File size: 6,793 Bytes
d1396f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
# some debug notes / code - wip
Debug spikes suggestions:
- analyse restore from state_dict for word embedding
V try to comment out update lp params - with normal lr results are much worse - moved from 3.5 to 5.5 loss
- try again w/ lr=0
```
# deepspeed/runtime/bf16_optimizer.py
def update_lp_params(self):
return
```
- norm of activations to know which part gets out of sync
V run optimizer with LR=0
-
```
perl -le 'print qx[diff -u debug-emb-bf16-$_-pp0-tp0-dp0-$ARGV[1]-iteration.txt debug-emb-bf16-$_-pp1-tp0-dp0-$ARGV[1]-iteration.txt] for $ARGV[0]' 1 before
-
perl -le 'do { print qx[diff -u debug-$_-pp0-tp0-dp0-global0-on-save*.txt debug-$_-pp1-tp0-dp0-global1-on-save*.txt]; print qx[diff -u debug-$_-pp0-tp0-dp0-global0-on-load*.txt debug-$_-pp1-tp0-dp0-global1-on-load*.txt] } for 15..15'
perl -le 'do { print qx[diff -u debug-$_-pp0-tp0-dp0-global0-on-save*.txt debug-$_-pp0-tp0-dp0-global0-on-load*.txt]; print qx[diff -u debug-$_-pp1-tp0-dp0-global1-on-save*.txt debug-$_-pp1-tp0-dp0-global1-on-load*.txt] } for 15..15'
perl -le '$_=shift; do { print qx[diff -u debug-$_-pp0-tp0-dp0-global0-on-save*.txt debug-$_-pp1-tp0-dp0-global1-on-save*.txt]; print qx[diff -u debug-$_-pp0-tp0-dp0-global0-on-load*.txt debug-$_-pp1-tp0-dp0-global1-on-load*.txt] } ' 5
perl -le '$_=shift; do { print qx[diff -u debug-$_-pp0-tp0-dp0-global0-on-save*.txt debug-$_-pp0-tp0-dp0-global0-on-load*.txt]; print qx[diff -u debug-$_-pp1-tp0-dp0-global1-on-save*.txt debug-$_-pp1-tp0-dp0-global1-on-load*.txt] } ' 5
debug-12-pp0-tp0-dp0-global0-on-load-*.txt debug-13-pp0-tp0-dp0-global0-before-iteration-*.txt
debug-$_-pp0-tp0-dp0-global0-before-iteration-*.txt debug-$_-pp0-tp0-dp0-global0-after-iteration-*.txt
debug-bf16-21-pp0-tp1-before-iteration.txt
debug-bf16-21-pp0-tp1-after-iteration.txt
debug-fp32-21-pp1-tp0-before-iteration.txt
debug-fp32-21-pp1-tp0-after-iteration.txt
debug-bf16-21-pp0-tp1-before-iteration.txt
debug-bf16-21-pp0-tp1-after-iteration.txt
debug-fp32-21-pp1-tp0-before-iteration.txt
debug-fp32-21-pp1-tp0-after-iteration.txt
On each node - the same situation: (checked nodes 0 and 1 only)
6 processes are in:
Thread 835990 (active): "MainThread"
train (megatron/training.py:915)
pretrain (megatron/training.py:187)
<module> (pretrain_gpt.py:239)
2 processes are in:
Thread 835995 (active): "MainThread"
broadcast (torch/distributed/distributed_c10d.py:1191)
_aggregate_total_loss (deepspeed/runtime/pipe/engine.py:540)
train_batch (deepspeed/runtime/pipe/engine.py:330)
train_step (megatron/training.py:436)
train (megatron/training.py:851)
pretrain (megatron/training.py:187)
<module> (pretrain_gpt.py:239)
```
## debugging setup
```
salloc --partition=gpu_p5 --constraint=a100 --reservation=hug --nodes=2 --ntasks-per-node=1 --cpus-per-task=64 --hint=nomultithread --gres=gpu:8 --time 20:00:00 --account=six@a100
```
```
bash 20B-n2-fp16.slurm
```
```
function makehostfile() {
perl -e '$slots=split /,/, $ENV{"SLURM_STEP_GPUS"};
$slots=8 if $slots==0; # workaround 8 gpu machines
@nodes = split /\n/, qx[scontrol show hostnames $ENV{"SLURM_JOB_NODELIST"}];
print map { "$b$_ slots=$slots\n" } @nodes'
}
makehostfile > hostfile
```
```
ds_ssh -f hostfile "source ~/.pdshrc; ps aux | grep python | grep -v grep | grep `whoami` | awk '{print \$2}' | xargs -I {} py-spy dump --pid {} "
```
ps aux | grep python | egrep -v '(srun|grep)' | grep `whoami` | awk '{print $2}' | xargs -I {} py-spy dump --pid {}
must use `--gres=gpu:0` for the monitor or it'll block.
```
srun --gres=gpu:0 --jobid=$SLURM_JOBID ~/script.bash
```
```
srun --jobid=<jobid> --gres=gpu:0 -N <number_of_nodes> --tasks-per-node=1 --output=%N.out sh -c 'ps aux | grep python | egrep -v "grep|srun" | grep `whoami` | awk "{print \$2}" | xargs -I {} py-spy dump --native --pid {}'
```
```
#!/bin/bash
ps aux | grep python | grep -v grep | grep `whoami` | awk '{print $2}' | xargs -I {} py-spy dump --pid {}
```
```
ssh jean-zay-iam01 "~/script.bash"
```
# full debug
```
cd ~/prod/code/tr8b-104B/bigscience/train/tr11-200B-ml/
salloc --partition=gpu_p5 --constraint=a100 --reservation=hug --nodes=40 --ntasks-per-node=1 --cpus-per-task=64 --hint=nomultithread --gres=gpu:8 --time 20:00:00 --account=six@a100
bash 200B-n40-bf16-mono.slurm
# in another shell
squeue -u `whoami` -o "%.16i %.9P %.26j %.8T %.10M %.8l %.6D %.20S %R"
# adjust jobid
srun --jobid=2180718 --gres=gpu:0 --nodes=40 --tasks-per-node=1 --output=trace-%N.out sh -c 'ps aux | grep python | egrep -v "grep|srun" | grep `whoami` | awk "{print \$2}" | xargs -I {} py-spy dump --native --pid {}' || echo "failed"
```
```
srun --jobid=4808 --gres=gpu:0 --nodes=48 --tasks-per-node=1 --output=trace-%N.out sh -c 'ps aux | grep python | egrep -v "grep|srun" | grep `whoami` | awk "{print \$2}" | xargs -I {} py-spy dump --native --pid {}' || echo "failed"
```
# using pdsh
It's a bit tricky and doesn't work for `py-spy`
# tracing with python trace
This code will trace all python calls and log them to the console and into a dedicated per process log file.
This then can help to understand where some processes stopped responding, since we will have the log of the last call before it went unresponsive.
```
$ cat pretrain_gpt.py
[...]
def main():
pretrain(train_valid_test_datasets_provider, model_provider, forward_step,
args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})
import re
class Tee:
"""
A helper class to tee print's output into a file.
Usage:
sys.stdout = Tee(filename)
"""
def __init__(self, filename):
self.stdout = sys.stdout
self.file = open(filename, "a")
def __getattr__(self, attr):
return getattr(self.stdout, attr)
def write(self, msg):
self.stdout.write(msg)
self.file.write(msg)
self.file.flush()
def flush(self):
self.stdout.flush()
self.file.flush()
if __name__ == "__main__":
import sys
import trace
import socket
import os
# enable to trace
if 0:
cwd = os.path.realpath('.')
pid = os.getpid()
hostname = socket.gethostname()
local_rank = int(os.environ["LOCAL_RANK"])
trace_output_file = f"{cwd}/trace-{hostname}-{local_rank}-{pid}.txt"
# create a Trace object, telling it what to ignore, and whether to
# do tracing or line-counting or both.
tracer = trace.Trace(
ignoredirs=[sys.prefix, sys.exec_prefix],
trace=1,
count=1,
)
# outfile=trace_output_file)
# run the new command using the given tracer
sys.stdout = Tee(trace_output_file)
tracer.run('main()')
else:
main()
```
|