File size: 20,587 Bytes
370453e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 |
# GPT2 Comparisons
## SLURM
1 nodes / 4 gpus:
```
srun --pty --nodes=1 --ntasks=4 --cpus-per-task=10 --gres=gpu:4 --hint=nomultithread --time=60 bash
```
For multi-node versions of these scripts please see `$six_ALL_CCFRWORK/code/bigscience/jz/slurm`.
## Data
Using OpenWebText https://huggingface.co/datasets/openwebtext
```
from datasets import load_dataset
dataset = load_dataset("openwebtext", split='train')
dataset = load_dataset("stas/openwebtext-10k", split='train')
```
Ready datasets:
1. HF datasets use:
* `openwebtext` - 8M records `--dataset_name "openwebtext"`
* `stas/openwebtext-10k` - 10K records `--dataset_name "stas/openwebtext-10k"`
2. Jsonlines (derived):
* `$six_ALL_CCFRWORK/datasets-custom/openwebtext/openwebtext.jsonl`
* `$six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/openwebtext-10k.jsonl`
3. Megatron-preprocessed datasets (derived):
* `$six_ALL_CCFRWORK/datasets-custom/openwebtext/meg-gpt2_text_document.*`
* `$six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/meg-gpt2_text_document.*`
#### How the above was done
To convert to jsonlines for Megatron
run on a beefy cpu instance (but firewalled), e.g.:
```
srun --pty --nodes=1 --ntasks=1 --cpus-per-task=32 --gres=gpu:0 --hint=nomultithread --time=60 bash --rcfile $six_ALL_CCFRWORK/start-prod
```
Get vocabs:
```
cd $six_ALL_CCFRWORK/datasets-custom/vocabs
wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json
wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt
```
small
```
mkdir -p $six_ALL_CCFRWORK/datasets-custom/openwebtext-10k
cd $six_ALL_CCFRWORK/datasets-custom/openwebtext-10k
$six_ALL_CCFRWORK/code/bigscience/data/megatron/openwebtext-to-jsonl.py -10k
```
full (needs lots or RAM)
```
mkdir -p $six_ALL_CCFRWORK/datasets-custom/openwebtext
cd $six_ALL_CCFRWORK/datasets-custom/openwebtext
HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 $six_ALL_CCFRWORK/code/bigscience/data/megatron/openwebtext-to-jsonl.py
```
To prep a 10k-sample for megatron
```
cd $six_ALL_CCFRWORK/code/megatron-lm
python tools/preprocess_data.py \
--input $six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/openwebtext-10k.jsonl \
--output-prefix $six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/meg-gpt2 \
--vocab $six_ALL_CCFRWORK/datasets-custom/vocabs/gpt2-vocab.json \
--dataset-impl mmap \
--tokenizer-type GPT2BPETokenizer \
--merge-file $six_ALL_CCFRWORK/datasets-custom/vocabs/gpt2-merges.txt \
--append-eod \
--workers 8
```
To prep a full dataset for megatron
```
cd $six_ALL_CCFRWORK/code/megatron-lm
python tools/preprocess_data.py \
--input $six_ALL_CCFRWORK/datasets-custom/openwebtext/openwebtext.jsonl \
--output-prefix $six_ALL_CCFRWORK/datasets-custom/openwebtext/meg-gpt2 \
--vocab $six_ALL_CCFRWORK/datasets-custom/vocabs/gpt2-vocab.json \
--dataset-impl mmap \
--tokenizer-type GPT2BPETokenizer \
--merge-file $six_ALL_CCFRWORK/datasets-custom/vocabs/gpt2-merges.txt \
--append-eod \
--workers 8
```
as it should take a few hours to convert, use `slurm/jsonl-to-meg-gpt2.slurm` job to complete it
```
sbatch jsonl-to-meg-gpt2.slurm
```
## Model
Ready pretrained models: GPT2 megatron_lm_345m
1. HF
* `$six_ALL_CCFRWORK/models-custom/megatron-gpt2/megatron-gpt2-345m`
2. Megatron
* `$six_ALL_CCFRWORK/models-custom/megatron-gpt2/megatron_lm_345m_v0.0/release`
#### How the above was done
**Megatron model prep**
1. Download nvidia checkpoint:
```
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_lm_345m/versions/v0.0/zip -O megatron_lm_345m_v0.0.zip
```
2.
```
unzip megatron_lm_345m_v0.0.zip
```
**HF transformers model prep**
prep HF model - it's not avaliable on the hub
1. Download nvidia checkpoint:
```
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_lm_345m/versions/v0.0/zip -O megatron_lm_345m_v0.0.zip
```
2. Convert:
```
python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py megatron_lm_345m_v0.0.zip
```
3. Fetch missing files
```
git clone https://huggingface.co/nvidia/megatron-gpt2-345m/
```
4. Move the converted files into the cloned model dir
```
mv config.json pytorch_model.bin megatron-gpt2-345m/
```
5. megatron-gpt2-345m dir should now have all the files which can be passed as `--model_name_or_path megatron-gpt2-345m`
XXX: may be will use some small samples for testing - need .txt and .json for megatron-lm
```
#--train_file {data_dir}/sample_text.txt \
#--validation_file {data_dir}/sample_text.txt \
```
## Training
### Megatron-LM
running native https://github.com/NVIDIA/Megatron-LM
```
cd $six_ALL_CCFRWORK/code
git clone https://github.com/NVIDIA/megatron-lm
cd megatron-lm
```
### Megatron: finetuning on a single GPU
Setup: 1 node / 1 gpu
```
srun --pty --nodes=1 --ntasks=4 --cpus-per-task=10 --gres=gpu:1 --hint=nomultithread --time=60 bash --rcfile $six_ALL_CCFRWORK/start-prod
```
Launch training:
adding `--finetune` to work with existing checkpoint, remove to train from scratch
```
CHECKPOINT_PATH=$six_ALL_CCFRWORK/models-custom/megatron-gpt2/megatron_lm_345m_v0.0/release
VOCAB_FILE=$CHECKPOINT_PATH/gpt2-vocab.json
MERGE_FILE=$CHECKPOINT_PATH/gpt2-merges.txt
DATA_PATH=$six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/meg-gpt2_text_document
SAVE_CHECKPOINT_PATH=$six_ALL_CCFRWORK/checkpoints/gpt2
# --train-samples 200 \
# --lr-decay-samples 150 \
# --train-iters 100000 \
# --lr-decay-iters 320000 \
GPT_ARGS=" \
--num-layers 24 \
--hidden-size 1024 \
--num-attention-heads 16 \
--seq-length 1024 \
--max-position-embeddings 1024 \
--micro-batch-size 4 \
--global-batch-size 8 \
--lr 0.00015 \
--lr-decay-style cosine \
--min-lr 1.0e-5 \
--vocab-file $VOCAB_FILE \
--merge-file $MERGE_FILE \
--lr-warmup-fraction .01 \
--finetune \
--train-iters 1000 \
--lr-decay-iters 800 \
--fp16 \
--checkpoint-activations \
"
OUTPUT_ARGS=" \
--log-interval 10 \
--save-interval 500 \
--eval-interval 100 \
--eval-iters 10 \
"
python pretrain_gpt.py \
$GPT_ARGS \
$OUTPUT_ARGS \
--save $SAVE_CHECKPOINT_PATH \
--load $CHECKPOINT_PATH \
--data-path $DATA_PATH
```
Speed: 0.637s / iteration
### Megatron: finetune distributed with MP
2 types of parallelism supported:
- `--tensor-model-parallel-size`
- `--pipeline-model-parallel-size`
To get the average throughput have to process the logfile:
```
perl -nle 'use List::Util qw/sum/; m|elapsed time per iteration .ms.: ([\d\.]+)| && push @x, $1; END { print sum(@x)/+@x }' std-1611136.out
```
Setup: 1 node / 4 gpus
```
srun --pty --nodes=1 --ntasks=1 --cpus-per-task=40 --gres=gpu:4 --hint=nomultithread --time=60 bash --rcfile $six_ALL_CCFRWORK/start-prod
```
Launch training:
```
CHECKPOINT_PATH=$six_ALL_CCFRWORK/models-custom/megatron-gpt2/megatron_lm_345m_v0.0/release
VOCAB_FILE=$CHECKPOINT_PATH/gpt2-vocab.json
MERGE_FILE=$CHECKPOINT_PATH/gpt2-merges.txt
DATA_PATH=$six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/meg-gpt2_text_document
SAVE_CHECKPOINT_PATH=$six_ALL_CCFRWORK/checkpoints/gpt2
GPUS_PER_NODE=4
NNODES=1
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
DISTRIBUTED_ARGS=" \
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--node_rank $NODE_RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
"
NLAYERS=24
NHIDDEN=1024
BATCHSIZE=4
# --train-iters 100000 \
# --lr-decay-iters 320000 \
GPT_ARGS=" \
--num-layers $NLAYERS \
--hidden-size $NHIDDEN \
--num-attention-heads 16 \
--seq-length 1024 \
--max-position-embeddings 1024 \
--micro-batch-size 4 \
--global-batch-size 16 \
--lr 0.00015 \
--lr-decay-style cosine \
--min-lr 1.0e-5 \
--finetune \
--train-iters 1000 \
--lr-decay-iters 800 \
--lr-warmup-fraction .01 \
--weight-decay 1e-2 \
--clip-grad 1.0 \
--vocab-file $VOCAB_FILE \
--merge-file $MERGE_FILE \
--fp16 \
--checkpoint-activations \
"
OUTPUT_ARGS=" \
--log-interval 10 \
--save-interval 500 \
--eval-interval 100 \
--eval-iters 10 \
"
python -m torch.distributed.launch \
$DISTRIBUTED_ARGS \
pretrain_gpt.py \
--tensor-model-parallel-size 2 \
--pipeline-model-parallel-size 2 \
$GPT_ARGS \
$OUTPUT_ARGS \
--save $SAVE_CHECKPOINT_PATH \
--load $CHECKPOINT_PATH \
--data-path $DATA_PATH \
--data-impl mmap \
--split 949,50,1 \
--distributed-backend nccl
```
Speed: 0.560s / iteration
### Megatron: finetune distributed with MP - multi-node
Use `jay-z/slurm/meg-gpt2-multi-node.slurm`.
Speed: 0.560s / iteration
### Megatron-LM+Deepspeed: w/ deepspeed Pipeline
This is the version with Deepspeed's pipeline
https://github.com/microsoft/DeepSpeedExamples/blob/master/Megatron-LM-v1.1.5-3D_parallelism/examples/ds_pretrain_gpt2_pipe.sh
Setup: 1 node / 4 gpus
```
srun --pty --nodes=1 --ntasks=1 --cpus-per-task=40 --gres=gpu:4 --hint=nomultithread --time=60 bash --rcfile $six_ALL_CCFRWORK/start-prod
```
```
cd $six_ALL_CCFRWORK/code/DeepSpeedExamples/Megatron-LM-v1.1.5-3D_parallelism
CHECKPOINT_PATH=$six_ALL_CCFRWORK/models-custom/megatron-gpt2/megatron_lm_345m_v0.0/release
VOCAB_FILE=$CHECKPOINT_PATH/gpt2-vocab.json
MERGE_FILE=$CHECKPOINT_PATH/gpt2-merges.txt
DATA_PATH=$six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/meg-gpt2_text_document
SAVE_CHECKPOINT_PATH=$six_ALL_CCFRWORK/checkpoints/gpt2
GPUS_PER_NODE=4
NNODES=1
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
export DLWS_NUM_WORKER=${NNODES}
export DLWS_NUM_GPU_PER_WORKER=${GPUS_PER_NODE}
config_json="./ds_config.json"
# Megatron Model Parallelism
mp_size=2
# DeepSpeed Pipeline parallelism
pp_size=2
NLAYERS=24
NHIDDEN=1024
BATCHSIZE=4
NUM_ATTN_HEADS=16
LOGDIR="tensorboard_data/${NLAYERS}l_${NHIDDEN}h_${NNODES}n_${GPUS_PER_NODE}g_${pp_size}pp_${mp_size}mp_${BATCHSIZE}b_ds4"
GAS=16
#ZeRO Configs
stage=0
reduce_scatter=true
contigious_gradients=true
rbs=50000000
agbs=5000000000
#Actication Checkpointing and Contigious Memory
chkp_layers=1
PA=true
PA_CPU=false
CC=true
SYNCHRONIZE=true
PROFILE=false
GPT_ARGS=" \
--model-parallel-size ${mp_size} \
--pipe-parallel-size ${pp_size} \
--num-layers $NLAYERS \
--hidden-size $NHIDDEN \
--num-attention-heads $NUM_ATTN_HEADS \
--seq-length 1024 \
--max-position-embeddings 1024 \
--batch-size $BATCHSIZE \
--gas $GAS \
--train-iters 1000 \
--lr-decay-iters 800 \
--save $SAVE_CHECKPOINT_PATH \
--load $CHECKPOINT_PATH \
--data-path $DATA_PATH \
--vocab-file $VOCAB_FILE \
--merge-file $MERGE_FILE \
--data-impl mmap \
--split 949,50,1 \
--distributed-backend nccl \
--lr 1.5e-4 \
--lr-decay-style cosine \
--min-lr 1.0e-5 \
--weight-decay 1e-2 \
--clip-grad 1.0 \
--warmup 0.01 \
--fp16 \
"
#--tensorboard-dir ${LOGDIR}
OUTPUT_ARGS=" \
--log-interval 10 \
--save-interval 500 \
--eval-interval 100 \
--eval-iters 10 \
"
DEEPSPEED_ARGS=" \
--deepspeed \
--deepspeed_config ${config_json} \
--zero-stage ${stage} \
--zero-reduce-bucket-size ${rbs} \
--zero-allgather-bucket-size ${agbs} \
"
if [ "${contigious_gradients}" = "true" ]; then
DEEPSPEED_ARGS="${DEEPSPEED_ARGS} \
--zero-contigious-gradients"
fi
if [ "${reduce_scatter}" = "true" ]; then
DEEPSPEED_ARGS="${DEEPSPEED_ARGS} \
--zero-reduce-scatter"
fi
CHKP_ARGS=" \
--checkpoint-activations \
--checkpoint-num-layers ${chkp_layers}"
if [ "${PA}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} \
--partition-activations"
fi
if [ "${PA_CPU}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} \
--checkpoint-in-cpu"
fi
if [ "${SYNCHRONIZE}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} \
--synchronize-each-layer"
fi
if [ "${CC}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} \
--contigious-checkpointing"
fi
if [ "${PROFILE}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} \
--profile-backward"
fi
full_options="${GPT_ARGS} ${OUTPUT_ARGS} ${DEEPSPEED_ARGS} ${CHKP_ARGS}"
run_cmd="deepspeed --num_nodes ${NNODES} --num_gpus ${GPUS_PER_NODE} pretrain_gpt2.py $@ ${full_options}"
echo ${run_cmd}
eval ${run_cmd}
```
### Megatron-LM+Deepspeed: w/ deepspeed zero3/inf
This is the version with Deepspeed's Zero3/inf
https://github.com/microsoft/DeepSpeedExamples/blob/master/Megatron-LM-v1.1.5-ZeRO3/examples/ds_pretrain_gpt2-zero3.sh
Setup: 1 node / 4 gpus
```
srun --pty --nodes=1 --ntasks=1 --cpus-per-task=40 --gres=gpu:4 --hint=nomultithread --time=60 bash --rcfile $six_ALL_CCFRWORK/start-prod
```
```
cd $six_ALL_CCFRWORK/code/DeepSpeedExamples/Megatron-LM-v1.1.5-ZeRO3
# Change for multinode config
MP_SIZE=1
GPUS_PER_NODE=4
NNODES=1
DLTS_NUM_WORKER=$NNODES
DLTS_NUM_GPU_PER_WORKER=$GPUS_PER_NODE
NUM_WORKERS=${DLTS_NUM_WORKER}
NUM_GPUS_PER_WORKER=${DLTS_NUM_GPU_PER_WORKER}
HIDDEN_SIZE=1024
NUM_LAYERS=24
BATCHSIZE=4
NUM_ATTN_HEADS=16
CHECKPOINT_PATH=$six_ALL_CCFRWORK/models-custom/megatron-gpt2/megatron_lm_345m_v0.0/release
VOCAB_FILE=$CHECKPOINT_PATH/gpt2-vocab.json
MERGE_FILE=$CHECKPOINT_PATH/gpt2-merges.txt
DATA_PATH=$six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/meg-gpt2_text_document
SAVE_CHECKPOINT_PATH=$six_ALL_CCFRWORK/checkpoints/gpt2
config_json="./ds_zero_stage_3_config.json"
#ZeRO Configs
stage=3
reduce_scatter=true
contigious_gradients=true
rbs=50000000
agbs=5000000000
#Activation Checkpointing and Contigious Memory
chkp_layers=1
PA=true
PA_CPU=true
CC=true
SYNCHRONIZE=true
PROFILE=false
# TiledLinear splits, 0 is disable
TILED_LINEAR="false"
TILE_DIM=1
# Megatron Model Parallelism
LOGDIR="tboard-zero3/stage${stage}-lazyscatter-${NUM_LAYERS}l_${HIDDEN_SIZE}h_${NUM_WORKERS}n_${NUM_GPUS_PER_WORKER}g_${MP_SIZE}mp_${BATCHSIZE}b"
GPT_ARGS=" \
--model-parallel-size ${MP_SIZE} \
--num-layers $NUM_LAYERS \
--hidden-size $HIDDEN_SIZE \
--num-attention-heads ${NUM_ATTN_HEADS} \
--seq-length 1024 \
--max-position-embeddings 1024 \
--batch-size $BATCHSIZE \
--train-iters 1000 \
--lr-decay-iters 800 \
--save $SAVE_CHECKPOINT_PATH \
--load $CHECKPOINT_PATH \
--data-path $DATA_PATH \
--vocab-file $VOCAB_FILE \
--merge-file $MERGE_FILE \
--data-impl mmap \
--split 949,50,1 \
--distributed-backend nccl \
--lr 1.5e-4 \
--lr-decay-style cosine \
--min-lr 1.0e-5 \
--weight-decay 1e-2 \
--clip-grad 1.0 \
--warmup 0.01 \
--fp16 \
--scattered-embeddings \
--split-transformers \
"
#--tensorboard-dir ${LOGDIR}
OUTPUT_ARGS=" \
--log-interval 10 \
--save-interval 500 \
--eval-interval 100 \
--eval-iters 10 \
"
DEEPSPEED_ARGS=" \
--deepspeed \
--deepspeed_config ${config_json} \
--zero-stage ${stage} \
--zero-reduce-bucket-size ${rbs} \
--zero-allgather-bucket-size ${agbs} \
"
if [ "${contigious_gradients}" = "true" ]; then
DEEPSPEED_ARGS="${DEEPSPEED_ARGS} \
--zero-contigious-gradients"
fi
if [ "${reduce_scatter}" = "true" ]; then
DEEPSPEED_ARGS="${DEEPSPEED_ARGS} \
--zero-reduce-scatter"
fi
CHKP_ARGS=" \
--checkpoint-activations \
--deepspeed-activation-checkpointing \
--checkpoint-num-layers ${chkp_layers}"
if [ "${PA}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} --partition-activations"
fi
if [ "${PA_CPU}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} \
--checkpoint-in-cpu"
fi
if [ "${SYNCHRONIZE}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} \
--synchronize-each-layer"
fi
if [ "${CC}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} \
--contigious-checkpointing"
fi
if [ "${PROFILE}" = "true" ]; then
CHKP_ARGS="${CHKP_ARGS} \
--profile-backward"
fi
if [ "${TILED_LINEAR}" = "true" ]; then
tile_opt="${tile_opt} \
--memory-centric-tiled-linear \
--tile-factor=${TILE_DIM}"
fi
full_options="${GPT_ARGS} ${OUTPUT_ARGS} ${DEEPSPEED_ARGS} ${CHKP_ARGS}"
run_cmd="deepspeed --num_nodes ${NNODES} --num_gpus ${GPUS_PER_NODE} pretrain_gpt2.py ${@:2} ${full_options}"
echo ${run_cmd}
eval ${run_cmd}
```
### HF transformers distributed
Have to run once on a non-gpu instance which has network to retrieve the model and data files and get those cached.
```
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
```
```
MODEL=$six_ALL_CCFRWORK/models-custom/megatron-gpt2/megatron-gpt2-345m
DATASET="stas/openwebtext-10k"
```
```
cd $six_ALL_CCFRWORK/code/transformers
#git clone https://github.com/huggingface/transformers
#cd transformers
```
```
source $six_ALL_CCFRWORK/start-prod
```
first run on networked instance to get the dataset et, al.
```
PYTHONPATH="src" \
examples/pytorch/language-modeling/run_clm.py \
--model_name_or_path $MODEL \
--dataset_name $DATASET \
--output_dir output_dir \
--overwrite_output_dir \
--do_train \
--do_eval \
--max_train_samples 160 \
--max_eval_samples 160 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--num_train_epochs 1 \
--warmup_steps 8 \
--block_size 64 \
--report_to none
```
2nd run on gpu instance w/o network
```
PYTHONPATH="src" \
HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 \
python -m torch.distributed.launch --nproc_per_node=4 \
examples/pytorch/language-modeling/run_clm.py \
--model_name_or_path $MODEL \
--dataset_name $DATASET \
--output_dir output_dir \
--overwrite_output_dir \
--do_train \
--do_eval \
--max_train_samples 1000 \
--max_eval_samples 200 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--num_train_epochs 1 \
--warmup_steps 8 \
--block_size 64 \
--fp16 \
--report_to none
```
Speed:
train_samples_per_second = 5.043
let's do multi-node:
Setup: 2 nodes / 4 gpus
```
srun --pty --nodes=2 --ntasks=8 --cpus-per-task=10 --gres=gpu:4 --hint=nomultithread --time=60 bash --rcfile $six_ALL_CCFRWORK/start-prod
```
Launch training:
```
PYTHONPATH="src" \
HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 \
python -m torch.distributed.launch --nnodes=2 --nproc_per_node=4 \
examples/pytorch/language-modeling/run_clm.py \
--model_name_or_path $MODEL \
--dataset_name $DATASET \
--output_dir output_dir \
--overwrite_output_dir \
--do_train \
--do_eval \
--max_train_samples 1000 \
--max_eval_samples 200 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--num_train_epochs 1 \
--warmup_steps 8 \
--block_size 64 \
--fp16 \
--report_to none
```
### HF transformers + Deepspeed + zero2
```
PYTHONPATH="src" \
HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 \
deepspeed --num_nodes 1 --num_gpus 4 \
examples/pytorch/language-modeling/run_clm.py \
--model_name_or_path $MODEL \
--dataset_name $DATASET \
--output_dir output_dir \
--overwrite_output_dir \
--do_train \
--do_eval \
--max_train_samples 1000 \
--max_eval_samples 200 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--num_train_epochs 1 \
--warmup_steps 8 \
--block_size 64 \
--fp16 \
--report_to none \
--deepspeed tests/deepspeed/ds_config_zero2.json
```
Speed:
train_samples_per_second = 2.14
### HF transformers + Deepspeed + zero3
probably should test w/o offload
```
PYTHONPATH="src" \
HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 \
deepspeed --num_nodes 1 --num_gpus 4 \
examples/pytorch/language-modeling/run_clm.py \
--model_name_or_path $MODEL \
--dataset_name $DATASET \
--output_dir output_dir \
--overwrite_output_dir \
--do_train \
--do_eval \
--max_train_samples 1000 \
--max_eval_samples 200 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--num_train_epochs 1 \
--warmup_steps 8 \
--block_size 64 \
--fp16 \
--report_to none \
--deepspeed tests/deepspeed/ds_config_zero3.json
```
Speed:
train_samples_per_second = 0.952
### HF transformers + Deepspeed + zero2 - multi-node
Use `jay-z/slurm/hf-ds-gpt2-multi-node.slurm`.
Speed: / iteration
|