File size: 4,788 Bytes
0387b0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
#!/bin/bash
#SBATCH --job-name=1B3-multilingual.slurm
#SBATCH --nodes=16
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
#SBATCH --cpus-per-task=40 # number of cores per tasks
#SBATCH --hint=nomultithread # we get physical cores not logical
#SBATCH --gres=gpu:4 # number of gpus
#SBATCH -C v100-16g # Force usage of 16gb v100
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
#SBATCH --output=logs/%x-%j.out # output file name
#SBATCH --error=logs/%x-%j.out # error file name (same to watch just one file)
#SBATCH --account=six@v100
#SBATCH --array=1-10%1
set -x -e
source $six_ALL_CCFRWORK/start-prod
ROUND=2
# Prevent internet access
export HF_DATASETS_OFFLINE=1
export TRANSFORMERS_OFFLINE=1
OUTPUT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr5-1B3-multilingual
MEGATRON_DEEPSPEED_REPO=$OUTPUT_PATH/code/Megatron-DeepSpeed
BIGSCIENCE_REPO=$OUTPUT_PATH/code/bigscience
python $BIGSCIENCE_REPO/train/tr5-1B3-multilingual/generate_dataset_probabilities.py
DATA_PATH=`cat $OUTPUT_PATH/dataset_probabilities.txt`
pushd $MEGATRON_DEEPSPEED_REPO
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
MASTER_PORT=6000
# adjust depending on the number of the nodes
# XXX: edit me
GPUS_PER_NODE=4
NNODES=16
PP_SIZE=4 # NLAYERS must be a multiple of PP_SIZE here
TP_SIZE=4 # always fixed to the size of a single node
DP_SIZE=$((NNODES*GPUS_PER_NODE/(PP_SIZE*TP_SIZE))) # will get derived automatically by trainer
MICRO_BATCH_SIZE=4
GLOBAL_BATCH_SIZE=512
TRAIN_ITER=73_242_187
NLAYERS=24
NHIDDEN=2048
NHEADS=16
FFN_HIDDEN_SIZE=8192
SEQ_LEN=2048
if [[ ${ROUND} == 1 ]]; then EXIT_INTERVAL=100 SAVE_INTERVAL=10
elif [[ ${ROUND} == 2 ]]; then SAVE_INTERVAL=1500
else echo "invalid ROUND: $ROUND"
fi
OPTIMIZER_ARGS=" \
--optimizer adam \
--adam-beta1 0.9 \
--adam-beta2 0.999 \
--adam-eps 1e-8 \
--lr 2e-4 \
--min-lr 1e-5 \
--lr-decay-style cosine \
--lr-decay-samples 73_242_187 \
--lr-warmup-samples 183_105 \
--clip-grad 1.0 \
--weight-decay 1e-1 \
"
EXIT_OPTS=" \
--exit-duration-in-mins 1190 \
"
GPT_ARGS=" \
--num-layers $NLAYERS \
--hidden-size $NHIDDEN \
--num-attention-heads $NHEADS \
--ffn-hidden-size $FFN_HIDDEN_SIZE \
--seq-length $SEQ_LEN \
--max-position-embeddings $SEQ_LEN \
--micro-batch-size $MICRO_BATCH_SIZE \
--global-batch-size $GLOBAL_BATCH_SIZE \
--rampup-batch-size 16 16 2_000_000 \
--train-samples $TRAIN_ITER \
--tokenizer-type PretrainedFromHF \
--tokenizer-name-or-path google/mt5-base \
--loss-scale 12 \
--clip-grad 1.0 \
--fp16 \
--checkpoint-activations \
$OPTIMIZER_ARGS \
$EXIT_OPTS \
"
OUTPUT_ARGS=" \
--log-interval 200 \
--save-interval $SAVE_INTERVAL \
--eval-interval 1000 \
--eval-iters 100 \
--tensorboard-dir $OUTPUT_PATH/tensorboard \
--tensorboard-queue-size 5 \
--log-timers-to-tensorboard \
--log-batch-size-to-tensorboard \
--log-validation-ppl-to-tensorboard \
"
ZERO_STAGE=1
config_json="./ds_config.$SLURM_JOBID.json"
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
cat <<EOT > $config_json
{
"train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE,
"train_batch_size": $GLOBAL_BATCH_SIZE,
"gradient_clipping": 1.0,
"zero_optimization": {
"stage": $ZERO_STAGE
},
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 500,
"hysteresis": 2,
"min_loss_scale": 1,
"initial_scale_power": 12
},
"steps_per_print": 2000,
"wall_clock_breakdown": false
}
EOT
DEEPSPEED_ARGS=" \
--deepspeed \
--deepspeed_config ${config_json} \
--zero-stage ${ZERO_STAGE} \
--deepspeed-activation-checkpointing \
"
export LAUNCHER="python -u -m torch.distributed.launch \
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
"
export CMD=" \
`pwd`/pretrain_gpt.py \
--tensor-model-parallel-size $TP_SIZE \
--pipeline-model-parallel-size $PP_SIZE \
$GPT_ARGS \
$OUTPUT_ARGS \
--save $OUTPUT_PATH/checkpoints \
--load $OUTPUT_PATH/checkpoints \
--data-path $DATA_PATH \
--data-impl mmap \
--split 949,50,1 \
--distributed-backend nccl \
$DEEPSPEED_ARGS \
"
# # clear old checkpoint as it'd mismatch while we sort things out
# rm -rf $SAVE_CHECKPOINT_PATH
echo $CMD
# to debug - add echo (it exits and prints what it would have launched)
srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee $OUTPUT_PATH/logs/tr3-1B3-modeling-baseline.$SLURM_JOBID.out
|