File size: 4,612 Bytes
d1396f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
#!/bin/bash
#SBATCH --job-name=tr8-104B
#SBATCH --constraint=v100-32g
#SBATCH --nodes=128
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
#SBATCH --cpus-per-task=40 # number of cores per tasks
#SBATCH --hint=nomultithread # we get physical cores not logical
#SBATCH --gres=gpu:4 # number of gpus
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
#SBATCH --output=%x-%j.out # output file name
#SBATCH --account=six@v100
set -x -e
source $six_ALL_CCFRWORK/code/tr8-104B/bigscience/train/tr8-104B-wide/start-tr8-104B
echo "START TIME: $(date)"
DATA_OUTPUT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr8-104B
CHECKPOINT_PATH=$DATA_OUTPUT_PATH/checkpoints
REPO_PATH=$DATA_OUTPUT_PATH/tr8-104B-logs
TENSORBOARD_PATH=$REPO_PATH/tensorboard
LOGS_PATH=$REPO_PATH/logs
mkdir -p $LOGS_PATH
MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRWORK/code/tr8-104B/Megatron-DeepSpeed-tr8-104B
VOCAB_FILE=$MEGATRON_DEEPSPEED_REPO/data/gpt2-vocab.json
MERGE_FILE=$MEGATRON_DEEPSPEED_REPO/data/gpt2-merges.txt
DATA_PATH=$six_ALL_CCFRWORK/datasets-custom/oscar-en/meg-gpt2_text_document
cd $MEGATRON_DEEPSPEED_REPO
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
MASTER_PORT=6000
GPUS_PER_NODE=4
NNODES=128 # switch to 128
TP_SIZE=4 # always fixed to the size of a single node
PP_SIZE=32 # NLAYERS must be a multiple of PP_SIZE here
#DP_SIZE=$NNODES*$GPUS_PER_NODE/($PP_SIZE*$TP_SIZE) # will get derived automatically by trainer
# GLOBAL_BATCH_SIZE has to be divisible by MICRO_BATCH_SIZE*DP_size
# GLOBAL_BATCH_SIZE=$(($MICRO_BATCH_SIZE*$GAS*$DP_SIZE)) - GAS is auto-derived by deepspeed
MICRO_BATCH_SIZE=1
GLOBAL_BATCH_SIZE=2048
NLAYERS=64
NHIDDEN=11600
NHEADS=80
SEQ_LEN=2048
VOCAB_SIZE=50257
SAVE_INTERVAL=300
OPTIMIZER_ARGS=" \
--optimizer adam \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--adam-eps 1e-8 \
--lr 6e-5 \
--min-lr 6e-6 \
--lr-decay-style cosine \
--lr-decay-samples 126_953_125 \
--lr-warmup-samples 216_320 \
--clip-grad 1.0 \
--weight-decay 1e-1 \
"
EXIT_OPTS=" \
--exit-duration-in-mins 1190 \
"
GPT_ARGS=" \
--num-layers $NLAYERS \
--hidden-size $NHIDDEN \
--num-attention-heads $NHEADS \
--seq-length $SEQ_LEN \
--max-position-embeddings $SEQ_LEN \
--micro-batch-size $MICRO_BATCH_SIZE \
--rampup-batch-size 16 16 6_000_000 \
--global-batch-size $GLOBAL_BATCH_SIZE \
--train-samples 300_000_000 \
--vocab-file $VOCAB_FILE \
--merge-file $MERGE_FILE \
--loss-scale 12 \
--init-method-std 0.006 \
--embed-layernorm \
--fp16 \
--checkpoint-activations \
--seed 43 \
$OPTIMIZER_ARGS \
$EXIT_OPTS \
"
OUTPUT_ARGS=" \
--log-interval 1 \
--save-interval $SAVE_INTERVAL \
--eval-interval 1000 \
--eval-iters 5 \
--tensorboard-dir $TENSORBOARD_PATH \
--tensorboard-queue-size 5 \
--log-timers-to-tensorboard \
--log-batch-size-to-tensorboard \
--log-validation-ppl-to-tensorboard \
"
ZERO_STAGE=1
config_json="./ds_config.$SLURM_JOBID.json"
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
cat <<EOT > $config_json
{
"train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE,
"train_batch_size": $GLOBAL_BATCH_SIZE,
"gradient_clipping": 1.0,
"zero_optimization": {
"stage": $ZERO_STAGE
},
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 500,
"hysteresis": 2,
"min_loss_scale": 1,
"initial_scale_power": 12
},
"steps_per_print": 2000,
"wall_clock_breakdown": false
}
EOT
DEEPSPEED_ARGS=" \
--deepspeed \
--deepspeed_config ${config_json} \
--zero-stage ${ZERO_STAGE} \
--deepspeed-activation-checkpointing \
"
export LAUNCHER="python -u -m torch.distributed.launch \
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
"
export CMD=" \
`pwd`/pretrain_gpt.py \
--tensor-model-parallel-size $TP_SIZE \
--pipeline-model-parallel-size $PP_SIZE \
$GPT_ARGS \
$OUTPUT_ARGS \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH \
--data-path $DATA_PATH \
--data-impl mmap \
--split 949,50,1 \
--distributed-backend nccl \
$DEEPSPEED_ARGS \
"
echo $CMD
# to debug - add echo (it exits and prints what it would have launched)
clear; srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee -a $LOGS_PATH/main_log.txt
echo "END TIME: $(date)"
#
|