MODEL=$WORK/hf/megatron-lm/checkpoints/megatron-gpt2-345m
DATASET1=" \
--dataset_name wikitext \
--dataset_config_name wikitext-2-raw-v1"
DATASET=" \
--dataset_name openwebtext"
```
first run on networked instance to get the dataset et, al.
```
PYTHONPATH="src" \
examples/pytorch/language-modeling/run_clm.py \
--model_name_or_path $MODEL \
$DATASET \
--output_dir output_dir \
--overwrite_output_dir \
--do_train \
--do_eval \
--max_train_samples 160 \
--max_eval_samples 160 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--num_train_epochs 1 \
--warmup_steps 8 \
--block_size 64 \
--report_to none
```
2nd run on gpu instance w/o network
```
PYTHONPATH="src" \
HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 \
python -m torch.distributed.launch --nproc_per_node=4 \
examples/pytorch/language-modeling/run_clm.py \
--model_name_or_path $MODEL \
$DATASET \
--output_dir output_dir \
--overwrite_output_dir \
--do_train \
--do_eval \
--max_train_samples 160 \
--max_eval_samples 160 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--num_train_epochs 1 \
--warmup_steps 8 \
--block_size 64 \
--fp16 \
--report_to none
```
### HF transformers + Deepspeed
probably should test zero2 and zero3
```
PYTHONPATH="src" \
HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 \
deepspeed --num_nodes 1 --num_gpus 4 \
examples/pytorch/language-modeling/run_clm.py \
--model_name_or_path $WORK/hf/megatron-lm/checkpoints/megatron-gpt2-345m \
--dataset_name wikitext \
--dataset_config_name wikitext-2-raw-v1 \
--output_dir output_dir \
--overwrite_output_dir \
--do_train \
--do_eval \
--max_train_samples 160 \
--max_eval_samples 160 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--num_train_epochs 1 \
--warmup_steps 8 \
--block_size 64 \
--fp16 \
--report_to none \
--deepspeed tests/deepspeed/ds_config_zero3.json
```
|