File size: 4,734 Bytes
370453e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#!/bin/bash
#SBATCH --job-name=1B3-rotary.slurm
#SBATCH --nodes=16
#SBATCH --ntasks-per-node=1          # crucial - only 1 task per dist per node!
#SBATCH --cpus-per-task=40         # number of cores per tasks
#SBATCH --hint=nomultithread         # we get physical cores not logical
#SBATCH --gres=gpu:4                 # number of gpus
#SBATCH --time 20:00:00              # maximum execution time (HH:MM:SS)
#SBATCH --output=logs/%x-%j.out           # output file name
#SBATCH --account=six@v100
#SBATCH --array=1-10%1

set -x -e
source $six_ALL_CCFRWORK/start-prod

ROUND=2
TESTING=0

# Prevent internet access
export HF_DATASETS_OFFLINE=1
export TRANSFORMERS_OFFLINE=1

OUTPUT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr4-1B3-rotary
MEGATRON_DEEPSPEED_REPO=$OUTPUT_PATH/code/Megatron-DeepSpeed

if [[ ${TESTING} == 1 ]]; then
    # testing on 10k
    DATA_PATH=$six_ALL_CCFRSCRATCH/datasets-custom/c4_preprocessing/c4_100k_text_document
else
    # production on full 304M records
    DATA_PATH=$six_ALL_CCFRSCRATCH/datasets-custom/c4_preprocessing/c4_en_train_text_document

fi

pushd $MEGATRON_DEEPSPEED_REPO

MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
MASTER_PORT=6000

# adjust depending on the number of the nodes

# XXX: edit me
GPUS_PER_NODE=4
NNODES=16
PP_SIZE=4 # NLAYERS must be a multiple of PP_SIZE here
TP_SIZE=4 # always fixed to the size of a single node
DP_SIZE=$((NNODES*GPUS_PER_NODE/(PP_SIZE*TP_SIZE))) # will get derived automatically by trainer

MICRO_BATCH_SIZE=8
GLOBAL_BATCH_SIZE=512
TRAIN_ITER=73_242_187 #150B tokens

NLAYERS=24
NHIDDEN=2048
NHEADS=16
FFN_HIDDEN_SIZE=8192
SEQ_LEN=2048

if   [[ ${ROUND} == 1 ]]; then  EXIT_INTERVAL=100    SAVE_INTERVAL=10
elif [[ ${ROUND} == 2 ]]; then  SAVE_INTERVAL=1500
else echo "invalid ROUND: $ROUND"
fi

OPTIMIZER_ARGS=" \
    --optimizer adam \
    --adam-beta1 0.9 \
    --adam-beta2 0.999 \
    --adam-eps 1e-8 \
    --lr 2e-4 \
    --min-lr 1e-5 \
    --lr-decay-style cosine \
    --lr-decay-samples 73_242_187 \
    --lr-warmup-samples 183_105 \
    --clip-grad 1.0 \
    --weight-decay 1e-1 \
    "

EXIT_OPTS=" \
    --exit-duration-in-mins 1190 \
    "

GPT_ARGS=" \
    --num-layers $NLAYERS \
    --hidden-size $NHIDDEN \
    --num-attention-heads $NHEADS \
    --ffn-hidden-size $FFN_HIDDEN_SIZE \
    --seq-length $SEQ_LEN \
    --micro-batch-size $MICRO_BATCH_SIZE \
    --global-batch-size $GLOBAL_BATCH_SIZE \
    --rampup-batch-size 32 32 2_000_000 \
    --train-samples $TRAIN_ITER \
    --tokenizer-type PretrainedFromHF \
    --tokenizer-name-or-path t5-small \
    --loss-scale 12 \
    --clip-grad 1.0 \
    --fp16 \
    --checkpoint-activations \
    --position-embedding-type rotary \
    $OPTIMIZER_ARGS \
    $EXIT_OPTS \
    "

OUTPUT_ARGS=" \
    --log-interval 200 \
    --save-interval $SAVE_INTERVAL \
    --eval-interval 1000 \
    --eval-iters 100 \
    --tensorboard-dir $OUTPUT_PATH/tensorboard \
    --tensorboard-queue-size 5 \
    --log-timers-to-tensorboard \
    --log-batch-size-to-tensorboard \
    --log-validation-ppl-to-tensorboard \
    "

ZERO_STAGE=1

config_json="./ds_config.$SLURM_JOBID.json"

# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
cat <<EOT > $config_json
{
  "train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE,
  "train_batch_size": $GLOBAL_BATCH_SIZE,
  "gradient_clipping": 1.0,
  "zero_optimization": {
    "stage": $ZERO_STAGE
  },
  "fp16": {
    "enabled": true,
    "loss_scale": 0,
    "loss_scale_window": 500,
    "hysteresis": 2,
    "min_loss_scale": 1,
    "initial_scale_power": 12
  },
  "steps_per_print": 2000,
  "wall_clock_breakdown": false
}
EOT


DEEPSPEED_ARGS=" \
    --deepspeed \
    --deepspeed_config ${config_json} \
    --zero-stage ${ZERO_STAGE} \
    --deepspeed-activation-checkpointing \
    "

export LAUNCHER="python -u -m torch.distributed.launch \
    --nproc_per_node $GPUS_PER_NODE \
    --nnodes $NNODES \
    --master_addr $MASTER_ADDR \
    --master_port $MASTER_PORT \
    "

export CMD=" \
    `pwd`/pretrain_gpt.py \
    --tensor-model-parallel-size $TP_SIZE \
    --pipeline-model-parallel-size $PP_SIZE \
    $GPT_ARGS \
    $OUTPUT_ARGS \
    --save $OUTPUT_PATH/checkpoints \
    --load $OUTPUT_PATH/checkpoints \
    --data-path $DATA_PATH \
    --data-impl mmap \
    --split 949,50,1 \
    --distributed-backend nccl \
     $DEEPSPEED_ARGS \
    "


# # clear old checkpoint as it'd mismatch while we sort things out
#     rm -rf $SAVE_CHECKPOINT_PATH


echo $CMD

# to debug - add echo (it exits and prints what it would have launched)
srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee $OUTPUT_PATH/logs/tr3-1B3-modeling-baseline.$SLURM_JOBID.out