File size: 5,662 Bytes
0387b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#!/bin/bash
#SBATCH --job-name=1B3.slurm
#SBATCH --qos=qos_gpu-t3
#SBATCH --nodes=16
#SBATCH --ntasks-per-node=1          # crucial - only 1 task per dist per node!
#SBATCH --cpus-per-task=40         # number of cores per tasks
#SBATCH --hint=nomultithread         # we get physical cores not logical
#SBATCH --gres=gpu:4                 # number of gpus
#SBATCH --time 20:00:00              # maximum execution time (HH:MM:SS)
#SBATCH --output=%x-%j.out           # output file name
#SBATCH --error=%x-%j.out            # error file name (same to watch just one file)
#SBATCH --account=six@v100

set -x -e


# TODO: modify these for your training setup, just Ctrl-F replace <YOUR_TRAINING_NAME>
DATA_OUTPUT_PATH=$six_ALL_CCFRSCRATCH/synched_exps/<YOUR_TRAINING_NAME>
CHECKPOINT_PATH=$DATA_OUTPUT_PATH/checkpoints
REPO_PATH=$DATA_OUTPUT_PATH/<YOUR_TRAINING_NAME>-logs
TENSORBOARD_PATH=$REPO_PATH/tensorboard
CODECARBON_PATH=$REPO_PATH/codecarbon
LOGS_PATH=$REPO_PATH/logs
# You need to git clone the Megatron-DeepSpeed
MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRWORK/code/Megatron-DeepSpeed

# TODO: you may change the dataset, some examples are at tr3-1B3-baseline (tr3 = c4 + t5-tokenizer, tr3m = the Pile)
VOCAB_FILE=$MEGATRON_DEEPSPEED_REPO/data/gpt2-vocab.json
MERGE_FILE=$MEGATRON_DEEPSPEED_REPO/data/gpt2-merges.txt
DATA_PATH=$six_ALL_CCFRWORK/datasets-custom/oscar-en/meg-gpt2_text_document

# defining the right environment variables
source $six_ALL_CCFRWORK/start-prod
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
export HF_DATASETS_OFFLINE=1
export TRANSFORMERS_OFFLINE=1
cd $MEGATRON_DEEPSPEED_REPO

# testing for potential faulty nodes
srun --jobid $SLURM_JOBID bash -c 'python -c "import torch, socket; print(socket.gethostname(), torch.cuda.is_available())"'

# so processes know who to talk to
MASTER_ADDR=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1`
MASTER_PORT=6000

# TODO: this is our base config for 1B3, edit PP/TP/batch size/model config if smaller or bigger
GPUS_PER_NODE=4
NNODES=16
PP_SIZE=2 # NLAYERS must be a multiple of PP_SIZE here
TP_SIZE=1 # always fixed to the size of a single node
DP_SIZE=$((NNODES*GPUS_PER_NODE/(PP_SIZE*TP_SIZE))) # will get derived automatically by trainer

MICRO_BATCH_SIZE=1
GLOBAL_BATCH_SIZE=512
TRAIN_ITER=73_242_187

NLAYERS=24
NHIDDEN=2048
NHEADS=16
FFN_HIDDEN_SIZE=8192
SEQ_LEN=2048

SAVE_INTERVAL=1500

OPTIMIZER_ARGS=" \
    --optimizer adam \
    --adam-beta1 0.9 \
    --adam-beta2 0.999 \
    --adam-eps 1e-8 \
    --lr 2e-4 \
    --min-lr 1e-5 \
    --lr-decay-style cosine \
    --lr-warmup-samples 183_105 \
    --clip-grad 1.0 \
    --weight-decay 1e-1 \
    "

EXIT_OPTS=" \
    --exit-duration-in-mins 1190 \
    "

GPT_ARGS=" \
    --num-layers $NLAYERS \
    --hidden-size $NHIDDEN \
    --num-attention-heads $NHEADS \
    --ffn-hidden-size $FFN_HIDDEN_SIZE \
    --seq-length $SEQ_LEN \
    --max-position-embeddings $SEQ_LEN \
    --micro-batch-size $MICRO_BATCH_SIZE \
    --global-batch-size $GLOBAL_BATCH_SIZE \
    --rampup-batch-size 32 32 2_000_000 \
    --train-samples $TRAIN_ITER \
    --vocab-file $VOCAB_FILE \
    --merge-file $MERGE_FILE \
    --loss-scale 12 \
    --clip-grad 1.0 \
    --fp16 \
    --checkpoint-activations \
    $OPTIMIZER_ARGS \
    $EXIT_OPTS \
    "

OUTPUT_ARGS=" \
    --log-interval 200 \
    --save-interval $SAVE_INTERVAL \
    --eval-interval 1000 \
    --eval-iters 100 \
    --tensorboard-dir $TENSORBOARD_PATH \
    --tensorboard-queue-size 5 \
    --log-timers-to-tensorboard \
    --log-batch-size-to-tensorboard \
    --log-validation-ppl-to-tensorboard \
    "
# TODO: Add --codecarbon-dir $CODECARBON_PATH \ if you want to use codecarbon, not adding it for now to make the current
# series of experiments consistent, especially speed-wise. Adding it once Tr6 and Tr7 are done

ZERO_STAGE=1

config_json="./ds_config.$SLURM_JOBID.json"

# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
cat <<EOT > $config_json
{
  "train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE,
  "train_batch_size": $GLOBAL_BATCH_SIZE,
  "gradient_clipping": 1.0,
  "zero_optimization": {
    "stage": $ZERO_STAGE
  },
  "fp16": {
    "enabled": true,
    "loss_scale": 0,
    "loss_scale_window": 500,
    "hysteresis": 2,
    "min_loss_scale": 1,
    "initial_scale_power": 12
  },
  "steps_per_print": 2000,
  "wall_clock_breakdown": false
}
EOT


DEEPSPEED_ARGS=" \
    --deepspeed \
    --deepspeed_config ${config_json} \
    --zero-stage ${ZERO_STAGE} \
    --deepspeed-activation-checkpointing \
    "

export LAUNCHER="python -u -m torch.distributed.launch \
    --nproc_per_node $GPUS_PER_NODE \
    --nnodes $NNODES \
    --master_addr $MASTER_ADDR \
    --master_port $MASTER_PORT \
    "

export CMD=" \
    `pwd`/pretrain_gpt.py \
    --tensor-model-parallel-size $TP_SIZE \
    --pipeline-model-parallel-size $PP_SIZE \
    $GPT_ARGS \
    $OUTPUT_ARGS \
    --save $CHECKPOINT_PATH \
    --load $CHECKPOINT_PATH \
    --data-path $DATA_PATH \
    --data-impl mmap \
    --split 949,50,1 \
    --distributed-backend nccl \
     $DEEPSPEED_ARGS \
    "


# # clear old checkpoint as it'd mismatch while we sort things out
#     rm -rf $SAVE_CHECKPOINT_PATH


echo $CMD

# We create the folder where the logs and codecarbon will be stored.
mkdir -p $LOGS_PATH
# to debug - add echo (it exits and prints what it would have launched)
srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee -a $LOGS_PATH/main_log.txt