#SBATCH --job-name=oscar-jsonl-to-meg-gpt2 # job name | |
#SBATCH --ntasks=1 # number of MP tasks | |
#SBATCH --nodes=1 | |
#SBATCH --cpus-per-task=40 # number of cores per tasks | |
#SBATCH --hint=nomultithread # we get physical cores not logical | |
#SBATCH --time=100:00:00 # maximum execution time (HH:MM:SS) | |
#SBATCH --output=%x-%j.out # output file name | |
#SBATCH --account=six@cpu | |
#SBATCH --partition=cpu_p1 | |
set -x -e | |
source $six_ALL_CCFRWORK/start-prod | |
input=$six_ALL_CCFRSCRATCH/datasets/oscar-small/oscar-en-shuffled-p1.jsonl | |
output=$six_ALL_CCFRSCRATCH/datasets/oscar-small/meg-gpt2-p1 | |
cd $six_ALL_CCFRWORK/code/megatron-lm | |
/usr/bin/time -v python tools/preprocess_data.py \ | |
--input $input \ | |
--output-prefix $output \ | |
--vocab data/gpt2-vocab.json \ | |
--merge-file data/gpt2-merges.txt \ | |
--dataset-impl mmap \ | |
--tokenizer-type GPT2BPETokenizer \ | |
--append-eod \ | |
--workers 16 | |
#echo "now copy the results to $six_ALL_CCFRWORK/datasets-custom/oscar/ from $six_ALL_CCFRSCRATCH/datasets/oscar-small/meg-gpt2" | |