File size: 5,295 Bytes
2024260 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
#!/bin/bash
#SBATCH --job-name=tr1-13B-short
#SBATCH --constraint=v100-32g
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
#SBATCH --cpus-per-task=40 # number of cores per tasks
#SBATCH --hint=nomultithread # we get physical cores not logical
#SBATCH --gres=gpu:4 # number of gpus
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
#SBATCH --output=%x-%j.out # output file name
#SBATCH --account=six@v100
# This is the same as the main script but pre-configured for a small model that can be easily tested
# on 1 or 2 nodes, which is handy to verify everything works before using it on the main training.
#
# It's also useful for pre-building megatron CUDA kernels if and when things get borked and it gets stuck in building kernels.
#
# Change to NNODES=1 if needed
#
# to allocate (change to 2 for NNODES=2)
# salloc --constraint=v100-32g --account=six@v100 --nodes=1 --ntasks=1 --cpus-per-task=40 --gres=gpu:4 --hint=nomultithread --time=6:00:00 bash
source $six_ALL_CCFRWORK/code/tr1-13B/bigscience/train/tr1-13B-base/start-tr1-13B
set -x -e
echo "START TIME: $(date)"
#ROUND=3
DATA_OUTPUT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr1-13B-test
CHECKPOINT_PATH=$DATA_OUTPUT_PATH/checkpoints
TENSORBOARD_PATH=$DATA_OUTPUT_PATH/tensorboard
CODECARBON_PATH=$DATA_OUTPUT_PATH/codecarbon
LOGS_PATH=$DATA_OUTPUT_PATH/logs
MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRWORK/code/tr1-13B/Megatron-DeepSpeed-tr1-13B/
VOCAB_FILE=$MEGATRON_DEEPSPEED_REPO/data/gpt2-vocab.json
MERGE_FILE=$MEGATRON_DEEPSPEED_REPO/data/gpt2-merges.txt
DATA_PATH=$six_ALL_CCFRWORK/datasets-custom/oscar-en/meg-gpt2_text_document
cd $MEGATRON_DEEPSPEED_REPO
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
MASTER_PORT=6000
GPUS_PER_NODE=4
NNODES=2 # switch to 64
TP_SIZE=2 # always fixed to the size of a single node
PP_SIZE=2 # NLAYERS must be a multiple of PP_SIZE here
#DP_SIZE=$NNODES*$GPUS_PER_NODE/($PP_SIZE*$TP_SIZE) # will get derived automatically by trainer
# GLOBAL_BATCH_SIZE has to be divisible by MICRO_BATCH_SIZE*DP_size
# GLOBAL_BATCH_SIZE=$(($MICRO_BATCH_SIZE*$GAS*$DP_SIZE)) - GAS is auto-derived by deepspeed
MICRO_BATCH_SIZE=1
GLOBAL_BATCH_SIZE=64
NLAYERS=8
NHIDDEN=512
NHEADS=8
FFN_HIDDEN_SIZE=2048
SEQ_LEN=512
VOCAB_SIZE=50257
SAVE_INTERVAL=2000
OPTIMIZER_ARGS=" \
--optimizer adam \
--adam-beta1 0.9 \
--adam-beta2 0.999 \
--adam-eps 1e-8 \
--lr 1e-4 \
--min-lr 1e-5 \
--lr-decay-style cosine \
--lr-decay-samples 126_953_125 \
--lr-warmup-samples 216_320 \
--clip-grad 1.0 \
--weight-decay 1e-1 \
"
EXIT_OPTS=" \
--exit-duration-in-mins 1190 \
"
GPT_ARGS=" \
--num-layers $NLAYERS \
--hidden-size $NHIDDEN \
--ffn-hidden-size $FFN_HIDDEN_SIZE \
--num-attention-heads $NHEADS \
--seq-length $SEQ_LEN \
--max-position-embeddings $SEQ_LEN \
--micro-batch-size $MICRO_BATCH_SIZE \
--rampup-batch-size 16 16 5_000_000 \
--global-batch-size $GLOBAL_BATCH_SIZE \
--train-samples 300_000_000 \
--vocab-file $VOCAB_FILE \
--merge-file $MERGE_FILE \
--loss-scale 12 \
--clip-grad 1.0 \
--fp16 \
--checkpoint-activations \
--seed 42
$OPTIMIZER_ARGS \
$EXIT_OPTS \
"
OUTPUT_ARGS=" \
--log-interval 10 \
--save-interval $SAVE_INTERVAL \
--eval-interval 1000 \
--eval-iters 5 \
--codecarbon-dir $CODECARBON_PATH \
--tensorboard-dir $TENSORBOARD_PATH \
--tensorboard-queue-size 5 \
--log-timers-to-tensorboard \
--log-batch-size-to-tensorboard \
--log-validation-ppl-to-tensorboard \
"
ZERO_STAGE=1
config_json="./ds_config.$SLURM_JOBID.json"
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
cat <<EOT > $config_json
{
"train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE,
"train_batch_size": $GLOBAL_BATCH_SIZE,
"gradient_clipping": 1.0,
"zero_optimization": {
"stage": $ZERO_STAGE
},
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 500,
"hysteresis": 2,
"min_loss_scale": 1,
"initial_scale_power": 12
},
"steps_per_print": 2000,
"wall_clock_breakdown": false
}
EOT
DEEPSPEED_ARGS=" \
--deepspeed \
--deepspeed_config ${config_json} \
--zero-stage ${ZERO_STAGE} \
--deepspeed-activation-checkpointing \
"
export LAUNCHER="python -u -m torch.distributed.launch \
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
"
# /usr/bin/env PYTHONPATH="." `pwd`/pretrain_gpt.py \
export CMD=" \
`pwd`/pretrain_gpt.py \
--tensor-model-parallel-size $TP_SIZE \
--pipeline-model-parallel-size $PP_SIZE \
$GPT_ARGS \
$OUTPUT_ARGS \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH \
--data-path $DATA_PATH \
--data-impl mmap \
--split 949,50,1 \
--distributed-backend nccl \
$DEEPSPEED_ARGS \
"
echo $CMD
# to debug - add echo (it exits and prints what it would have launched)
clear; srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD'
#2>&1 | tee -a $LOGS_PATH/main_log.txt
echo "END TIME: $(date)"
#
|