File size: 6,124 Bytes
2024260 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
#!/bin/bash
#SBATCH --job-name=tr14-2B7-mup
#SBATCH --partition=production-cluster
#SBATCH --nodes=8
#SBATCH --cpus-per-task=12
#SBATCH --ntasks-per-node=1
#SBATCH --gres=gpu:a100:8
#SBATCH --hint=nomultithread
#SBATCH --time 100:00:00
#SBATCH --output=/fsx/teven/mup/tr14-2B7-%j.out
#SBATCH --exclude=ip-26-0-159-215,ip-26-0-153-238
echo "START TIME: $(date)"
mkdir -p $LOGS_PATH
# >>> conda initialize >>>
# !! Contents within this block are managed by 'conda init' !!
__conda_setup="$('/admin/home/teven/miniconda3/bin/conda' 'shell.bash' 'hook' 2> /dev/null)"
if [ $? -eq 0 ]; then
eval "$__conda_setup"
else
if [ -f "/admin/home/teven/miniconda3/etc/profile.d/conda.sh" ]; then
. "/admin/home/teven/miniconda3/etc/profile.d/conda.sh"
else
export PATH="/admin/home/teven/miniconda3/bin:$PATH"
fi
fi
unset __conda_setup
# <<< conda initialize <<<
# Proper env variables
conda activate tvn_dev
export PATH=/usr/local/cuda-11.4/bin:$PATH
export NCCL_PROTO=simple
export PATH=/opt/amazon/efa/bin:$PATH
export FI_EFA_FORK_SAFE=1
export FI_LOG_LEVEL=1
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn
#export NCCL_ALGO=ring
#export NCCL_DEBUG=info
#export NCCL_DEBUG_SUBSYS=INIT,ENV,GRAPH,COLL
export PYTHONFAULTHANDLER=1
export CUDA_LAUNCH_BLOCKING=0
export OMPI_MCA_mtl_base_verbose=1
export FI_EFA_ENABLE_SHM_TRANSFER=0
export FI_PROVIDER=efa
export FI_EFA_TX_MIN_CREDITS=64
export NCCL_TREE_THRESHOLD=0
#export TORCH_CPP_LOG_LEVEL=INFO
#export TORCH_DISTRIBUTED_DEBUG=INFO
export NCCL_ASYNC_ERROR_HANDLING=1
#export NCCL_P2P_DISABLE=1
#export NCCL_IBEXT_DISABLE=1
#export NCCL_SOCKET_IFNAME="eth0,en,eth,em,bond"
# testing for potential faulty nodes
srun --jobid $SLURM_JOBID bash -c 'python -c "import torch, socket; print(socket.gethostname(), torch.cuda.is_available())"'
# so processes know who to talk to
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_PORT=12802
MEGATRON_DEEPSPEED_REPO=/fsx/teven/Megatron-DeepSpeed
cd $MEGATRON_DEEPSPEED_REPO
TOKENIZER_NAME_OR_PATH=t5-small
variant=main
DATA_PATH=/fsx/data/gpt2tok_c4_text_document
DATA_OUTPUT_PATH=/fsx/mup_exps/checkpoints/tr14-2B7-lr$1-init0.1-inpm10-outm10-atnm10-mup
CHECKPOINT_PATH=$DATA_OUTPUT_PATH/checkpoints/$variant
REPO_PATH=$DATA_OUTPUT_PATH/tr14-2B7-test-lr$1-init0.1-inpm10-outm10-atnm10-mup
TENSORBOARD_PATH=$REPO_PATH/tensorboard/$variant
LOGS_PATH=$REPO_PATH/logs/$variant
GPUS_PER_NODE=8
NNODES=$SLURM_NNODES
PP_SIZE=1
TP_SIZE=2
MICRO_BATCH_SIZE=16
GLOBAL_BATCH_SIZE=512
NLAYERS=32
NHIDDEN=2560
NHEADS=32
SEQ_LEN=2048
SAVE_INTERVAL=250
TRAIN_SAMPLES=1_953_125 # 50B tokens
LR_DECAY_SAMPLES=1_953_125 # Decay in the same amount
LR_WARMUP_SAMPLES=183_105 # 375M tokens
MUP_ARGS=" \
--lr $1 \
--min-lr `bc <<< "scale=3; $1/10"` \
--init-method-std 0.1 \
--mup \
--mup-input-mult 10 \
--mup-output-mult 10 \
--mup-attn-mult 10 \
"
OPTIMIZER_ARGS=" \
--optimizer adam \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--adam-eps 1e-8 \
--lr-decay-style cosine \
--lr-decay-samples $LR_DECAY_SAMPLES \
--lr-warmup-samples $LR_WARMUP_SAMPLES \
--clip-grad 1.0 \
--weight-decay 1e-1 \
"
# for 20h 1190, for 100h 5990
EXIT_OPTS=" \
--exit-duration-in-mins 1190 \
"
GPT_ARGS=" \
--pp-partition-method 'type:transformer' \
--num-layers $NLAYERS \
--hidden-size $NHIDDEN \
--num-attention-heads $NHEADS \
--seq-length $SEQ_LEN \
--max-position-embeddings $SEQ_LEN \
--micro-batch-size $MICRO_BATCH_SIZE \
--global-batch-size $GLOBAL_BATCH_SIZE \
--train-samples $TRAIN_SAMPLES \
--tokenizer-type PretrainedFromHF \
--tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
--embed-layernorm \
--fp16 \
--seed 42 \
--position-embedding-type alibi \
--checkpoint-activations \
--abort-on-unmet-fused-kernel-constraints \
--pad-vocab-size-to 51200 \
$OPTIMIZER_ARGS \
$EXIT_OPTS \
"
# TODO: decide on efficient eval-interval + eval-iters
OUTPUT_ARGS=" \
--log-interval 1 \
--save-interval $SAVE_INTERVAL \
--eval-interval 1000 \
--eval-iters 1 \
--tensorboard-dir $TENSORBOARD_PATH \
--tensorboard-queue-size 5 \
--log-timers-to-tensorboard \
--log-batch-size-to-tensorboard \
--log-validation-ppl-to-tensorboard \
"
ZERO_STAGE=1
config_json="./ds_config.$SLURM_JOBID.json"
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
cat <<EOT > $config_json
{
"train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE,
"train_batch_size": $GLOBAL_BATCH_SIZE,
"gradient_clipping": 1.0,
"zero_optimization": {
"stage": $ZERO_STAGE
},
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 500,
"hysteresis": 2,
"min_loss_scale": 1,
"initial_scale_power": 12
},
"steps_per_print": 2000,
"wall_clock_breakdown": false
}
EOT
DEEPSPEED_ARGS=" \
--deepspeed \
--deepspeed_config ${config_json} \
--zero-stage ${ZERO_STAGE} \
--deepspeed-activation-checkpointing \
"
export LAUNCHER="python -u -m torch.distributed.run \
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
--rdzv_backend c10d \
--max_restarts 0 \
--tee 3 \
"
export CMD=" \
`pwd`/pretrain_gpt.py \
--tensor-model-parallel-size $TP_SIZE \
--pipeline-model-parallel-size $PP_SIZE \
$GPT_ARGS \
$OUTPUT_ARGS \
$MUP_ARGS \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH \
--data-path $DATA_PATH \
--data-impl mmap \
--distributed-backend nccl \
$DEEPSPEED_ARGS \
"
echo $CMD
# do not remove or the training will hang and nodes will be lost w/o this workaround
export CUDA_LAUNCH_BLOCKING=1
# hide duplicated errors using this hack - will be properly fixed in pt-1.12
export TORCHELASTIC_ERROR_FILE=/tmp/torch-elastic-error.json
clear; srun --jobid $SLURM_JOBID bash -c "$LAUNCHER --node_rank \$SLURM_PROCID $CMD" 2>&1 | tee -a $LOGS_PATH/main_log.txt
echo "END TIME: $(date)"
|